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1 Projective spaces

1.1 Some motivation: Incidences between points and lines

The elementary figures of projective geometry are points, straight lines, and
planes. The elementary results of projective geometry deal with the simplest
possible relations between these entities, namely their incidence. The word
incidence covers all the following relations: A point lying on a straight line,
a point lying in a plane, a straight line lying in a plane. Clearly, the three
statements that a straight line passes through a point, that a plane passes
through a point, that a plane passes through a straight line, are respectively
equivalent to the first three. The term incidence was introduced to give these
three pairs of statements symmetrical form: a straight line is incident with a
point, a plane is incident with a point, a plane is incident with a straight line.
(Geometry and the Imagination — Hilbert, Cohn-Vossen)

In projective geometry, we are interested in statements and configurations that are
invariant under projective transformations. E.g., the incidence of a point lying on a line
is invariant under projection from one plane to another (from some point). Let us take a
closer look at this incidence in the plane.

A point in the Euclidean plane R? can be described by two Cartesian coordinates

p= (Phpz) € RQ,

and a line by
(= {p = <p17p2) € R2 ’ <nap>+ h = 0}

with some n = (n1,ny) € S'\{0} and h € R, where n can be interpreted as the unit normal
vector of ¢ and h as the oriented distance of the origin to .

Note that the equation for ¢ can be multiplied by any scalar A € R, A # 0 without
changing the line. Thus, we can replace (ny,ng, h) by

aq 1
as =X no |, with some A € R, A # 0,
as h

and write the equation for the line as

P1
aipr+aspstaz=(a; az az)| p2 |=0
1

Similarly, we can replace (p1,ps2,1) by any non-zero scalar multiple

T P
o |=pl| p2 |, with some e R, u # 0,
T3 1

from which the Cartesian coordinates of p can be recovered by

x
bhr=— P2= .
X3 x3

T2



The triple (z1,%2,r3), and in particular (p;,ps, 1), are called homogeneous coordinates
of p.

Now the equation of the incidence of the point p lying on the line ¢ (p € (), or
equivalently, the line ¢ passing through the point p (¢ 3 p) has the symmetric form

T a1
a12r1 + Q99 + azTs = ( a;y Qag as ) i) = ( 1 T T3 ) as =0 (1)
x3 as

Example 1.1. How to determine if three points p, ¢, r € R? lie on a line?
Equation (1) is a linear homogeneous equation in (aj, as, az). Thus, there exists a line
passing through these three points if and only if the linear homogeneous system

p1 p2 1 ap
G g 1 ay | =0
M T2 ]_ as

has a non-trivial solution, which is equivalent to

p1 p2 1
det | ¢1 ¢ 1 |=0.
T T2 1

Example 1.2. How to compute the intersection point of two lines?

Ez{peRQ‘alleragpg—kag:O}
gz{peRQ‘&1p1+d2p2+&3=0}

Its homogeneous coordinates are given by a solution of the linear homogeneous system

x1
( a2 ds ) ze | =0. (2)

ay Gz as

If we assume that the two lines are distinct, i.e., the two rows are independent, then the
solution space is one-dimensional

span{z} = {\z | A e R} with some 2 € R®, z # 0,

and we obtain the intersection point p € R? with

T T2

br=—"— P2=_
T3 T3

da(@ @):0
ap az
and thus ¢ and ¢ are parallel.

The linear homogeneous system (2) always has a solution. Thus, in homogeneous
coordinates of the plane two lines always intersect. In particular, for two parallel lines, the
point of intersection has homogeneous coordinates of the form (z1,x,0) which represents
a point not in R?, but “at infinity”.

What if 23 = 07 Then



1.2 Definition of projective spaces

Let V' be a vector space of dimension n + 1 over a field F. Then the projective space of V/
is the set
P(V) := {1-dimensional subspaces of V'}

Its dimension is given by
dimP(V) :=dimV — 1 =n.

For x € V\{0} we write [z] := span{z}. Then [z] is a point in P(V'), and x is called a
representative vector for this point.

If A € F\{0} then [Az] = [z], and Az is another representative vector for the same
point. This defines an equivalence relation on V\{0}

r~y < x=J\y, forsome\eF\{0},

and we can identify

pv) = (V0D /.
For now we will only consider the real projective space

RP" := P(R™1).

1.3 Homogeneous coordinates on RP"

For a point [z1,...,z,.1] € RP™ the coordinates of a representative vector
(x1,...,Zn11) € R are called homogeneous coordinates. They are unique up to a
common scalar multiple

[5(71, NN ,[En+1] = [)\[Eh ey )\xn+l]

for A € R\{0}.
If ,,41 # 0 then

ET [

T T,

I a]- :[yla-'~7yn71]a
Tn+1 Tp+1

and (y1, ..., yn) are called affine coordinates of the point [x]. This yields a decomposition
of RP™ into an affine part and a hyperplane at infinity

an:{[x17"'7xn+1] | xn+1¢0}U{[.f1,...,$n+1] |[L‘n+1:0}_
~ Y -~ ~ -~ /
~Rn" ~RpPn—1

//l\\

Figure 1. Affine coordinates for RP' and RP2.



Example 1.3 (The real projective line RP!). For the real projective line this decompo-
sition is given by
RP' ~ R URP? = R U {0},

where RP? consists of only one point [1, 0], which is usually denoted by oo, and allowed
as an “admissible” affine coordinate.

Example 1.4 (The real projective plane RP?). For the real projective plane this decom-
position is given by
RP? ~ R? U RP!.

Thus, we obtain the Euclidean plane compactified by a (projective) line at infinity.

Example 1.5 (The real projective 3-space RP?). For the real projective plane this de-
composition is given by
RP? ~ R* U RP?.

Thus, we obtain the Euclidean 3-space compactified by a (projective) plane at infinity.

More generally, let by, ..., b,.1 be a basis of R**1. For x € R"™! let 21,..., 2,41 € R
such that
n+1
T = Z z;b;.
i=1
Then (z1,...,7,.1) are called homogeneous coordinates of the point [z] € RP™ (with
respect to by, ...,b,41). They depend on the chosen basis and are unique up to a common

scalar multiple. We then identify
[l’] = [Z’l, c. 7~rn+l]-
A change of basis acts on the homogeneous coordinates as a general linear transformation

€ 151
— | A

Tn+1 Tn+1

with 4 € GL(R"*1).

1.4 Projective subspaces

For a (k + 1)-dimensional linear subspace U < R™*! its projective space
P(U) c RP"
is called a k-dimensional projective subspace of RP™.

dimP(U) | name

0 point

1 line

2 plane

k k-plane
n—1 hyperplane

Table 1. Naming conventions for projective (sub)spaces.



1.5 Meet and join

Let P(Uy), P(Us) < RP™ be two projective subspaces. Then their intersection, or meet, is
given by
P(Uy) n P(Us) = P(U, n Uy),
and their span, or join, is given by
P(Ul) \ P(Ug) = P(Ul + Ug)
The dimension formula for linear subspaces carries over to projective subspaces:
dim (P(U;) v P(Us)) + dim (P(Uy) n P(Us)) = dim P(U;) + dim P(Us).

In particular, a ki-plane and a ko-plane in an n-dimensional projective space with k1 + ks > n
always intersect in an at least (ki + ks —n)-dimensional projective subspace. Thus, certain
incidences are always guaranteed in a projective space.

Example 1.6 (RP?). In RP? two (distinct) lines always intersect in a point. In affine
coordinates, the two lines are parallel if and only if the intersection point lies on the line
at infinity.

Example 1.7 (RP?). In RP? two (distinct) planes always intersect in a line. In affine
coordinates, the two planes are parallel if and only if the intersection line lies in the plane
at infinity.

However, in RP3, two lines do not always intersect. They intersect if and only if they
lie in a plane. In affine coordinates, two lines are parallel if and only if the intersection
point lies in the plane at infinity.

1.6 Desargues’ theorem

An incidence theorem is a statement about a projective configuration (of e.g. projective
subspaces) where a certain set of incidences implies another set of incidences. As an

example we state the theorem of Desargues. First in RP? where it is very easy to verify,
and then in RP?.

Figure 2. Three triangles in perspective and their shadow.



Theorem 1.1 (Desargues). Let A, A’, B, B', C, C' be sir points in RP3, such that
A, B,C span a plane, and A’, B',C" span another plane.

If the three lines AA’, BB', and CC" pass through a common point, then the three
points A” = BC n B'C', B"=CAnC'A", and C" = AB n A'B’ lie on a common line.

Proof. First, the statement contains the implicit claim, that, e.g., the lines BC' and B'C’
intersect in a point. Indeed, the four points B, C, B’,C’ lie in a plane since BB’ and C'C’
are concurrent. Thus, the point A” = BC n B'C" exists.
The two planes
E=AvBvC(C, E=AvBv(C

intersect in a line { = E n E'. Since BC' € E and B'C’ € E’, their intersection point A”
lies in /. Similarly, B”,C" € (. H

Consider what happens if we project such a configuration in RP? from a point into a
plane, and denote the image points by A, B, C,.... Then we obtain again six points A,
A, B, B', C, C' that satisfy that the lines AA’, BB', and C'C’ are concurrent and that
the points A” = BC' n B'C", B" = CA~ C'A’, and C" = AB ~n A'B’ are collinear.

Indeed, Desargues theorem also holds in RP? which can be shown by lifting it to RP3.

Theorem 1.2. Let A, A’, B, B, C, C' be siz points in RP2, such that no three lie on a
line.

If the three lines AA', BB', and CC’ pass through a common point, then the three
points A” = BC n B'C', B" = CAnC'A’, and C" = AB n A'B’ lie on a common line.

Proof. We embed RP? into RP? as the plane RP? ~ E < RP3. Thus, E is the plane
which contains the two triangles ABC, A’B’C’, and the point P which is incident with
the three lines AA’, BB', and CC".

Choose a line through P which is not in £ and two points X and Y on it.

The lines XA and Y A’ lie in a plane, so they intersect in a point A. Thus,

A=XAnYA,
and similarly 3

B=XBnYBR,

C=XCnYC.

Now A, B,C span E and A, B, C span another plane E. The three lines AA, BB, and
CC pass through a common point (namely X'). Thus, we can apply Theorem 1.1 to the
six points A, A, B, B, C, (', and find that the line of intersection £ n E contains

A" = BC n BC = BC n B'C",

and similarly B” and C”. O
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Figure 3. Desargues’ theorem in RP? from Desargues’ theorem in RP3,

2 Duality

As we have seen in Section 1.1, in homogeneous coordinates x, xs, x3, the equation for a
line in a projective plane is
a171 + agxy + azrs = 0,

where not all coefficients a; are zero. The coefficients a1, as, a3 can be seen as homogeneous
coordinates for the line, because if we replace in the equation a; by Aa; for some A\ # 0 we
get an equivalent equation for the same line. Thus, the set of lines in a projective plane
is itself a projective plane, the dual plane. Points in the dual plane correspond to lines
in the original plane. Moreover, if we consider in the above equation the z; as fixed and
the a; as variables, we get an equation for a line in the dual plane. Points on this line
correspond to lines in the original plane that contain [x]. Thus, a the points on a line in
the dual plane correspond to lines in the original plane through a point.

It makes sense to look at this phenomenon in a basis independent way and for arbitrary
dimension. It boils down to the duality of vector spaces.

2.1 Dual space
The dual vector space of R™! is the space of linear functionals R**! — R
(R*™)* :={a | a: R — R linear} .
The dual projective space of RP™ is correspondingly defined by
(RP")* == P((R™")").

The natural identification (R™*1)** = R™™! carries over to the projective setting (RP™)** =
RP™.



2.2 Dual subspaces

For a projective subspace P(U) < RP™ its dual projective subspace P(U)* < (RP™)* is
defined by
P(U)* = {[a] € (RP")* | a(z) =0 for all z € U} .

The dimensions of a projective subspace and its dual projective subspace are related by
dimP(U) + dimP(U)* =n — 1.
Incidences are reversed by duality
P(U1) =« P(Uz) < P(U2)" < P(UL)".

and meet and join are interchanged

Figure 4. Duality in RP? and RP3.

2.3 Duality in coordinates

Let by, ..., by41 be a basis of R™™ and b}, ..., b%, | the corresponding dual basis of (R"1)*,
ie.,
1 i
b (by) = bi; = { S
0, 7#j.

In homogeneous coordinates with respect to those bases the duality of two points
[z1,...,ZTps1] = [x] € RP", [al,...,ans1] = [a] € (RP™)*

is expressed by

T
X1 ai 1

a(xz) = (ay...an41) : = : : =0.
Ln+1 an+1 Tn+1
Thus, duality in linear algebra as well as in projective geometry expresses in a formal way

that a subspace can either be expressed as the span of points or the solutions to a set of
linear equations.

10



If a change of basis acts on the homogeneous coordinates of RP™ as

X1 X1
— | A

Tni1 Tnt1
with A € GL(R™"!), it acts on the homogeneous coordinates of the dual space (RP™)* as

a a1
— | AT

An+1 An4+1

2.4 The dual of Desargues’ theorem

The interchangeability of points and lines is called the principle of duality
in the projective plane. According to this principle, there belongs to every
theorem a second theorem that corresponds to it dually, and to every figure a
second figure that corresponds to it dually. (Geometry and the Imagination —
Hilbert, Cohn-Vossen)

As an example consider the theorem of Desargues in in RP? (Theorem 1.2). Then its
dual turns out to be the converse statement, which therefore also holds.

3 Projective transformations

Let F' € GL(R""!) an invertible linear transformation. Then the map
[F]: RP" - RP", [v]+— [F(v)]

is called a projective transformation.

Proposition 3.1.

(i) Projective transformations are well-defined maps (do not depend on the representa-
tive vectors of points).

(ii) For F,G € GL(R"1)
[F]=[G] < G =\F with some A€ R\ # 0.

(#ii) Projective transformations map projective subspaces to projective subspaces, while
preserving their dimension and incidences.

(iv) Vice versa, any bijective map on RP™, n > 2, that maps lines to lines is a projective
transformation.

(v) Let Ay, ..., Ania € RP™ be n + 2 points in general position, and let By, ..., B2 €
RP™ be n + 2 points in general position. Then there exists a unique projective
transformation

f:RP" - RP" with f(A;)=DB;fori=1,...,n+2.
(vi) Projective transformations preserve the cross-ratio of four points on a line.

11



3.1 Projective transformations in homogeneous coordinates

In homogeneous coordinates a projective transformation [F'] : RP™ — RP™ is represented
by a non-singular matrix F' € R™+D*(+1) (yp to non-zero scalar multiples).
For representative vectors x = (uq,...,u,, 1) and with

F = Alb where Ae R™", b,ce R",de R
c’ | d

o= () (1) = (o)~ (%9

if cTu+d # 0. Thus, in affine coordinates, projective transformations are fractional linear
transformations:

we obtain

n n Au+b
R* - R U= cTu+d

3.2 Affine transformations

If we choose a representative matrix of the form

F= <%%) where A € GL(R"),b € R",
() ()-(%)

In affine coordinates, this in an affine transformation

we obtain

R" - R" u— Au+b

Thus, affine transformations are projective transformations.
Note that affine transformations map the hyperplane at infinity {[z] € RP" | z,,,, = 0}

BN OB ER

In fact, affine transformations are characterized by this property among the projective
transformations.

Proposition 3.2. A projective transformation f : RP™ — RP™ is an affine transforma-

tion if and only if f maps the hyperplane at infinity {[x] € RP" | x,.1 = 0} to itself.

3.3 Euclidean transformations

Euclidean transformations are affine transformations, and thus, projective transforma-
tions. Indeed, if we choose a representative matrix of the form

F = (%‘%) where A€ O(n),be R",

in affine coordinates, this is a Euclidean transformation.

12



Example 3.1 (reflection in a line). Consider a line with unit normal n = (ny,n) € S!
through the point ¢ € R?

(= {u=(u,u) e R* | {n,u—q) =0}

Then the (Euclidean) reflection 6 : R? — R? is given by

o(u) =u—2u—qnyn
With h := — (g, n) the equation for the line becomes

nyuy+h=0
and the reflection can be rewritten as
6(u) =u—2u,nyn —2hn = (I —2nn")u — 2hn

Thus, in homogeneous coordinates we can write

(6gu)):§1—§nnT—%hn)J(?)7

~
=F

where, indeed, I — 2nnT € O(2). As an extension of &, we can now define a projective
transformation o : RP? — RP? by o([z]) = [Fz]. Note that F? = I and thus o is an
involution: ¢ o o = id.

Let us also derive the matrix F' for the reflection in the case that the line is given in
homogeneous coordinates

(= {[:E] e RP? ! a'r = a1x1 + ATy + azx3 = O} = [a]* with some a € R*\{0}

With @ := (a1, a2) and |a| # 0 it relates to the Euclidean equation by

Thus,

[—20 | —2%5 ja|* I — 2aa™ | —2asa
F = la] la] ~ o
0 1 0 ‘ |a|
Note that this formula easily generalizes to the (Euclidean) reflection in a hyperplane in

R"™ < RP™ given by
L ={[z] e RP" | a"z = 0} = [a]",

which yields

P af° T — 2447 | —2a,414
0 L Jal ’

where @ = (a1,...,a,).

13



3.4 Central projections

Another important class of projective transformations are projections.

Example 3.2 (orthogonal projection to a line). Consider a line
0 ={u=(u,u) e R?* | {n,u—q) ={n,uy+h =0},

with some n € St, ¢ € R? and h = —{n, ¢). Then the orthogonal projection # : R? — /£ is
given by
flu)=u—{u—q,nyn=u—{unyn—hn= (I —nn")u—hn

Thus, in homogeneous coordinates we can write

(6gu>>:£1_0nnT_fn2<?>_

~
=F

Note that here F' is not invertible, since in particular F'(§) = 0. Thus, we can be extend
o to a map

T RPA\{[3]} — ¢

by m([z]) = [Fx]. Since 7 is not invertible, it does not constitute a projective transfor-
mation. But the restriction of 7 to any line (that does not contain [ §] is.
Similar, to Example 3.1, this can easily be generalized to the orthogonal projection

onto a hyperplane in R” < RP"™ given by
L ={[x] e RP" | a"z = 0} = [a]",

which yields

4 I —aa" | —a,.a
F= 3

where a = (aq,...,a,).

More generally, let L = RP™ be a hyperplane and P € RP" a point P ¢ L. Then the
central projection to L with center P is given by

7 : RP"\{P} — L, X—(PvX)nL

P and X span a line, since X # P. This line intersects L in exactly one point, since
P ¢ L. Thus, this map is well-defined.

Let us show that 7 is indeed a given by a linear map on the representative vectors.
Let the hyperplane L be given by

L ={[z] e RP" | a(x) =0} = [a]*  with some a € (R""")*\{0}.
The image of a point X = [x] # P = [p] lies on the line
XvP=P{ x+up|X\peR?}).
Thus, the intersection (X v P) n L is determined by the condition
a(Az + pup) = Aa(z) + pa(p) =0

14



With A = a(p) and p = —a(z), we obtain

which is indeed linear in z.
Again, this linear map is not invertible, since p is in its kernel. Furthermore, dim RP" =
n > dim L =n — 1. Yet the map becomes a projective transformation once we restrict it
to another hyperplane K with P ¢ K:
7: K —L X =[z]—(PvX)nL=]lalp)zr — a(z)p]

To see that now it is invertible, note that dim K = dim L. Further a(p)z — a(x)p = 0
implies = 0, otherwise we would have [z] = [p], which contradicts P ¢ K.
In homogeneous coordinates, we can write the representative matrix for the central
projection as
F=a"pl —pa.

Example 3.3 (orthogonal projection as central projection). Let us recover the orthogonal
projection from Example 3.2 as central projection with center at infinity.
Consider the hyperplane

L ={[z] e RP" | a"z = 0} = [a]* with some a € (R™*1)*\{0}.
and P = [p| = [a,0] = [a1,...,a,,0]. Then
F=a"pl —pa”

=(a an+1)<g>1—(g>(fﬂ ni1 )

~laf - (),

which indeed coincides with (3).

The definition for central projections can be generalized further by decreasing the
dimension of the image space which at the same time increasing the dimension of the
center.

Let L,C < RP"™ be projective subspaces with

CnL=g, CvL=RP"
Then the map
T:RP"\C—->L, X—(CvX)nL
is called (generalized) central projection onto L with center C'. Indeed, this map is well-
defined, since dim(C' v X) = dim C' + 1 and dim L + dim C = n — 1 and therefore, C' v X

and L intersect in exactly one point.
Again, the map 7 becomes invertible and in particular a projective transpormation,

T K—->L X—(CvX)nL
once restricted to any subspace K < RP" with
dimK =dimL, CnK=9g

Example 3.4 (central projection). If L is a hyperplanes, i.e. dim L = n — 1, the center C'
is a point, and the generalized central projection becomes the standard central projection.

Example 3.5 (three skew lines). If n = 3 and K, L are two non-intersecting lines, then
the center C' is another line, and we obtain three skew lines.

15



4 Conics and quadrics

While projective subspaces are described by linear homogeneous equations, we now add
the objects that are described by quadratic homogeneous equations.
Conics or conic sections are planar sections of a cone of revolution (or a cylinder)

hyperbola

Figure 5. Ellipse, hyperbola, and parabola as a planar section of a cone.
It can be shown that conic sections correspond exactly to the sets of solutions of
quadratic equations
{(377 y) € R? ‘ G2’ + 2q21y + q22y° + 20137 + 2q23Y + G33 = 0-}

Introducing homogeneous coordinates z = £ y = 22 the (non-homogeneous) quadratic
T3 xs3
equation in 2 variables can be written as a homogeneous quadratic equation in 3 variables

quTT + 20127179 + GaaTs + 2q137173 + 2qo3ToT3 + g3375 = 0,

or equivalently,

q11 12 13 T1
b(z,z)= (21 @ x3)| G2 G2 @3 r2 | =0
q13 423 Q33 T3
;’Q

where @) is a symmetrice matrix, i.e. QT = @, and b is a symmetric bilinear form on R3
b:R®xR® - R.

Example 4.1. An ellipse is a conic section. In normal form in R? (up to a Euclidean

transformation) it is given by
2 2
{(fv,y) € )t
Z2

Introducing homogeneous coordinates x = £, y = 22,
z3 x3
homogeneous quadratic equation

we can write its equation as a

= x

G B 1! s | =0

2 Tg =\ 21 T2 I3 b2 Lo | =
-1 T3
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4.1 Bilinear forms

Let V' be a vector space over R of dimension n + 1.
A bilinear form on V is a map

b:VxV-R

which is linear in both arguments.
Let ey, ...,e,41 be a basis of V. Then the matrix Q = (g;;) € R+ x(+D)

¢ij = blei, e)) fori,j=1,....,n+1

is called the representative matrixz, or Gram matriz, of the bilinear form b.
For two coordinate vectors z = Y. z;e;,y = >, y;e; € V we have

b(z,y) = TQy.

A change of coordinates 7 = Az with A € GL(n+ 1) acts on the representative matrix

as ~
O=ATQA.

Symmetric bilinear forms and quadratic forms
A bilinear form is called symmetric if
b(z,y) = b(y,x) for z,y eV,
or equivalenty, if its representative matrix is symmetric
Q =Q.
The space of symmetric bilinear forms Sym(V') is a linear subspace of dimension

dim Sym (V) = 1>2(" 2

A symmetric bilinear form b(-, -) defines a corresponding quadratic form b(-)
b(x) == b(x, x) forx e V.
Vice versa, a quadratic form uniquely determines its bilinear form (polarization identity)
20(x,y) = b(x +y) — b(z) — b(y),

and thus, the vector spaces of symmetric bilinear forms on V' and quadratic forms on V
are isomorphic.

4.2 Quadrics

The zero set of a non-zero quadratic form defines a quadric in P(V)

Q= {[z] € P(V) | b(z) = 0}

17



Example 4.2. The quadratic form

b(x) = x% +x§ —x%

defines a quadric (conic) in RP?
{[z] e RP? | b(z) = 2] + x5 — 23 = 0}
In affine coordinates x3 = 1 this is a circle
2]+ a5 =1
A non-zero scalar multiple of b defines the same quadric:

Qb = Q)\b for A #* 0.

Remark 4.1. For some very degenerate images, e.g. if Q, is empty, the reverse statement is
not true over R. However, if we either exclude these cases, or consider the complexification
of real quadrics, it holds that

Q, = 95 < b=\b for some \ # 0.
Example 4.3. The quadratic forms

b(x) = 2% + 25 + 23, b(z) = 22 + 422 + 22,
both define empty conics in RP?

Q=9 =0

even though b # b for all A # 0. However, the point [1,4,0] is contained in QF, but not
in QF. Thus,
Q5 # OF.

Thus, we can identify the space of quadrics with the projective space P Sym(V'). Its
dimension is given by
(n+1)(n+2) n(n + 3)

dim P Sym(V) = dim Sym(V) — 1 = 5 —-1= )

and the coefficients
¢ij = b(ei, e5), for j <

can be taken as homogeneous coordinates on the space of quadrics.

4.3 Projective classification of quadrics in RP”

Two quadrics @, Q < RP” are called projectively equivalent if there exists a projective
transformation f : RP"™ — RP™ such that

or equivalently, if there exists F' € GL(n + 1) and A € R, A # 0, such that
Q = A\FTQF,

18



where Q and Q are representative matrices for Q and Q, respectively. Note, that f =
[F7].
By Sylvester’s law of inertia, there exists an F' € O(n + 1) such that

Q = FTQF = diag(\1, ..., Ay i, - -+, s, 0,...,0)
e

—
t

where,
)\7;>0, [Lz<0, r+s+t=n.

Thus, after applying this transformation the equation for the quadric is of the form
M+ N A g sz =0

By applying a second transformation

— dino( L 1 1 1
F—dlag(m,..., )\r’\/_il‘l"..’\/_iﬂs,&”.’l)
t
we obtain )
Q = diag(1,...,1,—1,...,-1,0,...,0),
;ﬁ,_/%,_/%{__z
or as an equation for the quadric
x%+...+x2—xf,+1+...—$f+s=0.
The tuple (r, s,t), also written as
(+...+_..._O...0)7
\_\,_/\_\,_/Ht,_/

is called the signature of the quadric. We define the signature up to the following equiv-
alence
(717 87t) ~ (87 r? t)?

and obtain the following classification result.

Theorem 4.1. Two quadrics in RP™ are projectively equivalent if and only if they have
the same signature.

Quadrics in RP!
» (++4) empty quadric. By complexification these are two complex conjugate points.
» (+—) two points.

» (+0) one (double) point.
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Quadrics in RP? (conics)
» (++ +) empty conic. By complexification this is an imaginary conic.
» (+ + —) owal conic. Its normal form is given by
]+ 15— a5 =0

In affine coordinates this conic is an ellipse, a hyperbola, or a parabola. Indeed, if we
choose x3 = 1, the equation becomes the equation for a circle

2, .2 _
x] + x5 =1.

If we choose coordinates y; = x1,y2 = x3,y3 = x2 and y3 = 1, the equation becomes
the equation for a hyperbola

vi—ys =1
If we choose coordinates y; = x1,ys = T2 + x3,Y3 = 3 — T2 and y3 = 1, the equation
becomes the equation for a parabola

yf = Y.

projective

W ellipse

projective

W parabola

line mapped
to in finityrojective

m hyperbola

Figure 6. Projective transformations mapping a circle onto an ellipse, a parabola, or a
hyperbola.

» (++4 0) point. By complexification these are two imaginary lines that intersect in a
real point.

» (+— 0) pair of lines.

» (+00) one (double) line.

20



Quadrics in RP3

non-degenerate quadrics:

signature

affine signature
affine type | affine normal form | picture projective normal form
o (+++-)-
ellipsoid Pttt =1 Q (+++-)
2+ i+ ai— a3 =0
<
2-sheeted (+++-)+
hyperboloid | 22 +y? — 22 = —1 O
elliptic (+++-)p
paraboloid z=a?+y? O
1-sheeted (++—)-
hyperboloid 2yt -2 =1 (++—)
P4 a3 —ai—25=0
hyperbolic (++—)p
paraboloid 2= a2 — 9P
empty (++++)+ (++++)
(imaginary) 1’2 + y2 + Z2 - _]_ I% + ZL’% + x% + ZL’Z - 0

Table 2. Affine types of non-degenerate quadrics in R? and the corresponding projective

types in RP3.
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degenerate quadrics:

affine signature

signature

affine type affine normal form | picture projective normal form
cone 9 (+ ; _02)0
r+y —2z2=0 (++ —0)
4 ai—2i=0

elliptic (++-0)-
cylinder 4yt =1
hyperbolic ++—0)+
cylinder -y =1
parabolic (++—-0),

cylinder z = x? @
one point (+ 4+ +0)o

(imaginary cone)

iyt 4+22=0

(++ +0)
4 ay+a3=0

empty (+++0)+
(imaginary cylinder) 1‘2 + y2 - 1
two intersecting (+—00),
planes 2 —22=0 (+—00)
22 —122=0
two parallel (+—00)_
planes 2? =
one plane (+—00), Q
(and one at infinity) xr = O
one line (2+ + ;)0)0 (+ + 00)
(two intersecting imaginary planes) X + 5 = 0 m% + x% _ O
empty (++00)+
(two parallel imaginary planes) .’L‘Q - 1
000
one “double” plane (;2 _ ())0 Q E:Q—OEOO)
1=
empty (+000) +
(one “double” plane at infinity) 1 - 0

22
Table 3. Affine types of degenerate quadrics in R? and the corresponding projective types

in RP3.




4.4 Affine classification of quadrics in R" < RP”

Two quadrics Q,0 < RP™ are called affine equivalent if there exists an affine transfor-
mation f : RP” — RP™ such that

f(Q =2
or equivalently, if there exists ' € GL(n + 1) with

F = (%P) ., AeGL(n),be R,

and a A € R, A\ # 0, such that .
Q = \FTQF.

S |q .
QZ(#), S e Sym(n),qge R", 0 e R,

ATSA | AT(Sb+q)
TOF —
F1QF = ( (0TS +q")A|[bTSb+2¢Tb+0 )’

Thus, in a first step, we can use A to bring S to the form

With

we obtain

S = diag(1,...,1,-1,...,—1,0,...,0).

~
k

Case 1: There exists b € R™ such that Sb+ ¢ = 0. Then ) can be brought to the form

Q= (%%) S = diag(1,...,1,-1,...,—1,0,...,0),0 = 0,1, —1.

Here 0 = 0,1, —1 can be achieved by rescaling () and then using A to rescale S. If (r, s, t)
is the projective signature of Q, we write the affine signature in this case as

(T’ 87 t)U
with
(rys,t)e ~ (s,7,t) 4

Case 2: There exists no b € R" such that Sb+ ¢ = 0. Then S must be singular, i.e.,
k < n. Now we apply the following steps:

» We choose b € R" such that the first £ components of Sb + ¢ vanish.

» We choose A such that AT(Sb + ¢) = e,, without changing S.

» We choose b = —Ze, to eliminate o.

Thus, ) can be brought to the form

S| o0 A
Q= 01 |, S§=diag(,...,1,—1,...,-1,0,...,0)
01 1 ¢
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If (r,s,t) is the projective signature of Q, we write the affine signature in this case as
(r,s,t)p
with
(r,8,8)p ~ (8,7, 1)p.

Note that the block (9 ) corresponds to a projective signature of (+—). Thus, an affine
signature (7, s,t), is only possible with r > 0 and s > 0.

Theorem 4.2. Two quadrics in RP™ are affine equivalent if and only if they have the
same affine signature.

4.5 Signature of subspaces

Let @ < RP™ be a quadric, and K = P(U) < RP"™ a projective subspace. Then the
signature of K (with respect to Q) is the signature of Q restricted to K:

{[] € K | b(z) = 0}

Thus, it is determined by the restriction of the symmetrice bilinear form b to U.

Signature of a point A quadric @ < RP” separates RP"™ into two connected compo-
nents. For point [2] € RP™ the signature can take 3 possible values:

» (+) if b(x) > 0. The point lies on one side of Q.
» (=) if b(z) < 0. The point lies on the other side of Q.
» (0) if b(z) = 0. The point lies on Q.

Signature of a line A line ¢ < RP" can have the following possible signatures:

» (++) The line does not intersect Q.
» (+-) The line intersects Q in two points.
» (+0) The line intersects Q in one point.

» (00) The line is contained in Q.

If the line is given as the span of two points £ = [z] v [y], the representative matrix
for b on the corresponding subspace is given by

Q= (jm) o).

Note that its determinant

det Q = b(x, z)b(y, y) — b(x, y)?

is the product of its eigenvalues. Thus, if we exclude the case (00), which corresponds to
@ = 0, the other three cases can be distinguished by the sign of the determinant. The

line ¢/ has signature
(+-) < det@ <0,

(++) = det @ > 0,
(+0) = det@Q = 0.
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4.6 Tangent lines and tangent cones

Let @ < RP™ be a quadric.
A tangent line of Q is a line that intersects Q in exactly one point. We have established
that these are the lines of signature (+0), and can be characterized in the following way.

Lemma 4.3. A line [z] v |y] not contained in Q is a tangent line of Q, if and only if

b(x, 2)b(y, y) — bz, y)* = 0.

Let X = [z] € RP™\Q a point not on Q. Then the tangent cone to Q from P is
defined as the union of all tangent lines to Q that contain the point P:

cx=|J ={lyleRP" | c(y) == bz, 2)b(y,y) — b(x,y)* = 0} .

=>X,
¢ tangent of Q

Note that ¢ defines a quadratic form, and thus Cx is a quadric itself.

By definition, every tangent line has a point on Q, which we call the point of tangency.
Thus, to obtain the tangent cone it is sufficient to join X with all points of tangency. By
Lemma 4.3, for a point [y] € Q on Q, the line [z] v [y] is a tangent line if and only if

b(z,y) = 0.
Thus, the points of tangency of all tangent lines through X lie in a hyperplane,
Xt ={[y] e RP" | b(z,y) = 0}

called the polar hyperplane of X (with respect to Q). Thus, we can write the tangent
cone in the following way
cx= |J xvv

YeonXL

Example 4.4 (Shadow of an ellipsoid).
What form does the shadow of an ellipsoid have?

Consider an ellipsoid £ = R?* = RP? (an affine image of a sphere). Let X be a point
outside £, and K a plane. The shadow of the ellipsoid cast onto K by a light source in X
is bounded by the intersection with (one half of) the tangent cone Cx. Thus it is a conic
section.

Which type of conic section can we obtain? Can it be a hyperbola?

The type of conic section (ellipse, parabola, hyperbola) depends on how many points
of intersection (0, 1, 2) it has with the line at infinity on K, or equivalently, how many
generators of Cx intersect K in the line at infinity.

Generally, a line intersects the plane K in the line at infinity, if it is parallel to K.
Thus, consider the plane Ky through X parallel to K. Then the number of generators of
Cx in K is the number of intersection points of Cx n K with infinity.

Consider the two planes K, K5 parallel to K touching £ in one point. This separates
RP™ into two regions, one containing £, and one not containing &.

» If X is in the region not containing &£, then Cx n K is an ellipse.
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» If X is in the region containing £, then Cx n K is a hyperbola.

» If X lies in Ky or K5, then Cx n K is a parabola.

Figure 7. Shadow of an ellipsoid.

4.7 Polarity and tangent planes

Let Q@ < RP” be a quadric of signature (r, s, ).
For a point X = [z], its polar hyperplane (with respect to Q) is given by

X5 = Al e RP" [ bl y) = 0}
If the point X has signature
» (+), then X* has signature (r — 1, s,1).
» (=), then X* has signature (r,s — 1,1).
» (0), then X* has signature (r — 1,s — 1, + 1).

For the cases (+) and (-), we have established, that the intersection of X+ with Q
consists of all points common with the cone of contact Cx.

In the case (0), every point Y € X' that does not lie on the quadric is a tangent line
of Q. Thus for a point X € Q on the quadric, the polar hyperplane is the plane containing
(and spanned by) all tangent lines though X, which we call the tangent plane of Q in the
point X.

Example 4.5 (Tangent planes of a hyperboloid). Consider a one-sheeted hyperboloid
H < RP3, ie. a quadric of signature (++--). Then a tangent plane X in any point
X € H has signature (+-0). Thus, the restriction of H to X* consists of two lines.

In particular this means, that a one-sheeted hyperboloid, contains two lines through
every point. In fact, it is a doubly ruled surface, and contains two families of lines, called
its generators.
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Example 4.6 (Projection of a generator).
What is the shadow of a generator of a hyperboloid?

Consider a one-sheeted hyperboloid H < RP?, a generator £ < H, and a center of
projection X not on . We consider the projection to X+*.
The projection of H to X is given by a conic section

D=CxnXt=HnXt

of signature (++-). Its affine type can be determined in a similar way to Example 4.4.

Denote the central projection of £ to X+ by £. The line ¢ intersects X+ in some point
A € D, which is fixed under the projection to X+. Thus, A € /.

Assume there exists another point B € ¢ such that its projection B lies on D. Then
the line X v B is a tangent line of 7. On the other hand, this line intersects # in the two
distinct points B and B, which is a contradiction. Thus, the projection ¢ only intersects
D in A, and therefore is a tangent line of D.

Note that projection to any other plane preserves this property.

Figure 8. Shadow of the generators of a hyperboloid.

Differential geometric tangent plane Let us compare the notion of tangent plane
that we have introduced for quadrics to the corresponding notion from Differential Ge-
ometry. In affine coordinates, we can view a quadric as a submanifold of R" given as a
level set of the function

0=2"Qz = (uT 1) (q—i‘%) (?) =uTSu + 2¢"u + o = f(u)

Then the normal vector of the tangent plane at some point ug € R” with f(ug) = 0 is

given by the gradient
Vuf(ug) = 2Sug + 2q.

Thus, the tangent plane at ug € R is given by
{ueR" | (Sug+ q,u —upy = 0}
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With
(Sug + q,u —ugy = ug"Su+ q'u — ugTSug — ¢Tug = ug"Su + q'u + qTug + o

this coincides with the polar plane at ug in affine coordinates.

5 Plane curves and envelopes of lines

5.1 Plane curves
Definition 5.1.

(i) A (plane) curve is a smooth map

vl —R?
with some interval [ < R.
(ii) Let 7 be a curve.
» The vectors
y(t)

are called the wvelocity or tangent vectors of ~.
» The function
v(t) = ()]
is called the speed of .

» The function

is called the arc-length of v, here I = [t1,15].
» If v(t) =1 for all t € I, then ~ is called arc-length parametrized.

(iii) A curve 7 is called regular if

F(t) #0 foralltel.

(iv) Let v be a regular curve and t € I.

» Any non-zero scalar multiple of 4(¢) is called a tangent vector at t € I.
» The line
T(t) = {y(t) + a(t) | @ € R}
is called the tangent line at t € I.

» Any vector n(t) orthogonal to (1), i.e.,

(n(t),7(t)) =0,
is called a normal vector at t € I. In particular one can choose.

L. 0-1
n(t) = @J’y(t), J=(170)

which is called the unit normal vector at t € I.
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» The line
N(t) == {z e R* | (§(t),z —~(t)) = 0}
={y(t) + an(t) | a € R}.

is called the normal line at t € I.

Note that the derivative of the arc-length is the speed

For a regular curve 7 the arc-length s(-) is monotonically increasing, and thus invertible.
We call its inverse function #(-) = s7() and thus write

A(s) = (0 1)(s).
For the derivative w.r.t. arc-length we write

od  dtd 1.

v=—77 =7
v

TTG T Gsdt

In particular, the parametrization of v w.r.t. arc-length has unit speed

IVl =1,
which implies
0= St = Sy =26
ds ds '’ T
Thus +” always points in normal direction.
Definition 5.2. Let v be a regular curve, and let n be the unit normal vector field of .

Then
r(s) = (Y"(s),n(s))

is called the (signed) curvature of -y at s, i.e.

7" (s) = K(s)n(s).

In terms of an arbitrary parametrization, and with unit tangent vector

the curvature can be written as

1 . .
r(t) = o (r(t),n(t)) = (1) G(t),n(t))
1

o Lo
- S Gi(t), JA()) = NOE det(y(2), ¥(t))-

Example 5.1. Consider a parametrized circle of radius r > 0

cos(t)

V() =7 <Sm(t)) . te[o,2q].
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Then

o [—sin(?) Y B ) (—sin
0= () == = 30 - (
Thus, the curvature of 7 is

Definition 5.3. Let v : I — R? be a regular curve, and n its unit normal vector field. If
k(t) # 0, then the osculating circle at t € I is the circle with center

and radius

If k(t) = 0, then we consider the tangent line at t € I to be the osculating circle.

The osculating circle touches its curve the corresponding point. Furthermore, if
parametrized in the same direction as the curve, it has the same (signed) curvature.

It can also be shown that it is the best approximating circle in the following sense.
Consider the circle through three points of the curve (t), v(t —¢€), and (¢ + €). Then in
the limit ¢ — 0, this circle converges to the osculating circle.

5.2 Discrete plane curves

Definition 5.4.
(i) A discrete (plane) curve is a map
vl —R?
with some interval I < Z. We denote its vertices by

e = (k) for ke I.

(ii) Let v be a discrete curve.

» The vectors
Ak = Y41 = Tk

are called discrete velocity vectors, vertex difference vectors, or edge tangent vec-
tors. They are naturally defined on edges (k,k + 1).

» We define the turning angle at a vertex k € I by

i = {(A’yk,A’ykfl) S [—71',7'('].
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Figure 9. Turning angle at a vertex of a discrete curve.

» If
| A%l = Iear =] =1
then v is called discrete arc-length parametrized curve.
(iii) A discrete curve 7 is called regular if any three successive points Yx_1, Yk, Vr+1 are

distinct, or equivalently, if any two successive edge tangent vectors are not anti-
parallel.

(iv) Let v be a discrete curve, k € I.
» The line
Ty =Y vV V1
is called the edge tangent line at the edge (k,k + 1).
» The perpendicular bisector Ny of v, and 7.1 is called the edge normal line at
the edge (k,k+1).

We now introduce two types of discrete osculating circles.

Definition 5.5. Let v : I — R? be a regular discrete curve. Then the circle C, through
three successive points vi_1, V&, Ve+1 is called the vertexr osculating circle at k e I.

Tk

V-1
VE+1

Figure 10. Vertex osculating circle.

» Note that the two involved edge normals Ny_; and N both contain the center of CY.

» The discrete curvature at vertex k can now be defined by the radius of the vertex
osculating circle. The radius is given by |Vii1 — Ye—1| = 2Rk sin ¢ which leads to the
curvature .

2 sin @y,

Rp = ———————.
H%H - %4”

» The vertex osculating circle inherits an orientation from the order of the three points
on it. This can be used to also associate a sign to the discrete curvature, which
corresponds to the sign in the formula above.
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» The vertex osculating circle can also be used to define vertex tangent lines as the line
tangent to Cj, in the point 4.

Definition 5.6. Let v : I — R? be a regular discrete curve. Then the circle Cj, that
touches three consecutive edge tangent lines Ty_1, T, Tr,1 is called the edge osculating
circle at (k,k+1) € 1.

Figure 11. Edge osculating circle.

» For three (non-concurrent) lines in R?® there are four circles touching them. By en-
dowing the tangent lines with the orientation coming from the order of the points of
the curve on them, this choice can be made unique.

Figure 12. Edge osculating circle from oriented tangent lines.

» Note that the (correctly chosen) angle bisectors of successive edge tangent lines contain
the center of the edge osculating circle. Thus, the edge osculating circle can be used
to define edge normal lines.

» The (oriented) edge osculating circle can be used to define a (signed) discrete curvature
at the edge (k,k + 1). The radius is given by ||Ay|| = Ry(tan €8 + tan #5=). This
leads to the curvature

Pk+1

Yk
_ tan 2" + tan =5

R =
| Al

Computing angle bisectors Consider two oriented lines
{={zeR?|(n,z)+h =0}, Zz{xeR2‘<ﬁ,m>+l~1=0}

with n,7 € St, h, h € R, and orientation coming from the normal vectors n, 7.
Then the two angle bisectors of £ and ¢ are given by

m+=<xeR2,<n+ﬁ,x>+h—|—iL:O>,
m,=<xe]R2,<n—ﬁ,x>+h—i~z=O>.
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Reflection in m_ maps ¢ to £, but with opposite orientation, while reflection in m., maps
¢ to ¢ with the same orientation.

Thus, for two adjacent edge tangent lines Ty, Tj,1 the orientation reversing angle
bisector m_ is the desired vertex normal line.

5.3 Envelopes

Consider a one-parameter family of curves C' (implicitly) given by
= {zeR?| F(t,z) = 0}, tel
with some smooth map F : I x R? — R.

Definition 5.7. A curve 7 : I — R? is called envelope of the one-parameter family C' if
7 is tangent to C'(t) in the point (¢), i.e

F(t,y(t) =0 (7(#) lies on C(2)) (4)
(VL E(t,~(t)),7(t)) =0 (v in tangent direction of C(t) at ~(t)) (5)

This is a differential equation for 4. But we can reformulate this in the following way.
Equation (4) implies

0— stF( () = DF(t,~(t) ((175) — (3F 0nF 0,,F) <7(1t)>
Y1) -

= 0, n(@1) + (Vo F (8 (1)),
Thus, equations (4) and (5) are equivalent to
F(t, (1) =
0F(t,7(1))

which is not a differential equation in ~ anymore.
In particular, if C' is a family of lines, then the equations for the envelope are two
linear equations in 7.

0
0

Y

Example 5.2. For a regular curve v : I — R? the envelope of its tangent lines is the
curve 7 itself,

Example 5.3. Consider
F(t,x) = xy — 2twy + 2.

Then
OF (t,x) = —2xq + 2L.

implies w5 = t. Substituting this into F(¢,x) = 0 we obtain z; = t>. Thus the envelope is

given by
t2
(1) = (t)
which is a parabola.

Note, that, in homogeneous coordinates, the equation for the lines is given by

L1
T — 2t(L’2 + t2l’3 = (1 —2t t2> To | = 0
I3
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which describes a curve ¢t — [1, —2¢,¢?] in (RP?)*. This curve is implicitly given by
:Eg —4x1x3 = 0,
which is a conic in (RP?)*. This is an example of the general fact, that (the envelope) of

the dual of a conic is a conic.

Discrete envelope of a family of lines Let C : Z o I — Lines(R?) be a discrete
one-parameter family of lines, such that no adjacent lines are equal or parallel.
Then we can define the discrete envelope as the discrete curve given by intersections
of adjacent lines
Ve = Ck 0 Cpy1.

In this way the edge tangent lines of 74 coincide with the lines of C,

Ty = Crqr-

5.4 Evolute

Definition 5.8. The evolute of a regular curve ~ is the envelope of its normal lines V.
The envelope of the family of normal lines is described by the equations
F(t,x) = (), 2 —7(t) =0
OF(t,x) = Goa — () = [§()) = 0

With unit normal field n of 7, the first equation is equivalent to

z = e(t) = () + a(t)n(t)

with some function . Then, «(t) can be determined by the second equation

Gre(t) = v(1) = 3O = a(t) G(t), n(t)) = [F ) = 0

to be )
171 1
at) = - = —=,
Gi(t),n(t)) k(1)
which is well-defined as long as (y(t),n(t)) # 0, i.e., x(t) # 0. Thus, the evolute of v is
given by

and we find

Proposition 5.1. The evolute of a regular curve consists of the centers of its osculating
circles.

Proposition 5.2. Let v : I — R? be a reqular curve. Then its evolute e is non-reqular in
t € I if and only if the curvature k of v has a local extremum inte I, i.e.,
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Proof. Let v be arc-length parametrized. Then

) =76+ (15 ) o) + o)

For the normal vector we have 0 = < (n(s),n(s)) = 2{n'(s), n(s)), thus n'(s) = a(s)y/(s)

where
afs) = (n'(s),7'(s)) = = (n(s),7"(s)) = —k(s).
So,
n'(s) = —k(s)7'(s)
Thus,

Definition 5.9. A parallel curve of v is a curve of the form
Y (t) == ~(t) + rn(t), reR.

where n is the unit normal vector field of ~

Proposition 5.3. Parallel curves have the same evolutes.

Proof. We show that parallel curves have the same normal lines.

Gr(t),n(t)y = Cy(t) + ra(t),n(t)) = 0.

Example 5.4. Consider a parabola

Then
i0=(y). 0= (3). w0 =i ()

Gt),nt)y =2, 7@ =1+ 4%

Therefore, the evolute is given by

and

_ K
o0 =10+ gz @ = (37 e)

which is a semicubic parabola.
Note that it has a cusp at the point where the parabola has maximal curvature.
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Discrete evolutes Let v:7Z > I — R? be a regular discrete curve.

» We can define its vertex evolute as the discrete envelope of adjacent edge normal lines.
The vertex evolute consists of the centers of the vertex osculating circles.

» Alternatively, we can define its edge evolute as the discrete envelope of adjacent vertex
normal lines. The edge evolute consists of the centers of the edge osculating circles.

00
e

XX 00
m’,’o,o‘ X
KX

GO | R

"
u‘:",o,
(X

QOO
5

I

s QR

:'.:g:‘o%‘o‘ 0 .’w,o‘o,o.::::,:“
o ¢

0
000‘0:;:‘“
%
R

Figure 13. Top: Smooth and discrete curve and its tangent lines. Bottom: Smooth and
discrete curve and its evolute.

5.5 Involute

Definition 5.10. An involute of a regular curve ~ is a curve orthogonal to the tangent
lines.

Thus, an involute I' : I — R? must satisfy

L(t) = A1) + o)), r(t) = %

with some o : I — R and
0= (T(),4(t) ) = G1),4(8) + alt)r(t) + a7 (1) = [0 + a(t) |31,

Thus,
a(t) = —y(8)]

We obtain

Fu(t) = () - % [ rnae=0 - #wm ~ s(a),
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where s is the arc-length of .
Thus, in terms of arc-length parametrization the involute is given by

La(s) = 7(s) =7'(s)(s — a).
The distance of the involute to the corresponding curve (along the tangent line) satisfies
ITa(s) =7(s)l = |s —al.

» Thus, the involute is the locus of a point on a piece of taut string as the string is either
unwrapped from or wrapped around the curve starting at the point v(a).

» Equivalently, it is the locus of the point on a straight line as it rolls without slipping
along the curve.

Proposition 5.4. Let v be a reqular curve.
(i) The involute is regular at points where k(t) # 0 and t # a.
(i) The normal lines of the involute are the tangents of 7.
(iii) The evolute of the involute is 7.

(iv) The involutes are parallel curves.

(i) To(s) = 7'(s) =7"(s)(s —a) =7'(s) = =(s — a)r(s)n(s).
(ii) By definition of the involute {I",(s),~'(s)) = 0.
(iii) Follows from (ii).
(iv) Tu(s) = To(s) + ay/(s), where 4/(s) is the unit normal at T'y(s).
[

Remark 5.1. The one-parameter family of tangent lines of a curve together with its one-
parameter family of involutes form an orthogonal coordinate system.

Example 5.5 (Involutes of a circle). Consider a parametrized circle of radius r > 0

cos(t)

V() =7 (Sm(t)) . te[o,2q].

Then '
0= (). o0 = 01 = S0 - s@ = - )

Thus, the involutes of v are given by

N—
@)
o
)

—~
~

SN—

cos(t) — (t — a) sin(t)
Ta(t) =7 (Sin(t) +(t—a )

This is a common shape for the teeth of gears, the so called “involute gears”.
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Example 5.6 (Involute of a semi-cubic). Consider the semicubic parabola, we obtained
as the evolute of a parabola. We reconstruct the parabola as one involute of semicubic

parabola.
—4t3
y(t) = ( ) , t>0.
5+ 3t

Then

0= (T )o Ol =onTEaE [ Ji01d= S0 i -

N —

For simplicity, we add a constant of integration % and obtain

—413 1 —121%\ 1 o0 2 t
0 = (4% v (o )20+ = (i)

which is a parabola.
Note that the other involutes of the semicubic parabola are not parabolas.

Discrete involutes We can derive constructions for discrete involutes from the property
that evolute of the involute should be the original curve, i.e., the tangent lines of the
original curve should be the normal lines of the evolute.

Let v:7Z < I — be a regular discrete curve.

» Choose some starting point Iy € R?
» Obtain 'y, from I'y by reflection in tangent line T}, of ~.

Then T}, is the edge normal line of I" at the edge (k, k + 1).
Alternatively:

» Choose some starting edge tangent line Ty = Ty v I';.
» Obtain T}, from T}, by reflection in tangent line T} of v, and thus, ['y,, = T Thsr.

Then T}, is the vertex normal line of I' at the vertex k + 1.
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Figure 14. Top: Smooth and discrete curve and its normal lines. Bottom: Smooth and
discrete curve and one of its involutes.

6 Mobius geometry

6.1 The elementary model of Mobius geometry

Consider the n-dimensional Euclidean space R™. The inversion in a hypersphere with
center ¢ € R™ and radius r > 0 can be described in the following way: The point z and its
image x’ lie on the same ray emanating from ¢ and the distances to c satisfy the relation

2
[z—c|-|2"=c| =

This gives rise to an involution on R"™, except that the center ¢ has no image and no

preimage. To fix this, we add one extra point to R", called oo, and obtain the extended

FEuclidean space .
R7 := R" U {0}.

Definition 6.1. The (sphere) inversion in the hypersphere with center ¢ € R™ and radius
r > 0 is the map defined by

T2

R - R, r— ' =c+ ——— (x —¢) forx#c,
|z = ¢f?
Cr—> 0

o0 —C

Sphere inversions preserve angles and map hyperspheres and hyperplanes to hyper-
spheres and hyperplanes. This statement becomes simpler and more specific at the same
time if we consider hyperplanes as special cases of hyperspheres through the point oo.
More precisly, let us adopt the following convention:
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Definition 6.2. A sphere in R" is either a sphere in R™ or the union of a plane in R"
with {o0}.

Then we can simply say:

Theorem 6.1. Sphere inversions preserve angles and map hyperspheres in R to hyper-
spheres in R™.

Since circles and, more generally, k-dimensional spheres for 1 < k < n are intersections
of n — k hyperspheres, sphere inversions preserve spheres of any dimension:

Corollary 6.2. Sphere inversions map k-spheres in R" to k-spheres in Rn.

Just as hyperplanes are limiting cases of hyperspheres, reflections in hyperplanes
are limiting cases of sphere inversions. The reflection in the hyperplane with equation
{(x — a,vy = 0 is the map

(x —a,v)
(v,v)

which we extend from R” to R» by declaring that reflections in hyperplanes map oo to oo.

/
rT—x =x—2 v,

Figure 15. Reflection in a hyperplane

Definition 6.3. A Mdbius transformation of R™ u {00} is a composition of sphere inver-
sions and reflections in hyperplanes. The Mobius transformations form a group called the
Mdébius group and denoted by Méb(n).

Remark 6.1. A Mobius transformation is orientation reversing or preserving depending
on whether it is the composition of an odd or even number of reflections. The subgroup
of orientation preserving Mobius transformations is called the special Mdbius group and
denoted by SMéb(n).

Because reflections preserve angles and map spheres to spheres, Theorem 6.1 extends
to Mébius transformations:

Theorem 6.3. Mdbius transformations preserve angles and map spheres in R to spheres
mn R”.

Similarity transformations on R" are the transformations of the form x — AAz + b
with A > 0, A € O(n), and b € R". Reflections in hyperplanes are a special case, and

like reflections in hyperplanes we extend all similarity transformations from R"™ to Rn by
declaring that co maps to co.

Proposition 6.4. The Médbius group contains all similarity transformations.
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Proof. The group of similarity transformations is generated by translations, orthogonal
transformations, and scalings.

» A translation z — x + v is the composition of two reflections in parallel hyperplanes.

» An orthogonal transformation z — Ax with A € O(n) is the composition of at most n
reflections in hyperplanes through the origin.

» A scaling transformation x — Ax with A > 0 is the composition of a reflection in the
unit sphere followed by a reflection in a sphere with center 0 and radius v/\. O]

Conversely, one only needs to add one sphere inversion to the group of similarity
transformations to generate the Mobius group:

Proposition 6.5. Fvery Mobius transformation is a composition of similarity transfor-
mations and inversions in the unit sphere.

By Theorem 6.3, Mobius transformations map hyperspheres to hypersphers. This
property already characterizes all Mobius transformations.

Theorem 6.6 (Fundamental theorem of Mébius geometry) Any bijective map f : Rn —
R" which maps hyperspheres in R to hyperspheres in R" is a Mébius transformation.

6.2 The projective model of Mdobius geometry

The idea is to transfer Mobius geometry from R to the n-dimensional sphere S™ via
stereographic projection .

o:S5" - R
Via the standard embedding

R« RP™L U s lu] = [z]

we identify the unit sphere S — R"*! with a quadric in RP"*!,
S" = {[z] e RP" | (@, 2)ps11 = 0}, (6)

where

(x, :Z’>n+171 =101+ .+ Tps1Tnst — TnaoTnio
is the Lorentz product. Thus, indeed, in affine coordinates x,,o = 1, the quadric S™ is
the unit sphere

i+ .+ ad =1

Upon identifying the affine part of R" with the affine part of the hyperplane
E = {[z] e RP"" | 2,41 = 0}.

the stereographic projection coincides with the central projection of S™ to the hyperplane
E from the “north pole” [e,11 + €,42]. A point [z] € S™\[en+1 + €ny2] on the quadric is
mapped to

T

([2] V [ens1 + €nsa]) A E = o
0

_$n+2 — Tn+1 |
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Inversely, a point [u,0,1] € E, u € R", is mapped to

u 2u
0| V [ens1 + €nsa] | 8" = | |ul> =1
1 Jul* + 1

Thus, we obtain the following equations for stereographic projection and its inverse:

—~

o ik — Rn
]
: 1 x‘l '
T —_ | it @1 F Tpso
Tpi2 — Tp4a
Tn+1 Tn
_$n+2_
[z] —> 0 if Z,1 = T4
ot R» — g7
2u
u — |u? -1 if uweR"
Jul® + 1
0 —  [ent1 + ento]

The stereographic projection o is the restriction to S™ < R™*! of the inversion in the
hypersphere with center e, (the north pole of S™) and radius 1/2 (so that it contains the
equatorial sphere {x € S™ |z, 11} = 0). Thus, Theorem 6.1 implies, that the stereographic
projection preserves angles and maps spheres to spheres.

It is convenient to additionally employ another basis for the projective model, one that
contains the center of projection. We change the basis for our homogeneous coordinates

from the standard basis (ey, ..., e,42) of R"™2 to the new basis
B = (ela ce 5 Eny 600760)
with
o = % (6n+1 + en+2)7 €y = %(_en-i-l + en+2)'

The points [eg] and [eq] are the “south pole” and the “north pole” of S™. We choose the
subscripts 0 and oo for the new basis vectors because

o 1(0) = [eg] and o7 '(0) = [ex].

Note that B is not an orthonormal basis of R**11. Rather, we have
1
<€07 eO>n+1,1 = <6007 eoo>n+1,1 = O, <€0, eoo> = _5 .

Now the change-of-basis-transformations between coordinate vectors with respect to
the standard basis and the new basis B are

L1 ial
. n .
r = Ty = 2 Trer + Toplow + To€o = Ty )
Tnt1 k=1 %@00 — o)
Tn+2 %(xoo + ‘TO)
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and inversely

T X T
I, 0

Tn = Tn = Tn

Lo Tpt1 + Tny2 0 L1 Tpt1

Zo —Tp41 T Tny2 N -1 1 | \Tn+2

F

We may interpret [x] = [21, ..., %n, Tno1, Tnao] and [zq, . .., 2y, Too, To] as representing the
same point in RP™ ! with respect to different bases, or we may interpret [z1, ..., 2, Te, o]

as the image of [z] under the projective transformation f : RP"*! — RP"*! [z] — [Fz].
In coordinates of the basis B, the Lorentz scalar product is

- - N 1 - 1
<a:,a:>n+1’1 =213 + ...+ Ty Ty — 5 oo = 5 Z0Teo.
In affine coordinates o = 1, the “north pole” [e,] lies at infinity and the quadric S™
becomes a paraboloid

2 2

Figure 16. Stereographic projection becomes vertical projection in the paraboloid model

Correspondingly the stereographic projection (and its inverse) becomes vertical or-
thogonal projection from (and onto) this paraboloid (see Fig. 16).

2u
o () = | u* = 1| =[u+ |ul®ex + €o]-
] + 1

Thus, the projective model in homogeneous coordinates with respect to B is sometimes
called the paraboloid model of Mdbius geometry.

6.3 Spheres in the projective model

Hyperspheres in S™ are intersections of S™ with hyperplanes in R*™!, or, since we view
S™ as a quadric in RP™™! (see equation (6)) intersections with hyperplanes in RP"*1.
The pole-polar relationship provides a bijection between hyperplanes that intersect S™
and points outside S™.
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On the other hand, hyperspheres in S™ correspond to hyperspheres in R" via stereo-
graphic projection. Thus, we have the following bijections:

stereogr. polarity
“—>

hyperspheres in Rn hyperspheres in S" points outside S™.

projection
The following proposition provides explicit formulas.

Proposition 6.7. Let [y] € RP™™ be a point outside S™, i.e.,

<y7y>n+1,1 > 0.
Then the polar plane
[y]l = { (7] € RP™* ‘ Y, T)nt11 = 0 }

intersects S™ in a hypersphere

Sy = S [yl

whose image o(Sp)) < R" under stereographic projection is a hypersphere in R

> If Yns1 # Yn+2, o7 equivalently, yo # 0, then o(Sp,) is the sphere in R™ with center ¢
and radius v, where

yl yl
! : ; : r = Y Yns10 _ Yy Yns1

Yo | - Ynt2 = Yn+1 | Yol  Ynso = Ynia|

> If Yni1 = Ynt2, or equivalently, yo = 0, then o(Sp) is the union of {0} and the
hyperplane {u € R™ | {v,u) = d},

Y1
B d= é.o = Yn+1 = Yn+2-

Yn
Conversely, the inverse projection o~ maps

» the sphere in R"™ with center ¢ and radius r to the hypersphere Sp,) < S™ with

2c
(9] = [+ el = )ew + eo] = [ e~ 2 1
le|? =72 +1

» the union of {0} and the hyperplane {u € R”}<v,u> = d} in R" to the hyper-
sphere Sy, < S™ with
v
[y] = [v + 2dey]| = | d

IS8

Remark 6.2. Note that the center of the sphere is obtained by the central projection of
the point [y] that represents the sphere.
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Proof. As an exemplary case, we show that a point [z] = [u+ |[u]” ex + o] € S™\{[ex]} in
the polar hyperplane of [y] = [¢ + (Je|? = r?)eq + eo] is projected to a point u = o([z]) #
oo that lies on the sphere in R™ with center ¢ and radius r.

2 2
0=y, $>n+171 = <c + ([e)* = r*)ew + eo, u + |ul” e + 60>n+1,1

= le—ul* =7

O

Proposition 6.8. The hyperspheres in S™ corresponding to two points [y1] and [y2] out-
side the sphere S™ intersect if and only if

G yoain < Y Yn1,1{Y2s Y211

In this case the intersection angle 0 is determined up to 0 — m — 6 by the equation

i, y2>i+1,1

2
cos“ 0 =
<y1, ?/1>n+1,1 <?12, 92>n+1,1-

Corollary 6.9. The hyperspheres corresponding to two points [y1] and [ys] outside S™
intersect orthogonally if and only if

(Y1, y2>n+1,1 = 0.

6.4 Pencils of spheres

Definition 6.4. In Mobius geometry, a pencil of spheres is the family of hyperspheres
corresponding to the points of a line in the projective model of M&bius geometry.

There are three different types of sphere pencils, depending on the signature of the
corresponding line £ = RP"1:

(++) The line ¢ does not intersect S™. Then the sphere pencil consists of all hyperspheres
that contain a common fixed (n — 2)-sphere. Indeed, the polar (n — 1)-plane ¢+ has
signature (n-1,1) and intersects S™ in a (n — 2)-sphere. The polar planes Y+ of
points Y € ¢ are precisely the hyperplanes containing ¢+. Hence, the pencil of ¢
consists precisely of all spheres containing ¢+ n S™.

For n = 2, these are all circles through two fixed points. For n = 3, these are all
spheres through a fixed circle.

(+-) The line ¢ intersects S™ in two points. Then the polar (n—1)-plane ¢+ has signature
(n,0) and does not intersect S™. By Corollary 6.9, the pencil of ¢ consists precisely
of all hyperspheres that intersect all hyperspheres corresponding to points in ¢+
orthogonally.

For n = 2, these are all circles orthogonal two circles that intersect in two points,
and thus all circles from a pencil of type (++). For n = 3, these are all spheres
orthogonal two three spheres that span a plane of signature (+++).

(+0) The line ¢ is a tangent to S™. Then the polar (n — 1)-plane ¢+ has signature
(n-1,0,1) and is also tangent to S™ in the same point P. Furthermore, ¢* is the
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common tangent plane for all spheres in ¢. Thus, the pencil ¢ consists of hyper-
spheres that are tangent to each other in a fixed point.

For n = 2, these are all circles tangent in a common point, while ¢+ corresponds to
the orthogonal pencil of the same type. For n = 2, these are all spheres tangent in
a common point.

Figure 17. Pencil of circles of type (++) (yellow) and its orthogonal pencil of circles of
type (+-) (blue).

Proposition 6.10. Mdbius transformations map sphere pencils to sphere pencils and
preserve their type.

Proof. This follows directly from Theorem 6.3. In the case (+-) consider spheres orthog-
onal to the pencil. O

6.5 Mobius transformations in the projective model

In the elementary model, M6bius geometry is the geometry of the Mobius group Mob(n)
generated by sphere inversions acting on the extended n-dimensional space R". The
Mobius group Mob(n ) is geometrlcally characterized as the group of all transformations
that map spheres in R" to spheres in R". What is the corresponding group of transfor-
mations in the projective model of M&bius geometry?

First, let us consider the subgroup of projective transformations of RP?*! that map
S™ to S™. This is the projective orthogonal group

PO(n + 1,1) « PGL(n + 2, R).

Since spheres in S™ are intersections of S™ with planes in RP"*! and projective transfor-
mations map planes to planes, a projective orthogonal transformation g € PO(n + 1,1)
maps spheres in S™ to spheres in S”. By the Fundamental Theorem of Mébius geometry
(Theorem 6.6), the map

cgogoo t: Rn — Rn
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is a Mobius transformation. Thus we have a group homomorphism

PO(n +1,1) —>  Mob(n), -

g —> 00goOo .

It is injective because the identity on RP™*! is the only projective transformation that
fixes the sphere S™ pointwise. However, it is also surjective, and thus:

Theorem 6.11. The map (7) is a group isomorphism.

With this, we complete the projective model of Mobius geometry, which is the space
S™ < RP™! with the action of PO(n + 1, 1). Stereographic projection translates between
the elementary model and the projective model according to the following dictionary:

elementary model projective model
R" — Sn
sphere in Rn <> sphere in S™
Méb(n) «— PO(n+1,1)

The Moébius group Mob(n) is generated by inversions in spheres and reflections in
planes. In the projective model these transformations are given by projective inversions
that preserve the quadric.

Proposition 6.12. Let [y] € RP""! be a point outside S™, i.e., {y,y)

< 7y>7‘L
+1,1y

> 0. Then the

n+1,1

(8)

g:RP"™ S RP"™™ [z]— |2 —2
7] Yy Ypi1a

is a projective orthogonal transformation, such that o o g o o~ 1 is the inversion in the
hypersphere (or reflection in the hyperplane) corresponding to the point [y].

Proof. The map G : x—2<9”’3”>7n+my

<y7y>n+1,1

» is linear,
» invertible since G(z) = 0 implies z = 0,
» orthogonal since (G(z), G(z)),,,, = {z,2),,, -

Furthermore, g = [G] fixes all points on [y]* and preserves all hyperplanes through
[y]. O

Remark 6.3. The map (8) for a point [y] € RP"*! inside the quadric corresponds to a fixed
point free involution, which is still a Mobius transformation, but not a sphere inversion.
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7 Curves in projective and Mobius geometry

7.1 Curves in RP"
We can lift a curve v : I — R” to RP" by

[4] : 1 — RP", 4(t) := (Wf))

Then

describes a point at infinity on the lift of the tangent line

T(t) = {[and() + aA(0)] | an, 00 R} = (0)] v B0)

What happens if we take different representative vectors for the lift of the
curve?

More generally, consider two smooth maps
4.1 —R", AT — R\{0}.

Then 4 and 4 := Ay define the same curve in RP”

But, the derivative changes in the following way
5 =M+ M.
Thus, in general, [7] # [4], but
(O] v (D] = [3(D] v B®)]-

Therefore, the tangent line stays invariant under the change of the lift (change of repre-
sentative vectors) for the curve.

Similarly, for higher derivatives, in general, [§] # [§], but
O] v B®] v B0l =[] v 0] v GE):
Definition 7.1.

(i) A (projective) curve is a map
[4]: I — RP™

with some interval I = R and a smooth map 4 : I — R"*!

(ii) The curve [4] is called regular if
[4(t)] # [A(t)] foralltel,

or equivalently, if 4(¢) and 4(¢) are linearly independent.
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(iii) Let [4] be a regular curve.

» The line _
T) =Wl v @]
is called the tangent line of [y] at t € I.
» If additionally [§(¢)] ¢ T(t), then the plane

()] v [30)] v [3(2)]
is called the osculating plane of [¥] at t € I.

Note that same as the definition of the tangent line and the osculating plane, the
condition for the regularity of [4] does not depend on the lift. In affine coordinates, it is
equivalent to the regularity that we have introduced for curves in R". Furthermore, all
these definitions are invariant under projective transformations and under reparametriza-
tion of the curve.

7.2 Planar curves in Mobius geometry

Let
vl —R?

be a regular planar curve. By inverse stereographic projection, we can map it to the
sphere (Mobius lift)

[4]:1 -8 <RP®,  A(t) = 7(t) + 7 (1) e + eo.

Recall that the osculating circle of v at t € I is the circle with center and radius

where n is the unit normal vector field of v and

(1), n(t))
R(t) =
@l
is the curvature of . Its inverse stereographic projection (Mdébius lift) to the sphere is
given by
[ 8% e(t) = c(t) + (le()]* = r(t))ew + eo

Proposition 7.1. Let v be a regular plane curve. Then the Mdobius lift of the osculating
circle of v lies in the osculating plane of the Mébius lift of ~v:

et = 3] v (O] v [1(#)]

Proof. With
v+ Enteot (7 + 2 m) e

¢
we obtain
A A 2 2
B, 851 =y + ity — 5P = 2évmy— 3 * =o.
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Now with ‘
¥=7+2{7) e
we obtain _
(Be),, = i+ imy = =0
Finally, with )
7 =4+ 2 (1A +{3:%) ew

we obtain

Ghey, = G+ tny =4l = ¢r ) = 0.

3,

Figure 18. Osculating circles of a cardoid and the lift to Mobius geometry.

Corollary 7.2. The osculating circle of a planar curve is Mobius invariant.

Proof. In the Mobius lift osculating circles are given by osculating planes. On the other
hand, Mobius transformations are given by projective transformations that preserve the

quadric S?. But projective transformations map osculating planes to osculating planes.
m

Remark 7.1. Note that the discrete vertex osculating circles we defined are also Mobius
invariant.

Example 7.1. Recall that the evolute of a plane curve consists of the centers of the
osculating circles. As an exercise, let we use the Mobius lift to determine the evolute of

a parabola
t

R t
A(t) = (tQ) + (t* + t*)ew + eo,

Its Mobius lift is given by

and its first two derivatives by

A(t) = (21t> +2(t + 2t%) e, A(t) = <(2)> 2(1 4 6t%)eq.

20



We determine the polar point

o) = (qg;) + ¢ (t)ews + €,

(&)

From )
0= <c7> — 2, — 1 — 612
we obtain .
ca(t) = 5(1 + 6t2).
and from .
0=<a,@>:c1+t+6t3—t—2t3

we obtain

c1(t) = —4t?
Thus, the evolute of v is given by

c1(t) —4¢3
t) = —
e(?) (cz(t)) (;(1 1612,
which coincides with the solution from Example 5.4. Note, that we don’t have to compute
Co, if we are only interested in the evolute of v, and not the osculating circles.

8 Roulettes and cycloidal pendulum

8.1 Interlude: complex numbers and geometry

Complex numbers can be a useful tool for computations in Euclidean, similarity, Moébius,
and other geometries.

» Consider the action of complex multiplication on the complex plane C =~ R?
Z—az, aeC, a+#0.
Geometrically this corresponds to scale-rotation
re' — Rere’¥ = Rrel0+9),

where a = Re? and z = re®.

» The action of complex addition
2z 2+ b, beC
corresponds to translation.

» Together we obtain all similarity transformations

z—az + b, a,beC, a #0.
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» The action of complex conjugation
Z2=21+1l29— 2 =21 — 12
corresponds to reflection in the real axis.

» The absolute value of a complex number z = 2z; + 725 recovers the Euclidean norm of
the corresponding vector
2 _
|2|° = zz = 22 + 2.

It is also given by the product of z with its complex conjugate number Z.

» From the complex multiplication of the complex conjugate of a complex number z =
21 + 129 with another complex number w = wy + 2ws

Zw = 21wy + 21wy + i(z1wy — wy29),
we can recover the scalar product and determinant of the two corresponding vectors
in R%: ]
(z,wy = R(Zw) = §(§w + zw),
1
det(z,w) = S(zw) = ?(Ew — zW).
i
» Now we can write reflection in a vector n € C, n # 0 as

z»—>—(z—2<z7nQ>n) z—z—I—Mn:

zZ.

n
n

and inversion in the circle with center ¢ € C and radius » > 0 by

7“2

Z—C+

Z—c¢
» Orientation preserving Mébius transformations are given by

az+b
cz+d’

Z >

a,b,c,de C, ad — bc # 0,

and orientation reversing Mobius transformations are given by

az+b
cz+d’

—

a,b,c,de C, ad — bc # 0.
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8.2 Euclidean motions and instant center of rotation
Let I < R be some interval, and consider a one-parameter family of Euclidean motions
At): I - C, z~—a(t)z+b(t)

with two smooth functions a,b: I — C, |a(t)| =1 for all t € I.
Consider the trace of some initial point zy € C under this motion

z(t) = A(t)z = a(t)zo + b(t).
An instant center of rotation is given by a point where the velocity vanishes. For every
t € I with a(t) # 0 there is exactly one such point:

A(t) = alt)zg + b(t) < 2= ———2.

The point zj is the initial point which leads to zero velocity. Thus the point in C at the
which zero velocity is attained at ¢t € [ is given by

a(t)b(t)
aft)

A(t)zo = a(t)zo + b(t) = b(t) —

8.3 Roulettes of curves

A roulette is curve described by a point attached to a given curve as that curve rolls
without slipping along another fixed curve. Let us denote the given fixed curve, and given
rolling curve by

v,p: I —C.

The motion of p as it rolls along v is a Euclidean motion
A(t) : z — a(t)z + b(2), la(t)] = 1.

At any given time t € [ the point A(t)p(t) should coincide with corresponding point on
the fixed curve

—
~
S~—
e
YamnS
o~
N
I

a(t)p(t) + b(t) = ~(t).
Thus,

and A(t) is of the form

A(t)z = alt)z + bt) = alt)(= - p(t)) + 7(t).

That p rolls along ~ without slipping means that the instant center of rotation of the
Euclidean motion A(t) is always the point of contact y(t) = A(t)p(t) of the two curves.
As we will see this will lead to the two curves being tangent remaining tangent at any
given time if they were tangent at some time. The instant center of rotation is given by




which should coincide with (). So we obtain

In particular, since |a(t)] = 1, we must have |¥(t)] = [p(t)|, i.e., the two curves must
be parametrized with the same speed. Now A(t) describes a rotation between the corre-
sponding tangent vectors p(t) and (t), and thus, the two curves remain tangent if they
were initially tangent.

Definition 8.1. Let v,p : I <« C be two curves parametrized with the same speed
|v(t)| = |p(t)| for all t € I and tangent for some initial value ¢ty € I. Let z € C be a point.

Then the roulette tracing the point z attached to the curve p as this curve slides
without slipping along the fixed curve ~ is given by

() = %( 1) + (1),

Proposition 8.1. The roulette of a point on a straight line as it rolls along a reqular
curve is the involute of that curve.

Proof. Let v : I — C be a regular curve, parametrized by arc-length, and p a tangent
line, parametrized by the arc-length parameter of ~:

p(s) = ~(0) +57'(0)

and let z be some point on this tangent line

z =7(0) + ay'(0)

Then the roulette is given by

ot) = 28 = pls) +(5) = i@ = 9)/(0) + 4() = Y (0)a ) 50

which coincides with the involute of ~. O]
Let us compute some more roulette curves:

Example 8.1 (Cycloid). Rolling a circle along a straight line, while following a point on
the circle.

us

v(t) = Rt,  p(t) = R + iR = iR(1 — ")
Then |
() =R, p(t) = Re",
t)| = R. With z = 0 the roulette is given by
)

o(t) = ﬁ(z —p(t)) + () = e ™iR(e" — 1) + Rt

t—sint
o(t)=R (1 — cost) '



One segment (from cusp to cusp) is given by ¢ € [0, 27].
Let us derive a slightly different normalization of this curve. Reflected at the real axis
and translated such that the lowest point lies in the origin:

5(p) = (g + 1) + R(2i — 1) = R(p + 7 —i +ie’®*™) + R(2i — )
= R(p +i—ie'¥),

or as a map to R?:

1 —rcosyp

o) - r(1005).

Now one segment (from cusp to cusp with lowest point at the origin) is given by ¢ €
[—m, 7).

Example 8.2 (Cardioid). Rolling a circle along another circle of equal radius, while
following a point on the circle.

We start with two circles of radius R > 0 centered at —R and R, such that the initial
point of contact is the origin z = 0.

y(t) = Reé* = R=R(e" = 1), p(t) = —Re ™"+ R=R(1—e™").
Then | |
Y(t) = iRe™,  p(t) =iRe™"
and |¥(t)| = |p(t)| = R. The roulette is given by

o(t) = Zg;(z — p(£) + () = " R(e™" — 1) + R(e" — 1)

— R(2eit _ eQz‘t _ 1)7
or alternatively as

o(t) = R(2cost + 2isint — (cost +isint)* — 1)
= 2R(1 — cost)cost + 2iR(1 —sint) cost

_9R ((1 — cost) cost) .

(1 —sint)cost

Example 8.3 (Nephroid). Rolling a circle along another circle of twice the radius, while
following a point on the circle.

We start with a circle of radius 2R > 0 centered at the origin, and a circle of radius
R centered at 3R, such that the initial point of contact is z = 2R.

v(t) = 2Re™, p(t) = —Re™t + 2R = R(3 — ™2

Then
A(t) = 2iRe™, p(t) = 2iRe™ "
and |(t)] = |p(t)| = 2R. The roulette is given by
e, _ 3it(op _ _ -2t it
o(t)=—==(z—pt) +7() =e2R—R(3—€e ")) + 2Re

p(t)
_ R(geit . 63it),

3cost — cos 3t
o(t) =R (BSint — sin3t> '
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8.4 Cycloidal pendulum

Harmonic oscillator Consider the harmonic oscillator
5(t) = —w?s(t)

with initial conditions s(0) = so and $(0) = 0 is solved by
s(t) = sgcoswt.

It has the property that the period of one full swing

7"
W

does not depend on the amplitude sy. Such an oscillator is called isochronous.

Isochronous pendulum The string pendulum, where a mass attached to a string
swings freely under the influence of gravity does not have this property. However, if the
mass is restricted to another path than a circle, can the pendulum become isochronous?

Let
0= (1)

be the trajectory of the mass. If s is the arc-length of v, and # the angle that the tangent
line makes with the x-axis, we have

,(8)_dl_dlﬁ_ cos 6
TWT s T ards - \siné

and thus
x(t) = s(t) cos6(t), y(t) = $(t)sinO(t).

The force acting on the mass along the curve ~ is given by

ms(t) = —mgcos(g +0(t)) = —mgsin0(t),

where m is the mass and ¢ the gravitational acceleration. On the other hand, we want to
choose 7 such that s(t) satisfies the harmonic oscillator equation, i.e.,

5(t) = —w?s(t)
with some w. Thus, we must have
gsinf(t) = w?s(t),

which implies '
gl(t) cos O(t) = w?s(t).

Replacing s by x, we obtain

#(t) = L0(t) cos? 0(2)

w?
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Expressing x as a function of § we can eliminate the time dependence

d
d—z = % cos® 6,
w
which is solved by
z(h) = %(29 + sin 20) + ¢,
w

with some constant of integration c;.
Similarly, replacing s by v, we obtain

g(t) = LO(t) cos O() sin 0(t) = %9(7&) sin 20(t)

w2

Expressing y as a function of § we can eliminate the time dependence

d
d—z = 2%12 sin 20,
which is solved by
y(0) = —4%;2(005 20) + co

with some constant of integration c,.
If we set ¢ =20, ¢; =0, and ¢, = R = ;%;, we obtain

-n(zr i)

1 —rcosyp

which is the cycloid from Example 8.1. Thus, if we restrict the pendulum to this curve,
the arc-length parameter

s(t) = %sin 0(t) = izsingoét)

satisfies the harmonic oscillator equation, i.e.,
s(t) = sgcoswt.

Thus
o(t)

sin 5 = Acoswt

with A = wg"so < 1 describing the amplitude of the pendulum.
String construction Can we restrict the string of a pendulum such that the trajectory
of the mass is restricted to the cycloid? If a string wraps around some curve, a point
on the taut end of the string moves along the involute of that curve. Vice versa, if the
involute is given, the curve we need to restrict the string is the evolute of that curve.

Thus, to realize the cycloidal pendulum with mass attached to a string, we need to
compute the evolute of the cycloid.

With

() = R(p + i —ie’)

we obtain
i) = R(L+€%), nlp) = i¥(p) = iR(L + ¢¥)i(¢) = iR,
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and

A = B2(1 4+ c)(1+ ¢7%) = RX2 4 ¢ + ¢9)
= 2R*(1 + cos )

(n(p),5(p)) = ;(ni + ) = ]2((1 +eT)e + (14 €9)e ) = R(2 + € + ¢7%)

= R*(1 + cos p).

Thus, the evolute of the cycloid ~ is given by

v(p) + 7’7(0’2 n(t) = R(p +1i —ie"?) + 2iR(1 + €'¥)

ORID) |
= R(p+3i+ie¥) =v(p+m) + R(2i — ),

which is a translated cycloid.

e P

Figure 19. Cycloidal pendulum.

Result A mass attached to a string of length L. = 4R suspended from the origin, such
that the string wraps around a cycloid of radius R with cusp in the origin, moves on a
cycloid

_ Car oy @+ sinp
1(9) = Rl -3~ ) = R (5T ).

where the motion is given by

e(t)

sin 5 = Acoswt

with w? = 17 and A < 1, which determines the amplitude of the pendulum motion. The
period is given by

T=—=A4nx

21 E
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9 Billiards and caustics

Here we treat problems on reflecting rays in plane curves.

9.1 Optical properties of conics

We now present some optical properties of conic sections. Light rays are represented by
straight lines. If the rays hit a reflective surface (a “mirror”), the law of reflection states
that the incoming and outgoing ray have the same angle with the normal line of the
surface (or equivalently the tangent line) at the point of reflection.
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Figure 20. Reflection in conic mirrors.

Theorem 9.1. Light rays emitted from one focus of an elliptic mirror after reflection
go through the other focus (see Fig. 20, left). Light rays emitted from one focus of a
hyperbolic mirror are reflected as if emitted from the other focus (see Fig. 20, middle).
Light rays emitted from the focus of a parabolic mirror after reflection become parallel to
the axis of the parabola (see Fig. 20, right).

Proof. We give a proof of the elliptic case only. The other two can be proven similarly. Let
P be a point on the ellipse with distances r; and r, from the foci F; and F5, respectively
(see Figure 21). Extend the line segment F; P by a distance of 71 beyond P. Call the new
endpoint of the extended segment F|. Let ¢ be the perpendicular bisector of FyF]. We
will show that £ is the tangent line of the ellipse at P, and thus, F] is the reflection of F}
in this tangent line. From this, the equality of the angles follows easily.

Indeed, P lies on ¢ because it has equal distance m from F; and F]. Consider any
other point P on /¢ and let 71 be its distance to both F} and F| and let 7 be its distance
to F5. Then the triangle inequality for the triangle FQPF{ reads

f1+f2>7“1+7’2,

so P does not lie on the ellipse. Hence, ¢ intersects the ellipse in precisely one point, P,
and thus is tangent to P. O]

9.2 Elliptic billiards

A billiard trajectory in an ellipse is a sequence of points on that ellipse and their connecting
edges such that at every point the law of reflection is satisfied (see Figure 22).

Py Py

Figure 22. At every point on the ellipse a billiard trajectory satisfies the law of reflection
(equal angles of the incoming and outgoing rays).

In order to state the next theorem on elliptic billiards we need to first introduce
confocal conics.
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Figure 21. Illustration of the proof of the optical properties of an ellipse.

Definition 9.1 (confocal conics). Let Fj, Fy be two points in the Euclidean plane R2.
Then the family of all conics with same foci F; and F5 is called a family of confocal conics.

It is easy to show that up to Euclidean transformation a family of confocal conics is
given by the formula
2 2
x
- 1} . MeR,

CL1+>\ CL2—|—>\:

Q) = {(w,y) e R?

for with some a; > ay. It includes ellipses (A > —as) and hyperbolas (—a; < A < —as).
The foci of this family are given by (£f,0) = (£+/a; — as,0).

Figure 23. Confocal conics: Through every point in the plane goes exactly one ellipse and
one hyperbola from a confocal family and intersect orthogonally in this point. Conversely,
an ellipse and a hyperbola from a family of confocal conics always intersect in four points,
while two confocal ellipses or two confocal hyperbolas do not intersect.
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Figure 24. Elliptic billiard trajectories.

Theorem 9.2. The lines of a billiard trajectory inside an ellipse are tangent to a fixed
confocal conic.

Proof. Let AgA; and A;As be the two subsequentive lines of the trajectory, and assume
that the line AgA; does not intersect the segment [FyF,|. From the optical properties
of the ellipses (see Theorem 9.1) we have LAyA1F) = LAsA1F,. Reflect Fy and F
in the lines AgA; and A; A, respectively, we obtain F| and Fj (see Figure 25). Define
B = F|Fy n AgA; and C' = FyF} n A1 Ay. Let Q; be the conic with foci Fy, Fy (confocal)
that is tangent to AgA;. From the optical properties of ellipses (equal reflection angles)
we see that Q; touches AgA; at B. Similarly, the confocal conic Q5 touches the line A; A
at C.

To prove that Q; = Qy it is enough to show that |FyF]| = |F1Fy|. The triangles
F1 A F}) and F{A,F, are congruent, they have the same angle at A; and equal pairs of
edges at this vertex. Their third edges must also coincide: |FyF]| = |F1Fy|.

Thus, two consecutive and then all edges are tangent to the same confocal conic. [

Figure 25. Proof of Theorem 9.2.

9.3 Caustics

A caustic is the envelope of rays reflected or refracted by an object represented by a curve
in the plane. We will consider parallel incoming rays, and discuss this concept by looking
at an example.
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Figure 26. Caustics of a circle.

Example 9.1. Consider a circle in the plane of radius R, parametrized by
v(t) == Re™.

We compute the caustic of the circle for the reflection of incoming parallel rays in the
direction of the real axis.
The normal vector of the incoming rays is given by u = i, A tangent vector at some
point () of the curve by
T(t) = 5(t) = iRe"
Thus, the normal vector of the reflected ray is given by

_T@) . —iRe",
v(t) = T(t)u = The—i (—i) = ie™,

and the equation for the line of the reflected ray by

0= (u(t),z —y(t)) = (ie™, z — Re") = (ie*™, 2y — R{ie*", e")
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The two scalar products can be written as

- 20t T (sp2ity o —2it
(ie*,z) = 2(26 z—ie "z),
1

—5(6” —e ™) = —sint.
i

o 1o
<Z€21t’ ezt> _ §(Z€2Zt€ it ie Zztezt) _
We arrive at the following equation for the reflected ray

je %y — je?z — 2Rsint = 0.

To compute the envelope of this one-parameter family of lines, we combine this equation
with its partial derivative w.r.t. ¢

272y +2¢%7 — 2R cost = 0.
By eliminating z we obtain
die "z — ARsint — 2iR cost = 0.

Solving for z yields
1 1 . R, _ . .
z=R (z sint — 5 cos t) et = 2(36” —e*),

which is the parametric representation of a nephroid.

10 Families of circles: envelopes and orthogonal tra-
jectories

Evolutes and involutes are envelopes and orthogonal trajectories to a one-parameter family
of lines, respectively. Here we treat the analogous problems for one-parameter families of
circles, which are both Mébius invariant.

Let I < R be an open interval,

c: I —R?% r:l —-R,,
smooth functions, and consider the one-parameter family of circles
C(t) ={zeR* | F(t,2) = |x — c(t)|* — r(t)* = 0}

in the Euclidean plane R2.

10.1 Envelopes of one-parameter families of circles

An envelope of the one-parameter family of circles C(t) is given by a curve v : [ — R?

that satisfies )
0= F(t,z) = |z —c@t)|” —r(t?)

0=0F(t,x) = =2{x —c(t),c(t)) — 2r(t)r(t)
with z = ~(t). The first equation is satisfied by the general ansatz

x =(t) = ct) +r(t) (Z?I?ggD
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with some function 6 : I — R, for which the second equation becomes
¢y cosf + cosinf +r = 0.

Upon introducing the function

ot
7(t) := tan Q,
2
this equation turns into a quadratic equation
(7 — )72 + 2697 + 7 4 ¢, = 0, (9)
where we use the trigonometric identities
2T 1— 72
sinf = cosf = .
1+ 72 1+ 72

Thus, generically the envelope consists of two curves.

Proposition 10.1. For a one-parameter family of cirles C(t) the following holds for any
part of the interval I:

» If et > 7(t)2, the envelope consists of two curves.
» If |e(t)|]” = 7(t)%, the envelope consists of one curve.
» If |é(t)|]” < 7#(t)?, the envelope does not eist.

Proof. The discriminant of the quadratic equation (9) that describes the envelope is given
by
A =462 =200 — &) (7 + &) = 4e()]? — 47 (t)?

O

Remark 10.1. In the case |¢(t)|]> > 7(t)? let v1(t) and ~5(t) be the two envelopes. Let

C(t) be the circle through ~;(t) and 72(¢) orthogonal to C(¢). Then the inversion t¢(, in
the circle C (t) is a first-order symmetry for both envelopes, i.e.,

Lo 0 3() = (D), (e 07) (1) = adi(t)  with some a € R, a # 0.

Finding the envelopes of a one-parameter family of circles is a Mobius invariant prob-
lem. Thus, let us transfer it to the projective model of Mobius geometry. The one-
parameter family of circles C'(t) can be represented by a curve outside the Mobius quadric
given by

e(t) = c(t) + (Hc(t)H2 — r(t)Q) €y + €p.

Its tangent line is the span [&(t)] v [é(t)], where
b(t) = é(t) + 2 (CE(t), (1)) — H(E)r (1)) e

Now the three cases from Proposition 10.1 correspond to the three possible signatures of
the tangent line:

Proposition 10.2. The tangent line of the Mdbius lift [é(t)] of the one-parameter family
of circles C(t)
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> has signature (++) if [é(t)|* > 7(t)?,
> has signature (+0) if |¢(t)|> = #(t)2,
» has signature (+=) if |¢(t)]|> < #(t)2.

Proof. We have

@0, 605y =% (D) =), (et i) = i),

3,1 3,1

Thus, the determinant of a Gram matrix for the tangent line is given by

r? oy . .
det ( é\2> = 7“2(Hc||2 — 7"2).

rr |

Let us have a more direct look at envelope equation in Mobius geometry.

Proposition 10.3. A curve v : I — R? is the envelope of a one-parameter family of
circles C(t) if its Mobius lift

4:T—>SPcRP?, A(t) = (1) + [v®)] e + €0

satisfies

Proof.
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Thus, the envelope lies on the polar line of the tangent line of [¢].

Proposition 10.4. If |¢(t)| > r(t) the Mobius lift of the two envelopes of the one-
parameter family of circles C(t) is given by

([et)] v [ n s

Discrete envelope of a one-parameter family of circles Similar to the discretiza-
tion of the evolute, we can obtain a simple discretization of the envelope for a discrete
one-parameter family of circles by taking the points of intersection of consecutive circles.

In the projective model of M6bius geometry this corresponds to considering the points
of intersection of the polar line of the edge tangent lines of the Mébius lift of the discrete
one-parameter family of circles.
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Figure 27. Smooth and discrete envelope and orthogonal trajectory of a one-parameter
family of cirlces.
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10.2 Orthogonal trajectories of one-parameter families of circles

An orthogonal trajectory of the one-parameter family of circles C'(t) is given by a curve
v : I — R? that satisfies

0= F(t,v(1) = |7(t) = e(t)|* = r(t*)
0 = det(y(t), Vo (£, 7(1))) = 2det(Y(t), 7(t) — c(t))

Employing the same ansatz as before

x =(t) = ct) +r(t) (Zfﬁgg;f;)

we obtain

det(y(t) — c(t),5(t)) = rdet (COSQ Cl) + 720 det (COSH —sin 9) ,

sinf ¢ sinf cosf
and thus _
c1sin@ — ¢y cos = ro.
And with , ,
o(t 0(t)(1 t
r(t) = tan 0y = AT
2 2
we obtain

2r7 = 26,7 — ¢o(1 — 72),

which is a Riccati equation.
The general solution of a Riccati equation is of the form

a(t)to + b(t)
c(t)mo + d(t)

T(t) =

with some coefficients a(t), b(t), ¢(t), d(t) and initial value 7.

Remark 10.2. For an orthogonal trajectory the inversion oy in the circle C(t) is a first-
order symmetry.

Discrete orthogonal trajectories of a one-parameter family of circles Similar
to the discretization of the involute, we can obtain a simple discretization of orthogonal
trajectories of a family of circles by taking an arbitrary initial point and reflecting it by
inversions in the circles of the discrete one-parameter family of circles.

Same as for discrete involutes, this procedure has the disadvantage, that it highly
depends on a suitable choice for the initial point, to even stay close to the circles of the
family:.

We will introduce another discretization, which is based on mapping an initial point
on one of the circles of the family to the other circles by inversion, and thus ensuring,
that we stay on the circles of the family.
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10.3 Tractrix and Darboux transform

Assume that a point moves along a curve  and pulls an interval (v, %) so that the distance
|4 — 7| ist constant, and the velocity vector 4’ is parallel to v — 4. The curve 4 can be
thought of as a trajectory of the second wheel of a bicycle whose first wheel moves along
the curve 7.

Definition 10.1 (tractrix). Let v : I — R? be a plane curve. A curve 4 : [ — R? is
called a tractriz of ~ if

|5 =~ = const. and A=)

On the other hand, this is the same as saying that 4 lies on a circle with center v and
constant radius ||§ — ~y||, while moving orthogonal to that circle. Thus, a tractrix is the
special case of an orthogonal trajectory to a one-parameter family of circles where the
radius of the circles is constant.

Lemma 10.5. Let v : I — R? be a curve, and 4 a tractriz of v. Then the curve
J=v+2(7—7) =29 —1.

is parametrized by the same speed as 7, i.e.,

191 =131+

and 4 is a tractriz of ¥ as well.

Proof. Let v :=4 —~. Then

. 2 i3 .oL . PR . . d
I =137 = G+ —19) = 4<%7 - 7> ~ 2,9y = = [o* =0.
Furthemore,
/5/ - ;5/ = -0,
and thus 4 is a tractrix of 4. O

Figure 28. A traktrix and the corresponding Darboux transform of ~.

Definition 10.2 (Darboux transform). Two curves 7,4 : I — R? parametrized by the
same speed (in particular two arc-length parametrized curves) are called Darbouz trans-
forms of each other if

|¥ =~ = const.,

and ¥ is not just a translate of ~.
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Lemma 10.5 showed how to construct a Darboux transform from a tractrix. The verse
construction also holds.

Theorem 10.6. Let v : I — R? be a curve. Then the following claims are equivalent:
(i) 7 is a Darboux transform of ~

(i) 4 := (v +7) is a tractriz of v (and of 7).

(<) Lemma 10.5.

(=) Tt is clear that v := (5 — 7) is of constant length. It remains to show that ’Ay || v.

Since v L v this is equivalent to 4 L .

(i = <§<v +A) 2 v>> = 2B -1 =0

10.4 Midcircles

Definition 10.3. Let C},Cy be two circles (or lines) in R2. A circle K such that the
inversion in K maps C; to Cy is called a midcircle of C7; and C5. Given C7 and Cs, we
want to find the midcicles K (if they exists).

In the projective model of Mébius geometry the circles C, Cs, K are represented by
points [x1], [x2], [y] € RP? outside the Mobius quadric. We assume z;, x5 are normalized
to satisfy

<I1ax1>3,1 = <x2a$2>3,1 =1

and we are looking for y in dependence of xq,xs (if it exists).
In the Mobius lift the inversion in K is represented by the linear map

(z, y>3,1 y
W, y>3,1

Ly:R4—>R4, T T —2

Note that for x € R*

(y(2), Ly($)>3,1 =z, 33>3,1 ;

The condition for y is given by [i,(z1)] = [22], or equivalently,

{z1, Z/>3,1

y = txs. (10)
<y>y>3,1 ’

ty(x) = 21 — 2

In particular, this means [y] € [z1] v [22], i.e., if we exclude the case K = Cy = C
Y =2+ 0xs for some o € R.

If we take the Lorentz product of (10) with y, we obtain the necessary condition
‘<331a y>371‘ = ‘<x27 y>371‘ :
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Note that if '} and C5 intersect in two points, this condition means, that K intersects
('} in the same angle as it intersects Cs, i.e., K is the angle bisecting circle of C and Cs.
The derived condition is equivalent to

{x1, 21 + 01)2>§71 = (Ty, 11 + UI2>:25,1
< (1+0{x1,29)5,)? = ({1, 29)5, +0)°

so?=1 if (1, T2)3, # 1.
Thus, two possible solutions for y are given by
Yy = T1 £ T,
and one easily checks that indeed
1+ (1) = Fa.

On the question of existence of the midcircles, we still have to check whether [y4] lies
outside the Mobius quadric, and thus indeed describes a (real) circle.
First, note that [y, ] and [y_] are polar,

WY ?/—>3,1 = (&1 + T2, w1 — $2>3,1 =0,

and thus cannot both lie inside the Mobius quadric. Therefore, there always exists at
least one midcircle. Now

(Ys, yi>371 =2(1+ <:E1,JZ2>371).

On the other hand, the signature of the line [z;] v [x2] is determined by the sign of

1 {z1,22) 2
det<<x1’x2>3’1 1 12 3,1 ) =1- <$1, £E2>371 = (1 + <ZL‘1, 1’2>371)(1 - <£B1, $2>371)
1
U Y+ ?/+>3,1 Y+ y+>3,1 :

Thus, two midcircles exist if and only if the signature of [z1] v [z3] is equal to (++),
or equivalently, if the two circles C; and Cs intersect in two points. We summarize our
findings in the following proposition.

Proposition 10.7. Let C; and Cy be two circles (or lines) in R2. Let [21], [22] € RP* be
their Mdébius lifts, respectively, satisfying

<x17$1>3,1 = <x2:372>3,1 =1

» If C7 and Cy intersect in two points, they have exactly two midcircles, which are the
two angle bisectors of Cy and Cy, and given by [x1 + x3] and [z1 — x].

» If Cy and Cy do not intersect or touch, they have exactly one midcircle, given by either
[21 + 2] or [x1 — x9].

Since we can exchange x; — —ux;, there is no projectively invariant way to distinguish
the two points [z1+23] and [z1—23]. Thus, there is no Mobius invariant way to distinguish
the two midcircles of two (non-oriented) circles C; and Cy. However, if we consider two
oriented circles, the midcircles can be distinguished in the following way.
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Definition 10.4. Let C, Cy be two oriented circles (or lines) in H/@, and let K be a
midcircle of C; and Csy

» If1|xC} : C7 — Cs preserves orientation, K is called circle of similtude, and its center
is called center of similtude or internal similtude center.

» If 1|Cy : Cp — Oy reverses orientation, K is called circle of anti-similtude, and its
center is called center of anti-similtude or external similtude center.

For two circles C; and C5 in R?, we can encode the orientation in the sign of the
radius. Thus, let ¢, co € R? be the two centers and r1, 75 € R two two signed radii. The
lift

_ 1 2 2 .
fFi—;i(CiJr(HCiH —ri)ew +€0),  i=1,2
satisfies (z;, :1:'1->371 = 1 and the two possible signs x; <> —x; uniquely corresponds to two
possibly signs r; <> —r;, and thus the two possible orientations of the circle C;.

With this specific lift, the two solutions x; + x5 for the midcircles can be distinguished
depending on the combination of orientations of C; and C5. One may check, that x; + x-
always corresponds to the circle of similtude, and x; — x5 to the circle of anti-similtude.
Their existence can now be read off from the sign of

1
(2 + 7% — s — czr%)
T2

((ry £ 1) = o1 — %)

<yi7yi>3,1 = 2(1 T <xlyx2>3’1> =2 (1 + 5

and we may now derive explicit formulas for the center c+ and radius r4 of these two
midcircles.

2 2 2 2
— — 1 1
yi=x1ixz=clicz+<cl rliHCZH T2>€oo+<i> €o
A1 ) e T2

+ 2_ )2 2_ )2
e tne o nir <01 o o 7”2) oot eo

ro + 11 Ty + 17 1 B 9

cot (fec]® = rd) + e

by comparing coefficients (or using the formulas from Proposition 6.7):

2
ToC1 £ T1Co 9 ler — o
B e ) -+ 1 =t =2l
+ T2 i’ 1 ’ Ti -+ ( (Tl + T2)2

We summarize again:

Proposition 10.8. Let C; and Cy be two oriented circles in R? with centers ci,cy € R?
and signed radii r1,r9 € R.

» The (unique) circle of similtude exists if and only if

ey — C2|2
l1—-——1>0
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and its center and radius are given by

c :T102+T201 o= . 1— ‘01—02‘2
* LTy * re (ry +19)2 )

» The (unique) circle of anti-similtude exists if and only if

|01—C2|2
rro| —=—1] >0,
172 ((7’1—7”2)2

and its center and radius are given by

2
T1Co — T'2C1 lc1 — ¢
c.=—"-—"", r_=,|rrg| ———=—1].

r — T2

€ — Ca| < |ry + 72 c1 —co| >
o @ O
| € — Ca| > |r1 + 12 1 —co| <fry — 1o
o QO @®
?lr;(l H\—%)N] ~

rira <—g(| j‘ ) >0

Figure 29. Midcircles of oriented circles. Circles of similtude (green) and circle of anti-
similtude (red).

10.5 Discrete envelopes and orthogonal trajectories from mid-
circles

Consider two circles €'} and C5 with the same orientation in a pencil of circles through
two points. Then in the limit ¢ — (5 the circle of similtude K, goes to C = O,
and the circle of anti-similtude goes to a circle orthogonal to C; = C5. Recalling the
symmetries of smooth envelopes in Remark 10.1 and of smooth orthogonal trajectories
in Remark 10.2, this motivates the following alternative definitions for discrete envelopes
and discrete orthogonal trajectories.
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Figure 30. Midcricles of a discrete one-parameter family of circles.

Definition 10.5. Let I < 7Z be a discrete interval, and let C' : I — R2 he a discrete
one-parameter family of oriented circles. Then ~ : I — R? is called

(i) a discrete envelope of C'if the circle of anti-similtude K_(n) of C'(n) and C(n + 1)
exists for all n,n + 1€ I and

Tn+1 = LK_ (P)/n)

(i) a discrete orthogonal trajectory of C' if the circle of similtude K (n) of C'(n) and
C(n + 1) exists for all n,n + 1 € I and

Tn+1 = LK, (ryn)

Remark 10.3.

(i) The special case of discrete families of lines also leads to alternative definitions for
discrete evolutes and involutes.

(ii) The discrete envelope and orthogonal trajectories defined in this way both have one
degree of freedom. It can be fixed by one initial point on one of the circles.

(iii) The edge (Vni1,7Vn) of an orthogonal trajectory is orthogonal to the circle of simil-
tude K, (n).

(iv) If we introduce coordinates

Yo = Cp + e, T, = tan 5”

the discrete envelope satisfies the equation
(A1, — A(e1)n)TnTne1 — A(c2)n (T + Tng1) + A1y + A(er), =0,

which is a discrete analogue of the quadratic equation satisfied by the smooth en-
velope. Similarly, the discrete orthogonal trajectory satisfies the equation

(rn + Tn-i—l)ATn = A(Cl>n(7-n + Tn+1) - A<C2)n(1 - TnTn-i-l)'

which is a discrete analogue of the Riccati equation satisfied by the smooth orthog-
onal trajectory.
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10.6 Discrete tractrix and Darboux transform

We noted that in the smooth case a tractrix is a special case of an orthogonal trajectory
of a one-parameter family of circles with constant radius.

Definition 10.6. Let v : Z > I — R? be a discrete curve. A discrete curve 4 : [ — R?
is called a (discrete) tractriz of v if 4 is a discrete orthogonal trajectory of discrete one-
parameter family of circles with centers v and constant radii.

We define discrete Darboux transforms in the following way.

Definition 10.7. Two discrete curves 7,5 : Z > I — R? are called (discrete) Darboux
transforms of each other if

[ym+1 =l = ¥4 = Full,  and 5 — ynl = const. (11)
and 7 is not a parallel translation of ~.

Given 7, Yn+1, ¥n there are two solutions 7,1 satisfying the conditions 11, leading to
a parallelogram and a parallelogram folded in one diagonal, which is also called Darboux
butterfly. The parallelgram is excluded by the condition that 7 is not a parallel translation
of 7. Thus, the elementary quadrilaterals of the Darboux transformation consists of
Darboux butterflies.

YE+1

Yk

Yr+1
Figure 31. A Darboux butterfly.
Before we continue we give the following geometric characterization of Darboux but-
terflies.

Lemma 10.9. A quadrilateral x1, s, 23, x4 € R? is a Darboux butterfly if and only if the
following three conditions are satisfied

(i) The two diagonals x1 v x3 and xo v x4 are parallel, or equivalently, three (and
therefore all) of the edge midpoints %(xz + zi11),1 = 1,2,3,4 are collinear.

(i) |1 — @2l = |23 — 24].
(iii) The two edges x1 v x5 and x3 v x4 are not parallel.

Proof. To see the equivalence of the two conditions in (i), note that the midpoinst of a
quadrilateral form a parallelogram whose sides are parallel to the diagonals.

(«=) Clearly, a Darboux butterflies satisfies all three conditions.
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(=) Consider two parallel lines as the diagonals 1, {5 of the quadrilateral and two points
21 € £1,25 € f5. Then up two translation there are only two choices for the points
xg € {1, x4 € Ly, such that (ii) is satisfied. Only one these satisfies (iii). By symmetry,
this choice leads to |z1 — x4 = |22 — 23]

O
With this observation we obtain a discrete analogue of Theorem 10.6.

Theorem 10.10. Let v : Z o I — R? be a discrete curve. Then the following claims are
equivalent:

(i) 4 is a discrete Darboux transform of
(i) 4 := (v +7) is a disrcete tractriz of v (and of 7).
Proof.

(<) [ =l = An+1 = yosall implies [§n — Wl = |Fns1 = ynr1] = . Furthermore,
%(% + Ynt1) is the center of similtude of the two circles with centers v, and 7,1
and radius r. The three midpoints %(’yn + Ynt1), Yn, Yns1 lie on a line. Thus, 4,, and
Ans1 are symmetric with respect to the circle of similtude.

(=) 1A —ml = H’%H—l - '7n+1H implies ¥, — 7| = H/~7n+1 - 7n+1”7 while the two corre-
sponding edges cannot be parallel. The three midpoints %(’yn +Ynt1)s Yns Yns1 of the
quadrilateral v,,, Yn+1, Ynt1, Vo lie on a line. Thus, by Lemma 10.9, this quadrilateral
is a Darboux butterfly.

]
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Figure 32. Discrete tractrix (blue points) as discrete orthogonal trajectory and relation
to discrete Darboux transform (green points).

11 Surfaces and curvature line parametrizations

11.1 Parametrized surfaces

Definition 11.1. Let U < R? be a open set. Then a smooth map
f:U—R" (u,v) — f(u,v)

is called a (smooth parametrized) surface (patch)in R™.
The curves
u— f(u,v), v — f(u,v)

are called parameter lines of f.

We usually denote the two parameters by v and v. and the partial derivatives with
respect to u and v by
of of

fu = %’ fo = %

Regularity is defined for surface patches by the linear independence of the first partial
derivatives.
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Definition 11.2. A surface f : U — R is called reqular if f,(u,v) and f,(u,v) are
linearly independent at every point (u,v) € U.

For a regular surface the parameter lines are regular curves, and the tangent plane is
well-defined at every point. It is the plane that best approximates the surface patch at
some point up to first order.

Definition 11.3. Let f : U — R" be a regular surface. Then the plane

Tf(u,0) = {£(u,0) + afulu,0) + Bu(u,0) | @, f e RY
is called the tangent plane of f at (u,v) e U.

11.2 Surfaces in projective geometry

Similar to curves, we can lift a surfaces f : U — R" to the projective space RP" by

[/]:U > RP",  f(u,v) = (ﬂul’“)) .

If f is regular, the partial derivatives

fulu,v) = <fU(8’U)> o fulu,w) = (fv(g’v)) ,

describe points at infinity on the lift of the tangent plane

Tf(u,v) = {arf(u,0) + aaful v) + asfo(u,0) | a1, 02,05 € R}
= [f(uw,0)] v [fulw, 0)] v [fo(u, v)].
Generally, we define projective surfaces in the following way.

Definition 11.4. Let U < R? be a open set and f : U — R""! a smooth map Then

[f]1:U—->RP",  (u,v)— [f(u,v)]
is called a (smooth parametrized) surface (patch)in RP™.
The curves

u— f(u,v), v — f(u,v)

A

are called parameter lines of [ f].

A

Consider a surface [f] : U — RP™ and a smooth function
A: U — R\{0}.
Then f and f = A f define the same surface in RP",

A ~

[f(u,0)] = [f(w,0)]  forall (u,v) € U.

Similar to the considerations for curves, the points described by the first partial derivatives
may change, but the span

[f(w,0)] v [fulu, 0)] v [folw,0)] = [Fw,0)] v [fulu,0)] v [o(u,0)]

remains the same. Thus, the following definition of regularity for surfaces in RP™ is
independent of the choice of representative vectors. Furthermore, in affine coordinates, it
coincides with the corresponding definition for surfaces in R”.
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Definition 11.5. A surface [f] : U — RP" is called regular if [f(u,v)], [fu(u,v)],
[fo(u,v)] span a plane, or equivalently, if f(u,v), f.(u,v), f,(u,v) are linearly indepen-
dent.

The same holds for the following definition of the tangent planes for surfaces in RP™.

A

Definition 11.6. Let [f] : U — RP" be a regular surface. Then the plane

T/, 0) = [f(u,0)] v [fulw,0)] v [fo(u,0)]

A

is called the tangent plane of [f] at (u,v) € U.

Similar to the considerations for curves, one finds that the introduced notions are also
invariant under reparametrization and under projective transformations. We summarize
in the following proposition.

A

Proposition 11.1. For a surface [f] : U — RP", reqularity, and the tangent plane are
invariant under

(i) a change of representative vectors

Flu,v) = Au, v) f(u, v)
with a smooth non-vanishing function .

(ii) reparametrization
f(u,v) = f op(a,0)

with a smooth bijective map .

(iii) projective transformations

A

f(u,0) = Ff(u,0)
with F' e GL(n + 1,R).

11.3 Dual representation of surfaces

Instead of describing a surface as a two-parameter family of points, we can equivalently
describe it as the envelope of its two-parameter family of tangent planes. In particular,
for a surface in R3, the tangent planes can be described in terms of a normal field.

Definition 11.7. Let f: U — R? be a regular surface. Then a smooth map

n: U — R\ {0}
is called a normal field of f if
n- fu = 07
n- f, =0.

The tangent plane of a surface f in R? can be described in terms of a normal field

Tf(u,v) = {zeR’ | n(u,v) - (x — f(u,v)) = n(u,v) - (z + h(u,v) = 0}
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and some function h(u,v) = —n(u,v)- f(u,v). Thus, the tangent planes of f are described
by the tuple (n,h), which is unique up to a common scalar multiple, and determined by
the equations

Tl-fuzo,
n-f, =0, (12)
n-f+h=0.

Differentiating the last equation with respect to u and v, respectively, we find that (12)

is equivalent to
fny+h, =0,

f-ny,+h, =0, (13)
f-n+h=0.
Note that if we consider the lifts R
f = (f7 1)7
n = (n,h)
to homogeneous coordinates of RP3 and (RP?)*, respectively, then equations (12) and
(13) become the duality relations for tangent planes of the respective surfaces [ f] and [71].

A

Definition 11.8. Let [f] : U — RP? be a regular surface. Then

A

[2] == (/] v [fu] v [ U — (RP?)*
is called the dual surface of f.

In homogeneous coordinates the dual surface is determined by the three linearly inde-
pendent equations

- fu=0,
ﬁfzo (14)
a-f=0,
and satisfies .
f-n, =0,
fof, =0, (15)
f-n=o0.

These equations are completely symmetric in f and 7.

A

Proposition 11.2. If the dual surface of a reqular surface [f] in RP? is itself regular,
then the dual surface of a the dual surface is [f].

Remark 11.1. The primal surface is regular if it is locally not a curve. The dual surface

is regular if the primal surface is locally not developable (see next section).

11.4 Ruled surfaces and developable surfaces

Definition 11.9. A ruled surface is a surface traced out by the movement of a straight
line through space. The lines on the resulting surface are called rulings.

Example 11.1. A one-sheeted hyperboloid is a doubly ruled surface.
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It can be described by connecting corresponding points of two parametrized curves.
Given a,b : I — R3, we obtain a parametrized ruled surface f : I x R — R3

f(u,v) = (1 —v)a(u) + vb(u) = a(u) + vr(u), with r(u) = b(u) — a(u).

Definition 11.10. A developable surface is the envelope of a one-parameter family of
planes.

Proposition 11.3. Fvery developable surface is a ruled surface.
Proof. Consider a one-parameter family of planes
T(u) ={zeR® | n(u) -z + h(u) = 0}.
Then the envelope is the solution of the two equations
n-z+h=0,
Ny - T+ hy = 0.
For each u these are two linear equations, and thus the solution is a line. O
Proposition 11.4. A ruled surfaces
flu,v) = a(u) + vr(u)
1s a developable surface if and only if
det(r, ay,r,) =0

Proof. A ruled surface is the envelope of a one-parameter family of lines if and only if it
has a fixed tangent plane along each ruling, or equivalently, if all tangent vectors of f

fu = ay +vry, fo=1
along a ruling lie in one plane:
0 = det(r, ay, b,) = det(r, ay, ).
O

Infinitesimally, this means that adjacent lines of the rulings intersect, and thus enve-
lope a curve in space.

Proposition 11.5. The rulings of a developable surface envelope a curve called the line
of striction.
For the developable surface f(u,v)

fu,v) = a(u) + vr(w),
and the two functions a(u) and f(u) given by
ru(u) = a(u)ay(u) + Blu)r(u)

the line of striction is given by
s(u) = a(u) — ——r(u).
Proof. For the rulings to be tangent lines of the curve s(u) it must satisfy
s(u) = a(u) + AMu)r(u)s, = ay + Ay + Ary = (1 + aN)ay, + (A + AT ~ 71

and thus

1
A= ——
a
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11.5 Conjugate line parametrizations

We now study special parametrizations, in the sense that the parameter lines satisfy some
geometric condition. We start with conjugate line parametrizations, which we first intro-
duce for surfaces in R?. Conjugate line paramtrizations are geometrically characterized
by the following condition: Along each parameter line of the surface, the tangent planes
rotate around the tangent line in the other coordinate direction. Put differently: The
tangent planes along one parameter line envelop a surface that is ruled by the tangent
lines in the other coordinate direction.

Definition 11.11. Let f : U — R3 be a regular surface, and n : U — R3 a normal field
of f. Then f is a called a conjugate line parameterization if one and hence all of the
following equivalent conditions hold:

(V) fuw = afy+ Bf, for smooth functions o, 5: U — R

Proof. Taking the v-derivative of n - f, = 0 and the u-derivative of n - f, = 0, we obtain

Ny fu=n" fuw
Ny, fv =nNn- fvu
and since fy, = fyu by the symmetry of second derivatives, conditions (i), (ii), and (iii)
are equivalent.
Condition (iii) implies (iv) because (f,, f,) is a basis for the orthogonal subspace to

n. This also means that the equation of condition (v) determines the functions a and
uniquely. In fact, by Cramer’s rule,

0 - det(n, fuv fo) 5 = det(n, fu fuv)

det(n, fu f.) det(n, fu fo)

which also shows that a and § are smooth because f is. Finally, condition (v) clearly
implies (iii) and (iv). O

Conditions (iv) and (v) of Definition 11.11 do not mention the normal field n. We
may use them to define conjugate line parametrizations in R™:

Definition 11.12. A regular surface f : U — R" is called a conjugate line parameteriza-
tion if it satisfies one and hence both equivalent conditions (iv) and (v) of Definition 11.11.

The definition for conjugate line parametrizations translates as follows to surfaces in
RP™:

Proposition 11.6. Let f : U — R" be a reqular surface. Let

f=X(f1):U—R""
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be an arbitrary lift to homogeneous coordinates with a smooth function A : U — R\{0}.
Then f is a conjugate line parametrization if and only if f satisfies

fuv:afu'i_ﬁfv—i_’yf (16)
with some smooth functions a, 3,7.

Equation (16) states the linear dependence of four representative vectors, or equiva-
lently that four points lie in a plane. While the four points are not projectively well-defined
(the points defined by the derivatives are not invariant under scaling f) this property is.

A A

Definition 11.13. Let [f] : U — RP™ be a regular surface. Then [f] is called a conjugate
line parametrization if the four points [f], [fu], [fo]s [fuv] lie in a plane for every (u,v) € U.

We have seen that this property is projectively well-defined. Furthermore, it is a
property of the coordinate lines. Thus, it is invariant under reparametrization of the
surface along the coordinate lines. Finally, it is also invariant under applying a projective
transformation to the surface. We summarize these properties in the following proposition.

A

Proposition 11.7. A reqular surface [f] : U — RP™ being a conjugate line parametriza-
tion is invariant under

(i) a change of representative vectors

Flu,0) = Mu,v) f(u, 0)
with a smooth non-vanishing function .

(ii) reparametrization along the coordinate lines

flu,v) = flp(@), x(#))
with two smooth bijective functions v, X.

(iii) projective transformations

A

f(u,0) = Ff(u,0)
with F' e GL(n + 1,R).

For surfaces in RP? the property of being a conjugate line parametrization is also
invariant under dualization.

Proposition 11.8. A regular surface [f] :R? > U — RP3 is a conjugate line parametriza-
tion if and only if its dual surface [A] : U — (RP3)* is a conjugate line parametrization.

Proof. | f] is a conjugate line parametrization if f satisfies an equation of the form (16),
which is equivalent to

A

fuw - =0.
From equations (14), or equivalently, equations (15), we find that this is equivalent to
either of the three equations

fo - =0, (17)
f

and thus in turn to



Remark 11.2. The first two equations of (17) state, respectively, that
L1 v [ful = ([2] v [R])
L1 v L] = (2] v [a])"
which capture the geometric description of conjugate line parametrizations given in the

beginning of the section.

11.6 Curvature line parametrizations

Definition 11.14. Let
fRP>U >R}

be a smooth regular parametrized surface patch.

(i) f is called orthogonal if
<fu7 fv> =0

(ii) f is called curvature line parametrization if it is orthogonal and conjugate, i.e.,
<fu7fv>:Oa and fuv :afu+5fv-

Proposition 11.9. The property of a parametrization to be orthogonal is Mdobius invari-
ant.

Proof. Mobius transformations are conformal, i.e., preserve angles. O

Conjugate parametrizations, on the other hand, are not Mébius invariant. Are curva-
ture line parametrizations?

Proposition 11.10. Let f : R2 > U — R? be a parametrized surface and

F=r+e+|fIes

its lift to the Mobius quadric. Then f is a curvature line parametrization if and only if
[f] is a conjugate parametrization.

Proof. For the derivatives of the lift we obtain

A

fu = fu +2<f7fu>eooa

A

fv = fv +2<f7fv>6007

A

fuv = fuv + 2 (<fa fuv> + <fuafv>) Cop-

Let f be a curvature line parametrization. Then

Fuo = fuw + 2{f fund o = afu+ B+ 2(@lf, fu) + B o)) e = afu+ B
The reverse direction is shown similarly. O

Corollary 11.11. Curvature line parametrizations are Mdbius invariant.
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11.7 Focal surfaces and principal curvature spheres

Let f:R? > U — R3 be a regular parametrized surface with unit normal field

Ju X fo

n(u,v) = ————

| fu xSl
Lemma 11.12. If f is orthogonal and conjugate, then
Ny = _Klfuu ny = _/i2fv
with two smooth functions ki, ke : U — R.

Proof. Then
Ny = afu + 6.](11

with two functions «, 8. Since f is conjugate and orthogonal, we obtain
Oznu'fv:Oéfu'fv_‘_ﬁfv'fv:va'fv
and thus, g = 0. Similar for n,,. O

The two values, k1 and k9 are called the principal curvatures of the surface f. Points
with k1 = kg are called umbilic points. Away from umbilic points the reverse is also true.

Lemma 11.13. If
Ny = _Klfua Ny = _Kva

with two smooth functions ki, ke : U — R, then at points with ki(u,v) # Ko(u,v), the
parametrization f is orthogonal and conjugate.

Proof. From n, - f, = n, - f, we obtain
—Fifu fo =10 fo =10 fu=—Kafo - fu
Thus, if k1 # ko this implies f, - f, = 0, and further n,, - f, = 0. n
We can now characterize curvature line parametrizations by their normals.

Definition 11.15. Let f : R2 > U — R3 be a regular parametrized surface. Then the
two-parameter family of lines

¢ : U — Lines(R?), (u,v) — L(u,v) = {f(u,v) + An(u,v) | A € R}
is called the normal congruence of the surface f.

Proposition 11.14. Let f : R? > U — R3 be a reqular parametrized surface. Then f is
a curvature line parametrization if and only if the ruled surfaces

u > l(u,v = const), v — l(u = const,v)
in the normal congruence are developable.

Proof. Since n-n = 1, we have
Ny = afu + 6]01)
Now
0 = det(”? fuynu> = Bdet(na flu fv)
if and only if 5 = 0. O
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Thus, in particular, each of these developable surfaces in the normal congruence has
a line of striction. For a developable surfaces in u-direction

u — {(u,v = const)
it is given by
u— f(u,v) +

oy U)n(u, v)

Together these lines of striction in u-direction form a surface.

Definition 11.16. Let f : R?> > U — R3 be a curvature line parametrization. Then the
two surfaces given by

f(l)(u,v) = f(u,v) + n(u,v), f(z)(u, v) = f(u,v) +

are called the focal surfaces of the surface f.

1

K1 (u,v)

o) n(u,v)

Note that the focal surfaces are a generalization of the evolute of a plane curve to
surfaces. Correspondingly, they each form the centers of a two-parameter family of sphere,
called curvature spheres.

Definition 11.17. Let f : R2 > U — R3 be a curvature line parametrization. Then
the two two-parameter families of spheres S with centers f* and radii ﬁ are called
curvature spheres of the surface f.

Remark 11.3. The (unique) midsphere of the two (touching) curvature spheres S and
S®) at any given point (u,v) € U is the mean curvature sphere of the surface f.

In the Mobius lift the curvature spheres are represented by the points

i ; a2 1 1 2
§W=ﬂ)+OU”H—kaew+awaﬂ+ﬁn+(Wﬁ+ﬁKﬁn»6w+%

(3 3

Proposition 11.15. Let f : R?> > U — R? be a curvature line parametrization, and

F=r+1f1 e +eo
its Mobius lift. Then the Mdobius lift [31] of the curvature spheres SU) is given by

2 [ f '
[50) = ([ v [£] v [£] v [fud)
and, similarly, the Mobius lift (3] of the curvature spheres S is given by

(A1 LRV (80 v 1)

[5)

Proof. One easily checks

(40, = (010, = 00, =0
4,1 4,1 4,1

And the Lorentz product with the second derivative

fuu = fuu + Q(Hfuuz + <f7 fuu>>eoo
is given by .
<§(1)7fuu>41 = ;1<TL7 fuu> - ||fu||2 = 07

)

since

(n, fuw) = =y fup = ma Iful*
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11.8 Channel surfaces and Dupin cyclides

Definition 11.18. The surfaces given by the envelope of a one-parameter family of
spheres is called a channel surface.

Consider a one-parameter family of spheres
S:Rol—R3 S(u) ={zeR® | F(z,u) = |c(u) — z|* = r(u)? = 0}

Then an envelope surface
fREoU=1IxJ—->R?

is given b
B F(f(u0).0) = 0
Fu.(f(u,v),u) =2{cy,c— f)—2r, =0.

The first equation defines a sphere, while the second defines a plane. Thus, their inter-
section is given by a circle

C: IR C(u) = {z e R* | F(z,u) = F,(z,u) = 0}
and for each u € I the entire v parameter line lies on C'(u):

f(u,v) e C(u) forall ve J

The u parameter lines are not uniquely defined by the two envelope equations. To obtain
unique u parameter lines we can add the condition of orthogonality

<fu7 fv> = 0.

This leads to a curvature line parametrization of the channel surface. Indeed, by symmetry
note that all normal lines along the circular v parameter lines must go through one point
on the axis of the circle C'(u), and thus

Ty ~ fv-

Together with the orthogonality this implies

(N, fuy = 0.

In particular, that all normal lines along the v parameter lines go through a common
point implies that the focal surfaces f® of the corresponding direction degenerates to a
curve:

fi? =0

In fact, this property characterizes channel surfaces.

Proposition 11.16. Let f : R?2 > U — R3 be a curvature line parametrization. Then
f is a channel surface (in w direction) if and only if its focal surface (in v direction)
degenerates to a curve in the following way:

12 =0
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Proof. We have already demonstrated (=). Now («<):

1 1
0=f152)=fv+<,€_2) n+-—n,=-—n < (KJ2)'U=0

Thus the curvature spheres S® in have constant radius v direction, i.e., do not depend
on v. (Equivalently the lift [5?] degenerates to a curve as well 32 = 0.) This means
that the f is the envelope of this one parameter family of spheres O

A

Remark 11.4. The Moébius lift of the parametrization [f] and of the one-parameter family

of spheres [§] are related by
4,1 4,1

Thus, the circles C' are given by ([8] v [8,])*. Furthermore, the lift of the curvature
spheres in v direction [§?)] describes a curve, which coincides with [3].

Figure 33. Smooth and discrete channel surfaces and their focal surfaces.

We now consider the special case of double channel surfaces .

Definition 11.19. A surface which is the envelope of two (distinct) one-parameter fam-
ilies of spheres are called Dupin cyclides.
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By the consideration above these two one-parameter family of spheres must coincide
with the curvature spheres SM (u) and S of the surface. Furthermore, since the surface
envelopes both families, each sphere from S must touch each sphere of S®). For the
Mébius lifts [§(M], [4®)] this means that all lines [§(V] v [5®)] are tangent to the Mdbius
quadric S* = RP*, or equivalently,

0,59, = s 5L, =0

2
4,1

If we add an additional homogeneous coordinate

0= (59, 151,,)

to define a lift [5§] € £ < RP® to a quadric with signature (4,2) in RP® the condition
above becomes polarity
(5,57, =0

with respect to this quadric, the so called Lie quadric. This implies that the two curves
[31] and [5®] must be planar sections of the Lie quadric, i.e, conic section. This means
that the projection back to RP* is given by two conics, and so is the stereographic pro-
jection to R3, which describes the focal surfaces. Further investigation reveals that the
two focal surfaces are given by two focal conics.

Example 11.2. A torus is a channel surface in two directions, and thus a Dupin cyclide.
This property is invariant under Mobius transformations. So, all Mobius images of a torus
are Dupin cyclides.

11.9 Q-nets, circular nets, and discrete channel surfaces

» We discretize parametrized surfaces in terms of discrete nets, i.e, maps
f:7* >U — RP".

» A Q-net (discrete conjugate nets) is a net f : U — RP™, such that the four image
points of each quad are contained in a plane, i.e.,

f(m,n), f(m+ 1,n), f(m+1,n+ 1), f(m,n + 1) are coplanar for all m,n.
Equivalently, in affine coordinates, f satisfies an equation of the form

Ay f = aAf + BALf.

» A circular net (discrete principal nets) is a net f : U — R", such that the four image
points of each quad are contained in a circle, i.e.,

f(m,n), f(m+ 1,n), f(m+1,n+ 1), f(m,n + 1) lie on a circle for all m,n.

The axes of the circles can be interpreted as discrete normals (per face). Adjacent dis-
crete normal lines intersect, and in this sense they form discrete developable surfaces.

» Starting from a discrete one-parameter family of spheres S : Z > I — R3, we can
generalize the two definitions for envelopes of circles to this case:
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e The sequence of intersection circles of adjacent spheres can be thought of as the
discrete envelope.

e Start with one circle on one sphere, and propagate this circle to the other spheres
by inversion in the midspheres of adjacent spheres. The sequence of the obtained
circles can be thought of as the discrete envelope.

To obtain a discrete net, sample the initial circle, and propagate the points by the
same inversions. In this way, one obtains a circular net as the discrete envelope.
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