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1 Projective geometry

1.1 Some motivation: Incidences between points and lines

The elementary figures of projective geometry are points, straight lines, and
planes. The elementary results of projective geometry deal with the simplest
possible relations between these entities, namely their incidence. The word
incidence covers all the following relations: A point lying on a straight line,
a point lying in a plane, a straight line lying in a plane. Clearly, the three
statements that a straight line passes through a point, that a plane passes
through a point, that a plane passes through a straight line, are respectively
equivalent to the first three. The term incidence was introduced to give these
three pairs of statements symmetrical form: a straight line is incident with a
point, a plane is incident with a point, a plane is incident with a straight line.
(Geometry and the Imagination — Hilbert, Cohn-Vossen)

In projective geometry, we are interested in statements and configurations that are
invariant under projective transformations. E.g., the incidence of a point lying on a line
is invariant under projection from one plane to another (from some point). Let us take a
closer look at this incidence in the plane.

A point in the Euclidean plane R? can be described by two Cartesian coordinates

p= (Phpz) € RQ,

and a line by
(= {p = <p17p2) € R2 ’ <nap>+ h = 0}

with some n = (ny,ny) € S! and h € R, where n can be interpreted as the unit normal
vector of ¢ and h as the oriented distance of the origin to /.

Note that the equation for ¢ can be multiplied by any scalar A € R, A # 0 without
changing the line. Thus, we can replace (ny,ng, h) by

aq Tq
as =X no |, with some A € R, A # 0,
as h

and write the equation for the line as

P1
aipr+aspstaz=(a; az az)| p2 |=0
1

Similarly, we can replace (p1, ps2, 1) by any non-zero scalar multiple

T P
o |=p| p2 |, with some e R, u # 0,
T3 1

from which the Cartesian coordinates of p can be recovered by

X
pPr=— P2= .
X3 x3

T2



The triple (z1,%2,r3), and in particular (p;,ps, 1), are called homogeneous coordinates
of p.

Now the equation of the incidence of the point p lying on the line ¢ (p € (), or
equivalently, the line ¢ passing through the point p (¢ 3 p) has the symmetric form

T a1
a12r1 + Q99 + azTs = ( a;y Qag as ) i) = ( 1 T T3 ) as =0 (1)
x3 as

Example 1.1. How to determine if three points p, ¢, r € R? lie on a line?
Equation (1) is a linear homogeneous equation in (aj, as, az). Thus, there exists a line
passing through these three points if and only if the linear homogeneous system

p1 p2 1 ap
G g 1 ay | =0
M T2 ]_ as

has a non-trivial solution, which is equivalent to

p1 p2 1
det | ¢1 ¢ 1 |=0.
T T2 1

Example 1.2. How to compute the intersection point of two lines?

Ez{peRQ‘alleragpg—kag:O}
gz{peRQ‘&1p1+d2p2+&3=0}

Its homogeneous coordinates are given by a solution of the linear homogeneous system

x1
( a2 ds ) ze | =0. (2)

ay Gz as

If we assume that the two lines are distinct, i.e., the two rows are independent, then the
solution space is one-dimensional

span{z} = {\z | A e R} with some 2 € R®, z # 0,

and we obtain the intersection point p € R? with

T T2

br=—"— P2=_
T3 T3

da(@ @):0
ap az
and thus ¢ and ¢ are parallel.

The linear homogeneous system (2) always has a solution. Thus, in homogeneous
coordinates of the plane two lines always intersect. In particular, for two parallel lines, the
point of intersection has homogeneous coordinates of the form (z1,x,0) which represents
a point not in R?, but “at infinity”.

What if 23 = 07 Then



1.2 Definition of projective spaces

Let V' be a vector space of dimension n + 1 over a field F. Then the projective space of V/
is the set
P(V) := {1-dimensional subspaces of V'}

Its dimension is given by
dimP(V) :=dimV — 1 =n.

For x € V\{0} we write [z] := span{z}. Then [z] is a point in P(V'), and x is called a
representative vector for this point.

If A € F\{0} then [Az] = [z], and Az is another representative vector for the same
point. This defines an equivalence relation on V\{0}

r~y < x=J\y, forsome\eF\{0},

and we can identify

pv) = (V0D /.
For now we will only consider the real projective space

RP" := P(R™1).

1.3 Homogeneous coordinates on RP"

For a point [z1,...,z,.1] € RP™ the coordinates of a representative vector
(x1,...,Zn11) € R are called homogeneous coordinates. They are unique up to a
common scalar multiple

[5(71, NN ,[En+1] = [)\[Eh ey )\xn+l]

for A € R\{0}.
If ,,41 # 0 then

ET [

T T,

I a]- :[yla-'~7yn71]a
Tn+1 Tp+1

and (y1, ..., yn) are called affine coordinates of the point [x]. This yields a decomposition
of RP™ into an affine part and a hyperplane at infinity

an:{[x17"'7xn+1] | xn+1¢0}U{[.f1,...,$n+1] |[L‘n+1:0}_
~ Y -~ ~ -~ /
~Rn" ~RpPn—1

//l\\

Figure 1. Affine coordinates for RP' and RP2.



Example 1.3 (The real projective line RP!). For the real projective line this decompo-
sition is given by
RP' ~ R URP? = R U {0},

where RP? consists of only one point [1, 0], which is usually denoted by oo, and allowed
as an “admissible” affine coordinate.

Example 1.4 (The real projective plane RP?). For the real projective plane this decom-
position is given by
RP? ~ R? U RP!.

Thus, we obtain the Euclidean plane compactified by a (projective) line at infinity.

Example 1.5 (The real projective 3-space RP?). For the real projective plane this de-
composition is given by
RP? ~ R* U RP?.

Thus, we obtain the Euclidean 3-space compactified by a (projective) plane at infinity.

More generally, let by, ..., b,.1 be a basis of R**1. For x € R"™! let 21,..., 2,41 € R
such that
n+1
T = Z z;b;.
i=1
Then (z1,...,7,.1) are called homogeneous coordinates of the point [z] € RP™ (with
respect to by, ...,b,41). They depend on the chosen basis and are unique up to a common

scalar multiple. We then identify
[l’] = [Z’l, c. 7~rn+l]-
A change of basis acts on the homogeneous coordinates as a general linear transformation

€ 151
— | A

Tn+1 Tn+1

with 4 € GL(R"*1).

1.4 Projective subspaces

For a (k + 1)-dimensional linear subspace U < R™*! its projective space
P(U) c RP"
is called a k-dimensional projective subspace of RP™.

dimP(U) | name

0 point

1 line

2 plane

k k-plane
n—1 hyperplane

Table 1. Naming conventions for projective (sub)spaces.



1.5 Meet and join

Let P(Uy), P(Us) < RP™ be two projective subspaces. Then their intersection, or meet, is
given by
P(Uy) n P(Us) = P(U, n Uy),
and their span, or join, is given by
P(Ul) \ P(Ug) = P(Ul + Ug)
The dimension formula for linear subspaces carries over to projective subspaces:
dim (P(U;) v P(Us)) + dim (P(Uy) n P(Us)) = dim P(U;) + dim P(Us).

In particular, a ki-plane and a ko-plane in an n-dimensional projective space with k1 + ks > n
always intersect in an at least (ki + ks —n)-dimensional projective subspace. Thus, certain
incidences are always guaranteed in a projective space.

Example 1.6 (RP?). In RP? two (distinct) lines always intersect in a point. In affine
coordinates, the two lines are parallel if and only if the intersection point lies on the line
at infinity.

Example 1.7 (RP?). In RP? two (distinct) planes always intersect in a line. In affine
coordinates, the two planes are parallel if and only if the intersection line lies in the plane
at infinity.

However, in RP3, two lines do not always intersect. They intersect if and only if they
lie in a plane. In affine coordinates, two lines are parallel if and only if the intersection
point lies in the plane at infinity.

1.6 Desargues’ theorem

An incidence theorem is a statement about a projective configuration (of e.g. projective
subspaces) where a certain set of incidences implies another set of incidences. As an

example we state the theorem of Desargues. First in RP? where it is very easy to verify,
and then in RP?.

Figure 2. Three triangles in perspective and their shadow.



Theorem 1.1 (Desargues). Let A, A’, B, B', C, C' be sir points in RP3, such that
A, B,C span a plane, and A’, B',C" span another plane.

If the three lines AA", BB', and CC" are distinct and pass through a common point,
then the three points A” = BC n B'C', B" = CAn C'A’, and C" = AB n A'B’ lie on a

common line.

Proof. First, the statement contains the implicit claim, that, e.g., the lines BC' and B'C’
intersect in a point. Indeed, the four points B, C, B/, C’ lie in a plane since BB’ and C'C’
are concurrent. Thus, the point A” = BC' n B'C’ exists.

The two planes
E=AvBvC(C, E=AvBv(C

intersect in a line = E n E’. Since BC € F and B'C’ € F’, their intersection point A”
lies in (. Similarly, B”,C" € (. H

Consider what happens if we project such a configuration in RP? from a point into a
plane, and denote the image points by A, B, C,.... Then we obtain again six points A,
A, B, B, C, C' that satisfy that the lines AA’, BB, and C'C" are concurrent and that
the points A” = BC' n B'C’, B" = CAn~ C'A’, and C" = AB n A'B’ are collinear.

Indeed, Desargues theorem also holds in RP? which can be shown by lifting it to RP3.

Theorem 1.2. Let A, A’, B, B, C, C' be siz points in RP?, such that no three lie on a
line.

If the three lines AA’, BB', and CC' pass through a common point, then the three
points A” = BC n B'C', B" = CAnC'A’, and C" = AB n A'B’ lie on a common line.

Proof. We embed RP? into RP? as the plane RP? ~ E < RP3. Thus, E is the plane
which contains the two triangles ABC, A’B’C’, and the point P which is incident with
the three lines AA’, BB', and CC".

Choose a line through P which is not in £ and two points X and Y on it.

The lines XA and Y A’ lie in a plane, so they intersect in a point A. Thus,

A=XAnYA,
and similarly .

B=XBnYRB,

C=XCnYC.

Now A, B,C span E and A, B, C span another plane E. The three lines AA, BB, and
CC pass through a common point (namely X). Thus, we can apply Theorem 1.1 to the
six points A, A, B, B,C, (', and find that the line of intersection £ n E contains

A" = BC ~n BC = BC n B'C",

and similarly B” and C”. O
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Figure 3. Desargues’ theorem in RP? from Desargues’ theorem in RP3,

1.7 Duality

As we have seen in Section 1.1, in homogeneous coordinates x, s, x3, the equation for a
line in a projective plane is
a171 + agxy + azrs = 0,

where not all coefficients a; are zero. The coefficients a1, as, a3 can be seen as homogeneous
coordinates for the line, because if we replace in the equation a; by Aa; for some A # 0 we
get an equivalent equation for the same line. Thus, the set of lines in a projective plane
is itself a projective plane, the dual plane. Points in the dual plane correspond to lines
in the original plane. Moreover, if we consider in the above equation the z; as fixed and
the a; as variables, we get an equation for a line in the dual plane. Points on this line
correspond to lines in the original plane that contain [x]. Thus, a the points on a line in
the dual plane correspond to lines in the original plane through a point.

It makes sense to look at this phenomenon in a basis independent way and for arbitrary
dimension. It boils down to the duality of vector spaces.

1.7.1 Dual space
The dual vector space of R™*! is the space of linear functionals R"*' — R
(R*™)* :={a | a: R — R linear} .
The dual projective space of RP™ is correspondingly defined by
(RP™)" == P((R™1)").

The natural identification (R"*1)** = R"™! carries over to the projective setting (RP™)** =
RP".



1.7.2 Dual subspaces

For a projective subspace P(U) < RP™ its dual projective subspace P(U)* < (RP™)* is
defined by
P(U)* = {[a] € (RP")* | a(z) =0 for all z € U} .

The dimensions of a projective subspace and its dual projective subspace are related by
dimP(U) + dimP(U)* =n — 1.
Incidences are reversed by duality
P(U1) c P(lh) <« P(U:)" < P(Uh)"

and meet and join are interchanged

Figure 4. Duality in RP? and RP3.

1.7.3 Duality in coordinates

Let by, ..., b,41 be abasis of R™™ and b}, ..., b, the corresponding dual basis of (R"1)*,
i.e.,
1, i=j
bE(b;) = 6, = 4
(2 ( .7) J {07 2' # j,

In homogeneous coordinates with respect to those bases the duality of two points
[21,...,Tpt1] = [2] € RP", [a1,. .., an+1] = [a] € (RP™)*

is expressed by

T
T a1 T

a(xz) = (ay...an41) : = : : =0.
Tn+1 Ap+1 Tn+1
Thus, duality in linear algebra as well as in projective geometry expresses in a formal way

that a subspace can either be expressed as the span of points or the solutions to a set of
linear equations.

10



If a change of basis acts on the homogeneous coordinates of RP™ as

X T
— | A

Tn+1 Tn+1
with A € GL(R™"!), it acts on the homogeneous coordinates of the dual space (RP™)* as

aq aq
—> A_T
an+1 an+1
1.7.4 The dual of Desargues’ theorem

The interchangeability of points and lines is called the principle of duality
in the projective plane. According to this principle, there belongs to every
theorem a second theorem that corresponds to it dually, and to every figure a

second figure that corresponds to it dually. (Geometry and the Imagination —
Hilbert, Cohn-Vossen)

As an example consider the theorem of Desargues in in RP? (Theorem 1.2). Then its
dual turns out to be the converse statement, which therefore also holds.

1.8 Projective transformations

Let F' € GL(R""!) an invertible linear transformation. Then the map
[F]:RP" - RP", [v]— [F(v)]

is called a projective transformation.

Proposition 1.3.

(i) Projective transformations are well-defined maps (do not depend on the representa-
tive vectors of points).

(ii) For F,G € GL(R™*!)
[F]=[G] < G =M\F with some A€ R\ # 0.

(iii) Projective transformations map projective subspaces to projective subspaces, while
preserving their dimension and incidences.

(iv) Vice versa, any bijective map on RP™, n = 2, that maps lines to lines is a projective
transformation.

(v) Let Ay, ..., Ayio € RP™ be n + 2 points in general position, and let By, ..., B,.o €
RP™ be n + 2 points in general position. Then there exists a unique projective
transformation

f:RP" - RP" with f(A;))=DB; fori=1,...,n+2.
(vi) Projective transformations preserve the cross-ratio of four points on a line.

11



1.8.1 Projective transformations in homogeneous coordinates

In homogeneous coordinates a projective transformation [F'] : RP™ — RP™ is represented
by a non-singular matrix F' € R™+D*(+1) (yp to non-zero scalar multiples).
For representative vectors x = (uq,...,u,, 1) and with

F = Alb where Ae R™", b,ce R",de R
c’ | d

o= () (1) = (o)~ (%9

if cTu+d # 0. Thus, in affine coordinates, projective transformations are fractional linear
transformations:

we obtain

n n Au+b
R* - R U= cTu+d

1.8.2 Affine transformations

If we choose a representative matrix of the form

F= (%%) where 4 € GL(R"),be R,
) (1) (")

In affine coordinates, this in an affine transformation

we obtain

R"* - R" u— Au+b

Thus, affine transformations are projective transformations.
Note that affine transformations map the hyperplane at infinity {[z] € RP" | z,,, = 0}

G-

In fact, affine transformations are characterized by this property among the projective
transformations.

Proposition 1.4. A projective transformation f : RP™ — RP"™ is an affine transforma-

tion if and only if f maps the hyperplane at infinity {[x] € RP" | z,11 = 0} to itself.

1.8.3 Euclidean transformations

Euclidean transformations are affine transformations, and thus, projective transforma-
tions. Indeed, if we choose a representative matrix of the form

F = (%‘%) where A€ O(n),be R",

in affine coordinates, this is a Euclidean transformation.

12



Example 1.8 (reflection in a line). Consider a line with unit normal n = (ny,n) € S!
through the point ¢ € R?

(= {u=(u,u) e R* | {n,u—q) =0}

Then the (Euclidean) reflection 6 : R? — R? is given by

o(u) =u—2u—qnyn
With h := — (g, n) the equation for the line becomes

nyuy+h=0
and the reflection can be rewritten as
6(u) =u—2u,nyn —2hn = (I —2nn")u — 2hn

Thus, in homogeneous coordinates we can write

(6gu)):§1—§nnT—%hn)J(?)7

~
=F

where, indeed, I — 2nnT € O(2). As an extension of &, we can now define a projective
transformation o : RP? — RP? by o([z]) = [Fz]. Note that F? = I and thus o is an
involution: ¢ o o = id.

Let us also derive the matrix F' for the reflection in the case that the line is given in
homogeneous coordinates

(= {[:E] e RP? ! a'r = a1x1 + ATy + azx3 = O} = [a]* with some a € R*\{0}

With @ := (a1, a2) and |a| # 0 it relates to the Euclidean equation by

Thus,

[—20 | —2%5 ja|* I — 2aa™ | —2asa
F = la] la] ~ o
0 1 0 ‘ |a|
Note that this formula easily generalizes to the (Euclidean) reflection in a hyperplane in

R"™ < RP™ given by
L ={[z] e RP" | a"z = 0} = [a]",

which yields

P af° T — 2447 | —2a,414
0 L Jal ’

where @ = (a1,...,a,).

13



1.8.4 Central projections

Another important class of projective transformations are projections.

Example 1.9 (orthogonal projection to a line). Consider a line
0 ={u=(u,u) e R?* | {n,u—q) ={n,uy+h =0},

with some n € St, ¢ € R? and h = —{n, ¢). Then the orthogonal projection # : R? — /£ is
given by
flu)=u—{u—q,nyn=u—{unyn—hn= (I —nn")u—hn

Thus, in homogeneous coordinates we can write

(6gu>>:£1_0nnT_fn2<?>_

~
=F

Note that here F' is not invertible, since in particular F'(§) = 0. Thus, we can be extend
o to a map

T RPA\{[3]} — ¢

by m([z]) = [Fx]. Since 7 is not invertible, it does not constitute a projective transfor-
mation. But the restriction of 7 to any line (that does not contain [ §] is.
Similar, to Example 1.8, this can easily be generalized to the orthogonal projection

onto a hyperplane in R” < RP"™ given by
L ={[x] e RP" | a"z = 0} = [a]",

which yields

4 I —aa" | —a,.a
F= 3

where a = (aq,...,a,).

More generally, let L = RP™ be a hyperplane and P € RP" a point P ¢ L. Then the
central projection to L with center P is given by

7 : RP"\{P} — L, X—(PvX)nL

P and X span a line, since X # P. This line intersects L in exactly one point, since
P ¢ L. Thus, this map is well-defined.

Let us show that 7 is indeed a given by a linear map on the representative vectors.
Let the hyperplane L be given by

L ={[z] e RP" | a(x) =0} = [a]*  with some a € (R""")*\{0}.
The image of a point X = [x] # P = [p] lies on the line
XvP=P{ x+up|X\peR?}).
Thus, the intersection (X v P) n L is determined by the condition
a(Az + pup) = Aa(z) + pa(p) =0

14



With A = a(p) and p = —a(z), we obtain

which is indeed linear in z.
Again, this linear map is not invertible, since p is in its kernel. Furthermore, dim RP" =
n > dim L =n — 1. Yet the map becomes a projective transformation once we restrict it
to another hyperplane K with P ¢ K:
7K —L X =[z] > (Pv X)nL=lalp)x — a(z)p]

To see that now it is invertible, note that dim K = dim L. Further a(p)z — a(x)p = 0
implies x = 0, otherwise we would have [z] = [p], which contradicts P ¢ K.
In homogeneous coordinates, we can write the representative matrix for the central
projection as
F=a"pl —pa'.

Example 1.10 (orthogonal projection as central projection). Let us recover the orthog-
onal projection from Example 1.9 as central projection with center at infinity.
Consider the hyperplane

L ={[z] e RP" | a"z = 0} = [a]* with some a € (R™*1)*\{0}.
and P = [p| = [a,0] = [a1,...,a,,0]. Then
F=a"pl —pa’

=(a an+1)<g>[—(g>(€ﬂ ni1 )

a2 T aa’ | apq1a
~laf - (),

which indeed coincides with (3).

The definition for central projections can be generalized further by decreasing the
dimension of the image space which at the same time increasing the dimension of the
center.

Let L,C < RP"™ be projective subspaces with

CnL=g, CvL=RP"
Then the map
7:RP\C—-L, X—(CvX)nL

is called (generalized) central projection onto L with center C'. Indeed, this map is well-
defined, since dim(C' v X) = dimC' + 1 and dim L + dim C' = n — 1 and therefore, C' v X
and L intersect in exactly one point.

Again, the map 7 becomes invertible and in particular a projective transpormation,

T K—->L X—(CvX)nL
once restricted to any subspace K < RP"™ with
dimK =dimL, CnK=9g

Example 1.11 (central projection). If L is a hyperplanes, i.e. dim L = n—1, the center C'
is a point, and the generalized central projection becomes the standard central projection.

Example 1.12 (three skew lines). If n = 3 and K, L are two non-intersecting lines, then
the center C' is another line, and we obtain three skew lines.

15



2 Plane curves and envelopes of lines

2.1 Plane curves
Definition 2.1.

(i) A (plane) curve is a smooth map

vl —R?
with some interval [ < R.
(ii) Let 7 be a curve.
» The vectors
(1)

are called the velocity or tangent vectors of 7.
» The function
v(t) = [7(®)]
is called the speed of .

» The function

is called the arc-length of v, here I = [t1,15].
» If v(t) =1 for all £ € I, then ~ is called arc-length parametrized.

(iii) A curve 7 is called regular if

Y(t) #0 foralltel.

(iv) Let v be a regular curve and t € I.

» Any non-zero scalar multiple of 4(¢) is called a tangent vector at t € I.
» The line
T(t) = {y(t) + a(t) | v € R}
is called the tangent line at t € I.

» Any vector n(t) orthogonal to (1), i.e.,

(n(t),(t)) =0,
is called a normal vector at t € I. In particular one can choose.

L. 0-1
n(t) = @J’y(t), J=(170)

which is called the unit normal vector at t € I.

» The line
N(t) = {x e R* | (¥(t),z — (1)) = 0}
={v(t) + an(t) | « e R}.

is called the normal line at t € I.

16



Note that the derivative of the arc-length is the speed

i(t) = v(t).

For a regular curve =y the arc-length s(-) is monotonically increasing, and thus invertible.
We call its inverse function ¢(-) = s~'(-) and thus write
)

g1
v(s) = (yot)(s).
For the derivative w.r.t. arc-length we write

, d_dtd 1.
R P P T
In particular, the parametrization of v w.r.t. arc-length has unit speed
IVl =1,
which implies
d s d
0= — |+ = — /7/:2 //’/'
o =00 =200
Thus +” always points in normal direction.

Definition 2.2. Let v be a regular curve, and let n be the unit normal vector field of ~.

Then
r(s) = (7"(s),n(s))

is called the (signed) curvature of «y at s, i.e.

7(s) = K(s)n(s).

In terms of an arbitrary parametrization, and with unit tangent vector

the curvature can be written as

1. 1.
K(t) = @@(t)?n(t» BOE G(t), n(t))
1. . 1 o
= Gy(t), Jy(t)) = (D) det(y(t), ¥(t))-

Example 2.1. Consider a parametrized circle of radius r > 0
~[cos(t)
v(t) =7 (sin(t)) , t e [0,2n].
Then
o [—sin(t) Iy _ () [—sin
0 = (o) ot == = 30 = (

Thus, the curvature of 7 is



Definition 2.3. Let v : I — R? be a regular curve, and n its unit normal vector field. If
k(t) # 0, then the osculating circle at t € I is the circle with center

and radius
@]
If k(t) = 0, then we consider the tangent line at t € I to be the osculating circle.

The osculating circle touches its curve the corresponding point. Furthermore, if
parametrized in the same direction as the curve, it has the same (signed) curvature.

It can also be shown that it is the best approximating circle in the following sense.
Consider the circle through three points of the curve v(¢), v(t —€), and (¢ + €). Then in
the limit ¢ — 0, this circle converges to the osculating circle.

2.2 Discrete plane curves

Definition 2.4.
(i) A discrete (plane) curve is a map
vl —R?
with some interval I < Z. We denote its vertices by

e = (k) for ke I.

(ii) Let 7 be a discrete curve.

» The vectors
AV = Yier1 — Y

are called discrete velocity vectors, vertex difference vectors, or edge tangent vec-
tors. They are naturally defined on edges (k,k + 1).

» We define the turning angle at a vertex k € I by

Pk = {(A’WWA'Vk—l) € [_7T77T]'

AV

Figure 5. Turning angle at a vertex of a discrete curve.

» If
1Al = [Ves1 — vl =1

then v is called discrete arc-length parametrized curve.
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(iii) A discrete curve «y is called regular if any three successive points vyx_1, vk, Vr+1 are
distinct, or equivalently, if any two successive edge tangent vectors are not anti-
parallel.

(iv) Let v be a discrete curve, k € I.

» The line
Ty ==Y vV V1
is called the edge tangent line at the edge (k,k + 1).
» The perpendicular bisector Ny of v, and 7.1 is called the edge normal line at
the edge (k, k + 1).
We now introduce two types of discrete osculating circles.

Definition 2.5. Let v : I — R? be a regular discrete curve. Then the circle C}, through
three successive points vi_1, V&, Vk+1 is called the verter osculating circle at k e I.

Tk

Ve—1
YE+1

Figure 6. Vertex osculating circle.

» Note that the two involved edge normals Ny_; and N both contain the center of CY.

» The discrete curvature at vertex k can now be defined by the radius of the vertex
osculating circle. The radius is given by |Vi+1 — Yk—1| = 2R sin ¢ which leads to the
curvature )

B 2 sin @y,

[T T

» The vertex osculating circle inherits an orientation from the order of the three points
on it. This can be used to also associate a sign to the discrete curvature, which
corresponds to the sign in the formula above.

R

» The vertex osculating circle can also be used to define vertex tangent lines as the line
tangent to C in the point .

Definition 2.6. Let v : I — R? be a regular discrete curve. Then the circle Cj, that
touches three consecutive edge tangent lines Ty 1, T}, Thy1 is called the edge osculating
circle at (k,k+1) € I.

Figure 7. Edge osculating circle.
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» For three (non-concurrent) lines in R? there are four circles touching them. By en-
dowing the tangent lines with the orientation coming from the order of the points of
the curve on them, this choice can be made unique.

Figure 8. Edge osculating circle from oriented tangent lines.

» Note that the (correctly chosen) angle bisectors of successive edge tangent lines contain
the center of the edge osculating circle. Thus, the edge osculating circle can be used
to define edge normal lines.

» The (oriented) edge osculating circle can be used to define a (signed) discrete curvature
at the edge (k,k + 1). The radius is given by |Ay|| = Ry(tan €8 + tan #5=). This
leads to the curvature

Pk+1

Yk
_ tan 2" + tan =5

R =
| Al

Computing angle bisectors Consider two oriented lines
(={zeR’|(na)+h=0}, [={zeR®|{H,z)+h=0}

with n,7 € St, h, h € R, and orientation coming from the normal vectors n, 7.
Then the two angle bisectors of £ and ¢ are given by

my =<xeR2,<n+ﬁ,x>—|—h—|—7L:O>,

m_ =<xeR2,<n—ﬁ,x>+h—i~z=O>.
Reflection in m_ maps ¢ to ¢, but with opposite orientation, while reflection in m., maps
¢ to ¢ with the same orientation.

Thus, for two adjacent edge tangent lines T}, Tr,1 the orientation reversing angle
bisector m_ is the desired vertex normal line.

2.3 Envelopes

Consider a one-parameter family of curves C' (implicitly) given by
C(t)={zeR*| F(t,z) = 0}, tel

with some smooth map F : I x R? — R.

Definition 2.7. A curve 7 : I — R? is called envelope of the one-parameter family C' if
7 is tangent to C'(t) in the point v(¢), i.e.

F(t, (1)) = 0 (4(t) ties on C(#)) @)
(VL F(t,y(t)),7(t)) =0 (7 in tangent direction of C(t) at y(t)) (5)
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This is a differential equation for v. But we can reformulate this in the following way.
Equation (4) implies

0= (;jtF( () = DF(t, /(1) (7(17:): (OF 00 F 0,,F) (7(1t)>
Y(0)) -

= 0, F(t,y(t)) + (V. F(t,7(1)),

Thus, equations (4) and (5) are equivalent to

F(t,~(1))
O (t,7(1))
which is not a differential equation in + anymore.

In particular, if C' is a family of lines, then the equations for the envelope are two
linear equations in ~.

0
0,

Example 2.2. For a regular curve v : I — R? the envelope of its tangent lines is the
curve 7y itself,

Example 2.3. Consider
F(t,z) = xy — 2twy + 12,

Then
O F (t, ) = —2xq + 2L.

implies z; = t. Substituting this into F(¢,x) = 0 we obtain x; = t2. Thus the envelope is

given by
t2
(t) = (t)
which is a parabola.

Note, that, in homogeneous coordinates, the equation for the lines is given by

L1
xr1 — 2tl’2 + t25(73 = (1 —2t t2> To | = 0
T3

which describes a curve ¢t — [1, —2¢,¢?] in (RP?)*. This curve is implicitly given by
x% —4x1x3 = 0,

which is a conic in (RP?)*. This is an example of the general fact, that (the envelope) of
the dual of a conic is a conic.

Discrete envelope of a family of lines Let C : Z > I — Lines(R?) be a discrete
one-parameter family of lines, such that no adjacent lines are equal or parallel.
Then we can define the discrete envelope as the discrete curve given by intersections
of adjacent lines
Ve = Ck N Cpy1.

In this way the edge tangent lines of 4 coincide with the lines of C',
Ty = Ciy1.

21



2.4 Evolute

Definition 2.8. The evolute of a regular curve ~ is the envelope of its normal lines V.
The envelope of the family of normal lines is described by the equations
F(t,x) = (y(t), z = (t)) = 0
OF(t,x) = Gyx = () = [H(B)]F = 0
With unit normal field n of v, the first equation is equivalent to
x = e(t) =(t) + at)n(t)

with some function «. Then, «(t) can be determined by the second equation

Grelt) =) = YOI = at) Gt),n(t) — 3O = 0

to be P
8l 1
aft) = - = —,
G(t),n(t))  w(t)
which is well-defined as long as (5(t),n(t)) # 0, i.e., x(t) # 0. Thus, the evolute of ~ is
given by

and we find

Proposition 2.1. The evolute of a regular curve consists of the centers of its osculating
circles.

Proposition 2.2. Let v : I — R? be a reqular curve. Then its evolute e is non-reqular in
t € I if and only if the curvature k of v has a local extremum inte I, i.e.,

()=0 < At)=0

Proof. Let v be arc-length parametrized. Then

) =76+ (15 ) 7o)+ )

For the normal vector we have 0 = < (n(s),n(s)) = 2{n'(s), n(s)), thus n'(s) = a(s)y/(s)

where
afs) = (n'(s),7'(s)) = = (n(s),7"(s)) = —k(s).
So,
n'(s) = —k(s)7'(s)
Thus,
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Definition 2.9. A parallel curve of v is a curve of the form
() = y(t) + rn(t), reR.

where 7 is the unit normal vector field of v

Proposition 2.3. Parallel curves have the same evolutes.

Proof. We show that parallel curves have the same normal lines.

Gr(t),n(t)y = Cy(t) + rn(t),n(t)) = 0.

Example 2.4. Consider a parabola

Then
0= (). 0

G)nt)y =2, [¥(0)]° =1+ 46

Therefore, the evolute is given by

|
N
N O
~_

3

=

|

N

\Q.

=
VRS
=
~
N~

and

. T
o0 =10+ gz @ = (47

which is a semicubic parabola.
Note that it has a cusp at the point where the parabola has maximal curvature.

Discrete evolutes Let v:7Z > I — R? be a regular discrete curve.

» We can define its vertex evolute as the discrete envelope of adjacent edge normal lines.
The vertex evolute consists of the centers of the vertex osculating circles.

» Alternatively, we can define its edge evolute as the discrete envelope of adjacent vertex
normal lines. The edge evolute consists of the centers of the edge osculating circles.
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Figure 9. Top: Smooth and discrete curve and its tangent lines. Bottom: Smooth and
discrete curve and its evolute.

2.5 Involute

Definition 2.10. An involute of a regular curve ~ is a curve orthogonal to the tangent
lines.

Thus, an involute I' : I — R? must satisfy

L) = 2(0) + al)r(t),  T(t) = %

with some o : I — R and
0= (P(1),4(t) ) = G1),4(8) + alt)r(t) + a7 (1) = 5B + a(t) |31,

Thus,
a(t) = —[y(@)]
We obtain

Lu(t) = () - % [ rnan =~ @w ~ s(a)),

[ (#

where s is the arc-length of .
Thus, in terms of arc-length parametrization the involute is given by

La(s) = 7(s) =7/ (s)(s — a).

The distance of the involute to the corresponding curve (along the tangent line) satisfies
ITa(s) = ()l = |s —al.
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» Thus, the involute is the locus of a point on a piece of taut string as the string is either
unwrapped from or wrapped around the curve starting at the point v(a).

» Equivalently, it is the locus of the point on a straight line as it rolls without slipping
along the curve.

Proposition 2.4. Let v be a reqular curve.

(i) The involute is reqular at points where k(t) # 0 and t # a.
(ii) The normal lines of the involute are the tangents of .
(iii) The evolute of the involute is 7.

(iv) The involutes are parallel curves.

Proof
(i) Ta(s) =9'(s) =7"(s)(s = a) =7'(s) = —(s — a)r(s)n(s).
(ii) By definition of the involute (I".(s),7'(s)) = 0.

(iii) Follows from (ii).

(iv) Tu(s) = Do(s) + ay/'(s), where 7/(s) is the unit normal at To(s).

]

Remark 2.1. The one-parameter family of tangent lines of a curve together with its one-
parameter family of involutes form an orthogonal coordinate system.

Example 2.5 (Involutes of a circle). Consider a parametrized circle of radius r > 0

V() =1 (Zf;g;) C tefo2n].
Then '
i(t) =r (;j;?ﬁ?) o) =0l =r st) - s(a) = r(t - a).

Thus, the involutes of v are given by

Ta(t) = 7 (COS@ —(t—a) sin(t))

sin(t) + (t — a) cos(t)
This is a common shape for the teeth of gears, the so called “involute gears”.

Example 2.6 (Involute of a semi-cubic). Consider the semicubic parabola, we obtained
as the evolute of a parabola. We reconstruct the parabola as one involute of semicubic

parabola.
—4t3
y(t) = ( ) , t>0.
5 + 3t

Then

0= (T )o Ol -onTEaE [ J01d - S0 ai -

N —
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For simplicity, we add a constant of integration % and obtain

—4t3 1 —12t%\ 1 9\ 3 t
Io(t) = 4+ — —(1+44t%)2 = ,

which is a parabola.
Note that the other involutes of the semicubic parabola are not parabolas.

Discrete involutes We can derive constructions for discrete involutes from the property
that evolute of the involute should be the original curve, i.e., the tangent lines of the
original curve should be the normal lines of the evolute.

Let v:Z < I — be a regular discrete curve.

» Choose some starting point I'y € R?
» Obtain I'y,; from I'y by reflection in tangent line T}, of ~.

Then T} is the edge normal line of I" at the edge (k, k + 1).
Alternatively:

» Choose some starting edge tangent line Ty = Iy v I'y.
» Obtain Tk+1 from 7T}, by reflection in tangent line T} of 7, and thus, I'y,; = Ti. N Thiq.

Then T}, is the vertex normal line of I at the vertex k + 1.

Figure 10. Top: Smooth and discrete curve and its normal lines. Bottom: Smooth and
discrete curve and one of its involutes.
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3 Conics and quadrics

While projective subspaces are described by linear homogeneous equations, we now add
the objects that are described by quadratic homogeneous equations.
Conics or conic sections are planar sections of a cone of revolution (or a cylinder)

hyperbola

Figure 11. Ellipse, hyperbola, and parabola as a planar section of a cone.
It can be shown that conic sections correspond exactly to the sets of solutions of
quadratic equations
{(377 y) € R? ‘ G2’ + 2q21y + q22y° + 20137 + 2q23Y + G33 = 0-}

Introducing homogeneous coordinates z = £ y = 22 the (non-homogeneous) quadratic
T3 xs3
equation in 2 variables can be written as a homogeneous quadratic equation in 3 variables

quTT + 20127179 + GaaTs + 2q137173 + 2qo3ToT3 + g3375 = 0,

or equivalently,

q11 12 13 T1
b(z,z)= (21 @ x3)| G2 G2 @3 r2 | =0
q13 423 Q33 T3
;’Q

where @) is a symmetrice matrix, i.e. QT = @, and b is a symmetric bilinear form on R3
b:R®xR® - R.

Example 3.1. An ellipse is a conic section. In normal form in R? (up to a Euclidean

transformation) it is given by
2 2
{(fv,y) € )t
Z2

Introducing homogeneous coordinates x = £, y = 22,
z3 x3
homogeneous quadratic equation

we can write its equation as a

= x

G B 1! s | =0

2 Tg =\ 21 T2 I3 b2 Lo | =
-1 T3
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3.1 Bilinear forms

Let V' be a vector space over R of dimension n + 1.
A bilinear form on V is a map

b:VxV-R

which is linear in both arguments.
Let ey, ...,e,41 be a basis of V. Then the matrix Q = (g;;) € R+D>(+D)

¢ij = blei, e)) fori,j=1,....,n+1

is called the representative matrixz, or Gram matriz, of the bilinear form b.
For two coordinate vectors z = Y. z;e;,y = >, y;e; € V we have

b(z,y) = =TQy.

A change of coordinates 7 = Az with A € GL(n + 1) acts on the representative matrix
as

Q=ATQA
Symmetric bilinear forms and quadratic forms
A bilinear form is called symmetric if
b(x,y) = by, x) for x,y eV,
or equivalenty, if its representative matrix is symmetric
Q" =Q.
The space of symmetric bilinear forms Sym(V') is a linear subspace of dimension

dim Sym(V) = -+ 1)2(” *2)

A symmetric bilinear form b(-, -) defines a corresponding quadratic form b(-)
b(x) == b(x, x) forz e V.
Vice versa, a quadratic form uniquely determines its bilinear form (polarization identity)
20(x, y) = bz +y) — b(x) — b(y),

and thus, the vector spaces of symmetric bilinear forms on V' and quadratic forms on V'
are isomorphic.

3.2 Quadrics

Definition 3.1. Let V be a vector space over R of dimension n + 1, and b a non-zero
symmetric bilinear form on V. Then the zero set

Q= {[z] € P(V) | b(x) = 0}.

is called a quadric in P(V).
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Example 3.2. The quadratic form

b(x) = xf +x§ —x§

defines a quadric (conic) in RP?
Q, = {[z] e RP? | b(z) = a7 + 25 — x5 = 0}
In affine coordinates x3 = 1 this is a circle
o]+ a3 = 1.
A non-zero scalar multiple of b defines the same quadric:

Qp = O for A # 0.

Remark 3.1. For some very degenerate images, e.g. if Q, is empty, the reverse statement is
not true over R. However, if we either exclude these cases, or consider the complexification
of real quadrics, it holds that

Qy = OF < b=Ab for some \ # 0.
Example 3.3. The quadratic forms
b(x) = 2% + 25 + 23, b(z) = 2 + 422 + 3,
both define empty conics in RP?
Q=0=0
even though b # \b for all A # 0. However, the point [1,4,0] is contained in QF, but not
in Q%)C. Thus,
Qy #+ Q.
Thus, we can identify the space of quadrics with the projective space P Sym(V'). Its
dimension is given by
(n+1)(n+2)

dim P Sym(V) = dimSym(V) — 1 = 5 —-1= n(n2—|—3)

and the coefficients
qij = b(es, €;5), for j <

can be taken as homogeneous coordinates on the space of quadrics.

Determining a quadric through given points

For a point [z] € P(V), the quadrics represented by [Q] € P Sym(V') that contain this
point are given by the equation

n+1
2TQx = Z x;xjq;; = 0,
ij=1

(n+1)(n+2)

which is an equation in the variables ¢;; and determines a hyperplane in the

space of quadrics P Sym (V). Similarly, ("Héw — 1 points determine a system of linear

equations, which has a one-dimensional solution space (if all equations are linearly inde-

pendent). Thus, generically, W

them.

— 1 points uniquely determine a quadric though

Example 3.4. In RP5, five points (no four of which are on a line) determine a unique
conic.
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Singular points of a quadric

A point [z] € P(V) is called a singular point of the quadric Qy, if x € ker b, where
rekerb={xeV |b(zx,y)=0foralyeV},
or equivalently, in homogeneous coordinates, if

Qxr = 0.

Thus, if tk ) = k the singular points of O, are contained in a projective subspace of
dimension n — k, given by

P(kerb).

The quadric Q,, is called non-degenerate if it has no singular points, or equivalently, if
() has full rank.

Example 3.5. The quadratic form on R3
b(z) = 2] — 25 = (21 — 22) (21 + T2)
defines a conic in RP? consisting of a pair of lines

sz{[x]eRP2|b(x)=x%—:r§=0}
:{[g;]eRPQ|g:1—x2:0}u{[x]eRP2‘:Bl—a:g:()}
= {[\ £\, 1] e RP? | A, pe R}

It has one singular point given by [0,0, 1]. Thus it is a degenerate conic.

Lines on a quadric

Lemma 3.1. If three collinear points are on a conic, then the conic contains the whole
line.

Proof. Exercise. O

3.3 Projective classification of quadrics in RP"

Two quadrics @, Q < RP” are called projectively equivalent if there exists a projective
transformation f : RP"™ — RP™ such that

or equivalently, if there exists F'€ GL(n + 1) and A € R, A # 0, such that
Q = AFTQF,

where Q and Q are representative matrices for Q and Q, respectively. Note, that f =
[F7].
By Sylvester’s law of inertia, there exists an F' € O(n + 1) such that
Q = FTQF = diag(M, ..., Apy i1, - - -5 15,0, ..., 0)
~—

—
t
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where,
Ai>0, <0, r+s+t=n.

Thus, after applying this transformation the equation for the quadric is of the form
MTD A+ NI A a2 =0

By applying a second transformation

— dine( L 11 1
F—dlag(m,...,m,m,...,m,&...,l)
t
we obtain .
Q = diag(1,...,1,-1,...,-1,0,...,0),
;\/_/H_/Rtf__z

or as an equation for the quadric

2 2 _ .2 2 _
i+ .. tr—x g+ -3, = 0.

The tuple (r, s,t), also written as

(+...+_..._O...O)’
—— ——

T s t

is called the signature of the quadric. We define the signature up to the following equiv-
alence
(T7S7t> ~ (S7T7 t)?

and obtain the following classification result.

Theorem 3.2. Two quadrics in RP™ are projectively equivalent if and only if they have
the same signature.

Quadrics in RP!
» (++) empty quadric. By complexification these are two complex conjugate points.
» (+—) two points.
» (+0) one (double) point.
Quadrics in RP? (conics)
» (+ + +) empty conic. By complexification this is an imaginary conic.
» (+ + —) owval conic. Its normal form is given by
i+ ri— 22 =0

In affine coordinates this conic is an ellipse, a hyperbola, or a parabola. Indeed, if we
choose x3 = 1, the equation becomes the equation for a circle

2, .2 _
]+ a5 =1
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If we choose coordinates y; = x1,y2 = x3,y3 = T2 and y3 = 1, the equation becomes
the equation for a hyperbola
Y1 — yg =1

If we choose coordinates y; = x1,ys = T2 + x3,y3 = 3 — T2 and y3 = 1, the equation
becomes the equation for a parabola

Ya.

Ny
S
I

projective

W

projective
W parabola

ellipse

QO

line mapped
to in finilygrojective

W hyperbola

&)

Figure 12. Projective transformations mapping a circle onto an ellipse, a parabola, or a
hyperbola.

» (+ + 0) point. By complexification these are two imaginary lines that intersect in a

real point.
» (+— 0) pair of lines.
» (+00) one (double) line.

Remark 3.2. Note that in RP? only degenerate conics may contain lines.
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Quadrics in RP3

non-degenerate quadrics:

signature

affine signature
affine type | affine normal form | picture projective normal form
o (+++-)-
ellipsoid Pttt =1 Q (+++-)
2+ i+ ai— a3 =0
<
2-sheeted (+++-)+
hyperboloid | 22 +y? — 22 = —1 O
elliptic (+++-)p
paraboloid z=a?+y? O
1-sheeted (++—)-
hyperboloid 2yt -2 =1 (++—)
P4 a3 —ai—25=0
hyperbolic (++—)p
paraboloid 2= a2 — 9P
empty (++++)+ (++++)
(imaginary) 1’2 + y2 + Z2 - _]_ I% + ZL’% + x% + ZL’Z - 0

Table 2. Affine types of non-degenerate quadrics in R? and the corresponding projective

types in RP3.
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degenerate quadrics:

affine signature

signature

affine type affine normal form | picture projective normal form
cone 9 (+ ; _02)0
r+y —2z2=0 (++ —0)
4 ai—2i=0

elliptic (++-0)-
cylinder 4yt =1
hyperbolic ++—0)+
cylinder -y =1
parabolic (++—-0),

cylinder z = x? @
one point (+ 4+ +0)o

(imaginary cone)

iyt 4+22=0

(++ +0)
4 ay+a3=0

empty (+++0)+
(imaginary cylinder) 1‘2 + y2 - 1
two intersecting (+—00),
planes 2 —22=0 (+—00)
22 —122=0
two parallel (+—00)_
planes 2? =
one plane (+—00), Q
(and one at infinity) xr = O
one line (2+ + ;)0)0 (+ + 00)
(two intersecting imaginary planes) X + 5 = 0 m% + x% _ O
empty (++00)+
(two parallel imaginary planes) .’L‘Q - 1
000
one “double” plane (;2 _ ())0 Q E:Q—OEOO)
1=
empty (+000) +
(one “double” plane at infinity) 1 - 0
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Remark 3.3. In RP? the non-degenerate quadrics of signature (++--) contain lines.

3.4 Affine classification of quadrics in R" < RP"

Two quadrics Q, Q < RP" are called affine equivalent if there exists an affine transfor-
mation f : RP™ — RP™ such that )
f(Q) =2

or equivalently, if there exists F' € GL(n + 1) with

F= (%‘%) ., AeGL(n),beR",

and a A € R, A # 0, such that .
Q = NFTQF.

S |q .
QZ(#), S e Sym(n),qe R", 0 € R,

ATSA | AT(Sb+q)
TOF =
Fror < (0TS +q)A|[bTSb+2¢b+0 )’

Thus, in a first step, we can use A to bring S to the form

With

we obtain

S =diag(1,...,1,-1,...,—1,0,...,0).

~
k

Case 1: There exists b € R™ such that Sb+ ¢ = 0. Then ) can be brought to the form

Q= (%%) S = diag(1,...,1,-1,...,-1,0,...,0),0 = 0,1, —1.

Here 0 = 0,1, —1 can be achieved by rescaling ) and then using A to rescale S. If (r, s, t)
is the projective signature of Q, we write the affine signature in this case as

(717 8’ t)o’
with
(r,s,t)y ~ (s,7,t) 4

Case 2: There exists no b € R” such that Sb+ ¢ = 0. Then S must be singular, i.e.,
k < n. Now we apply the following steps:

» We choose b € R™ such that the first k& components of Sb + ¢ vanish.
» We choose A such that AT(Sb + q) = e,, without changing S.

» We choose b = —3e, to eliminate o.
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Thus, () can be brought to the form

A

S 0

Q=1,]0 . S =diag(1,...,1,—1,...,—1,0,...,0)
1

1
0
If (r,s,t) is the projective signature of Q, we write the affine signature in this case as
(r,s,t)p

with
(r,8,t)p ~ (s,7,1)p.

Note that the block (9 ) corresponds to a projective signature of (+—). Thus, an affine
signature (7, s,t), is only possible with r > 0 and s > 0.

Theorem 3.3. Two quadrics in RP™ are affine equivalent if and only if they have the

same affine signature.

3.5 Signature of subspaces

Let @ < RP" be a quadric, and K = P(U) < RP" a projective subspace. Then the
signature of K (with respect to Q) is the signature of Q restricted to K:

{lz] € K | b(x) = 0}

Thus, it is determined by the restriction of the symmetrice bilinear form b to U.

Signature of a point A quadric @ < RP” separates RP"™ into two connected compo-
nents. For point [x] € RP" the signature can take 3 possible values:

» (+) if b(z) > 0. The point lies on one side of Q.
» (=) if b(z) < 0. The point lies on the other side of Q.

» (0) if b(z) = 0. The point lies on Q.

Signature of a line A line / € RP" can have the following possible signatures:

v

(++) The line does not intersect Q.

v

(+-) The line intersects Q in two points.

v

(+0) The line intersects Q in one point.

v

(00) The line is contained in Q.

If the line is given as the span of two points ¢ = [z] v [y], the representative matrix
for b on the corresponding subspace is given by
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Note that its determinant

det Q = b(z, 2)b(y, y) — bz, )’

is the product of its eigenvalues. Thus, if we exclude the case (00), which corresponds to
@ = 0, the other three cases can be distinguished by the sign of the determinant. The

line ¢ has signature
(+-) < det@ <0,

(++) = det Q > 0,
(+0) & detQ = 0.

3.6 Tangent lines and tangent cones

Let @ < RP™ be a quadric.
A tangent line of Q is a line that intersects Q in exactly one point. We have established
that these are the lines of signature (+0), and can be characterized in the following way.

Lemma 3.4. A line [z] v |y] not contained in Q is a tangent line of Q, if and only if

b(x,x)b(y,y) — b(z,y)* = 0.

Let X = [z] < RP™\Q a point not on Q. Then the tangent cone to Q from P is
defined as the union of all tangent lines to Q that contain the point P:

cx=|J  £={lwleRP" | c(y) = blx,2)b(y,y) — b(x,y)* = 0}.
V4 tanéii({of Q

Note that ¢ defines a quadratic form, and thus Cx is a quadric itself.

By definition, every tangent line has a point on O, which we call the point of tangency.
Thus, to obtain the tangent cone it is sufficient to join X with all points of tangency. By
Lemma 3.4, for a point [y] € Q on Q, the line [z] v [y] is a tangent line if and only if

b(z,y) = 0.
Thus, the points of tangency of all tangent lines through X lie in a hyperplane,
Xt ={[y] e RP" | b(z,y) = 0}

called the polar hyperplane of X (with respect to Q). Thus, we can write the tangent

cone in the following way
cx= |J Xvv
YeQn X1t

Example 3.6 (Shadow of an ellipsoid).
What form does the shadow of an ellipsoid have?

Consider an ellipsoid £ ¢ R?* ¢ RP? (an affine image of a sphere). Let X be a point
outside £, and K a plane. The shadow of the ellipsoid cast onto K by a light source in X
is bounded by the intersection with (one half of) the tangent cone Cx. Thus it is a conic
section.
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Which type of conic section can we obtain? Can it be a hyperbola?

The type of conic section (ellipse, parabola, hyperbola) depends on how many points
of intersection (0, 1, 2) it has with the line at infinity on K, or equivalently, how many
generators of Cx intersect K in the line at infinity.

Generally, a line intersects the plane K in the line at infinity, if it is parallel to K.
Thus, consider the plane Kx through X parallel to K. Then the number of generators of
Cx in Kk is the number of intersection points of Cx n K with infinity.

Consider the two planes K7, Ky parallel to K touching £ in one point. This separates
RP™ into two regions, one containing £, and one not containing &.

» If X is in the region not containing &£, then Cx n K is an ellipse.
» If X is in the region containing £, then Cx n K is a hyperbola.

» If X lies in K7 or K5, then Cx n K is a parabola.

Figure 13. Shadow of an ellipsoid.

3.7 Polarity and tangent planes

Let Q@ < RP" be a quadric of signature (r, s,t).
For a point X = [xz], its polar hyperplane (with respect to Q) is given by

X7 = Alpl e RP" [ bl ) = O
If the point X has signature
» (+), then X* has signature (r — 1, s,1).
» (=), then X+ has signature (r,s — 1,).

» (0), then X* has signature (r — 1,s — 1, + 1).
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For the cases (+) and (-), we have established, that the intersection of X+ with Q
consists of all points common with the cone of contact Cx.

In the case (0), every point Y € X' that does not lie on the quadric is a tangent line
of Q. Thus for a point X € Q on the quadric, the polar hyperplane is the plane containing
(and spanned by) all tangent lines though X, which we call the tangent plane of Q in the
point X.

Example 3.7 (Tangent planes of a hyperboloid). Consider a one-sheeted hyperboloid
H < RP3, ie. a quadric of signature (++--). Then a tangent plane X in any point
X € H has signature (+-0). Thus, the restriction of H to X~ consists of two lines.

In particular this means, that a one-sheeted hyperboloid, contains two lines through
every point. In fact, it is a doubly ruled surface, and contains two families of lines, called
its generators.

Example 3.8 (Projection of a generator).
What is the shadow of a generator of a hyperboloid?

Consider a one-sheeted hyperboloid H <= RP?, a generator / < H, and a center of
projection X not on H. We consider the projection to X*.
The projection of H to X is given by a conic section

D=CxnXt=HnX"t

of signature (++-). Its affine type can be determined in a similar way to Example 3.6.

Denote the central projection of £ to X+ by £. The line ¢ intersects X+ in some point
A € D, which is fixed under the projection to X+. Thus, A € /.

Assume there exists another point B € ¢ such that its projection B lies on D. Then
the line X v B is a tangent line of 7. On the other hand, this line intersects  in the two
distinct points B and B, which is a contradiction. Thus, the projection ¢ only intersects
D in A, and therefore is a tangent line of D.

Note that projection to any other plane preserves this property.

Figure 14. Shadow of the generators of a hyperboloid.
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Differential geometric tangent plane Let us compare the notion of tangent plane
that we have introduced for quadrics to the corresponding notion from Differential Ge-
ometry. In affine coordinates, we can view a quadric as a submanifold of R" given as a
level set of the function

0=2"Qz = (uT 1) (TS;‘%) (?) =uTSu+ 2¢"u+ o = f(u)

Then the normal vector of the tangent plane at some point uy € R™ with f(ug) = 0 is
given by the gradient
Vuf(ug) = 2Suy + 2q.

Thus, the tangent plane at ug € R is given by
{ueR" | (Sup+ q,u —ugy = 0}
With
(Sug + q,u —ugy = ug"Su+ q'u — ugTSug — qTug = ug"Su + q'u + qTug + o

this coincides with the polar plane at uq in affine coordinates.

4 Pencils of quadrics

Definition 4.1. A projective subspace in the space of quadrics P Sym (V') is called a linear
system of quadrics. A linear system of quadrics is called degenerate if it solely consists of
degenerate quadrics.

All quadrics through k generic points in P(V) form a linear system of quadrics of
codimension k.

Example 4.1. The space of conics in RP? is a 5-dimensional projective space
P Sym(R?) =~ RP°.

In homogeneous coordinates [x]| = [x1, T2, 3] on RP? and the corresponding homogeneous
coordinates Q = [q11, 22, 433, ¢12, @23, ¢13] on the space of conics the equation for the point
[z] lying on the conic Q is given by

Chﬂ% + Q225U§ + CI3333;2>, + Q127172 + @a3T2x3 + q13v13 = 0.

Let X1, X5, X3, X, € RP? be four points in general position. Consider the set P of all
conics containing these four points. To explicitly describe this family of conics we simply
the corresponding equations by choosing homogeneous coordinates such that

1 -1 -1 1
-t =] x-[H] x4
Then the representative matrices ¢ = (¢i;)1<i<j<s for the conics in P must satisfy
i1 + Go2 + G33 + 2q12 + 223 + 2q13 = 0
Q11 + Go2 + G33 — 2q12 + 2q23 — 2q13 = 0

qi1 + Go2 + q33 + 2q12 — 223 — 2¢13 =0
q11 + Go2 + q33 — 2q12 — 2q23 + 2q13 = 0
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By subtracting equations we obtain

G2+ q3=0, q3—q3=0, qio—q3=0,

which implies ¢1o = ¢13 = 23 = 0. By adding up all four equations we additionally obtain

i+ a2 +q33 =0

Thus, every conic in P is given by

for some [\, 1] € RP!, which describes a one-dimensional projective supbspace in RP®
and thus a pencil of conics. The equations of the conics in this pencil are given by

Mat = a3) + pas — 25) = 0.

A linear system of quadrics of dimension 1, such as the one considered in Example 4.1,
is called a pencil of quadrics.

Definition 4.2 (pencil of quadrics). A one-parameter family of quadrics in RP™ that
corresponds to a line in the space of quadrics P Sym(V) is called a pencil of quadrics.

A pencil of quadrics is called non-degenerate if not all quadrics in the pencil are
degenerate.

Any two quadrics Qq, Qs € P Sym(V') span a pencil, which is given in homogeneous
coordinates by
Q1 v Qo = [AQ1 + pQ2][ jerpr -

Lemma 4.1. A point which is contained in two quadrics of a pencil is contained in every
quadric of that pencil.

Proof. Exercise. O

Definition 4.3 (base point). A point which is contained in two (and thus every) quadric
of a pencil of quadric is called a base point of that pencil.

Example 4.2. The pencil of conics in Example 4.1 has four base points.

Degenerate quadrics of a pencil

The degenerate quadrics of the pencil are characterized by the equation

det(AQ1 + 1Q2) = 0.

If the pencil is not degenerate, we may assume ()5 is non-singular and set A\ = 1. This
leads to

det(Q1 + pQ2) = 0,

which now is a polynomial equation in p of order at most n + 1. Note that over C it has
exactly n + 1 solutions counting multiplicities.
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Proposition 4.2. A non-degenerate pencil of quadrics contains at most n+ 1 degenerate
quadrics. Quver C the multiplicities of the degenerate quadrics add up to n + 1.

Example 4.3. The degenerate conics in the pencil of conics from Example 4.1 are given
by

2 2 _ 2 2 _ 2 2 _

which each consists of a pair of opposite lines from the complete quadrangle defined by
the four base points. They all have rank 2 and multiplicity 1.
Note that the diagonal triangle

a<fi]. s=[i). e[

of the complete quadrangle of base points is a polar triangle for all conics of the pencil,
i.e., each point is the pole of the opposite line.

Some geometric properties of pencils

Proposition 4.3. Let P be a pencil of quadrics. Let X be a point and H a hyperplane
containing the point X. If two quadrics from P are tangent to H in X, then X is a base
point of P and all quadrics from P are tangent to H in X.

Proof. Exercise. O

Example 4.4. Not every pencil of conics is given by all conics through four given points
(such as Example 4.1) as this example shows.

Let X, X, € RP? be two (distinct) points and /1, fs = RP? two (distinct) lines such
that X lies on ¢; and Xj lies on ¢5. Consider the set P of conics which are tangent to ¢,
in X7 and to /5 in X,. We will show that P is a non-degenerate pencil with base points
X1, X5 and two degenerate conics, one of rank 2 and multiplicity 2 and one of rank 1 and
multiplicity 1.

Choose homogeneous coordinates such that

5=[i] =[] a=[i] -]

The two tangency conditions are given by
1 -1 -1 1
e())~ (7). e(y)~(1):

iz +qa3 =0
Q12+ g3 =0
11 +g33 +2q13 =0
Q11 — g33 + 213 = 0,

17*
ol
1

which yields

or equivalently,
q12 = q23 = q13 = 0, qd11 = q33.

Thus, all conics from P are given by

A

o O

Q =

oxr O

0
0
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for some [\, u] € RP!. The equations of the conics in this pencil are given by
a2 — 23) + pxi = 0.
Its degenerate quadrics are given by
x% — x% =0,
which has multiplicity 1 and consists of the two lines /1, {5, and
x9 =0,
which has multiplicity 2 and consists of the (double) line X; v X5.

Proposition 4.4. Let P be a pencil of quadrics. Let H a hyperplane tangent to two
quadrics of P in the two points X, Y. Then X and Y are conjugate with respect to all
quadrics in the pencil.

Proof. Exercise. O

4.1 Classification of pencils of conics

A classification of pencils of conics can be achieved by investigating base points (number
and multiplicities).

Proposition 4.5. A non-degenerate pencil of conics has at most four base points.

Proof. Assume the pencil has five base points. As stated in Example 3.4, five points (no
four of which are on a line) determine a unique conic. If three of them would lie on a line,
by Lemma 3.1 and Lemma 4.1, the entire line would be contained in every conic of the
pencil, which contradicts that the pencil is non-degenerate. O

Determining the base points of a pencil of conics

Let
P = Q1 % Q2

be a non-degenerate pencil of conics. Since P is non-degenerate we may assume Q; is
non-degenerate and choose homogeneous coordinates in which its equation is given by!

r] — wox3 = 0.
The conic Qj is given by

quTT + @oo3 + q3375 + Q1aT1T2 + Ga3TaTs + Q37173 = 0.

The point
0
]
is the only point of Q; on the line x5 = 0. We can further assume that?
0
|:(1)] ¢ Q27

!This is possible since every pencil contains at least one conic of signature (++-).
2This is possible since any three points on a conic can be mapped to any other three points while
preserving the conic.
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or equivalently,
q22 # 0.

Thus, we can introduce affine coordinates

T T
rT=— Y= —
L3 T3
without having any base points on the line at infinity. In affine coordinates the two
equations for Qq, Oy are give by

y =2’

qur® + qa2y” + 2q121y + 223y + 2137 + g3z = 0.

(6)

Substituting the first equation into the second we obtain
G222 + 2q127° + (qu1 + 2q23)7° + 2132 + g3z = 0. (7)

and every solution of (7) corresponds to exactly one solution of (6). One can assign the
multiplicities of the roots to the base points of the pencil.

Over C equation (7) has exactly 4 solutions counting multiplicities. Thus, for a non-
degenerate pencil in CP? there are exactly five possible cases, which we denote as follows:

(I) four simple base points (1,1,1,1)

(IT) one double and two simple base points (2,1, 1)

(III) two double base points (2,2)

)
)
(IV) one triple and one simple base point (3,1)
(V) one quadruple base point (4)

Using this one can prove the following classification result for pencils of conics in CP?.

Theorem 4.6. Two non-degenerate pencils of conics in CP? are projectively equivalent
if and only if they are of the same type.

Furthermore, the degenerate conics, their multiplicities, and a normal form for each
type are as stated in Table 15.

\ Type\ Base points \ Deg. conics \ Normal form \

I 1,1,1,1 X, X, X Nzt —a3) +p(zs —23) =0
I1 2,1,1 2%, X Nz —23)+pae(re—23) = 0
1 | 2,2 21I, x Na?—23) + pas =0

IV |31 3x Na? — zox3) + priae = 0
\ 4 3l Nz? — zomw3) + px3 = 0

Figure 15. The classification of pencils of conics in CP?. The two types of degenerate
conics are two lines (x), and a double line (]|).
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Figure 16. Primal pencils of types I-V and the corresponding dual pencils.

Hidi

Remark 4.1. From Table 15 we see that the types of pencils can also be characterized by
the number and rank of their degenerate conics.

By complexification of all conics in a pencil the number of base points (counting
multiplicities) of a real pencil is still 4. Yet some base points may be imaginary, which
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always come in complex conjugate pairs.

multiple real cases:

four simple real base points (1,1,1,1)

two pairs of simple imaginary base points ((1,1),(1,1))

one double and two simple real base points (2,1, 1)

two simple real base points and a pair of simple imaginary base points (1,1, (1,1))

Thus, some of the complex cases split into

two double real base points (2, 2)

)
)
)
)
(ITb) one double real base point and a pair of simple imaginary base points (2, (1, 1))
)
) a pair of double imaginary base points (2, 2)

) one triple and one simple real base point (3, 1)
) one quadruple real base point (4)

Similarly, this leads to the following classification result for pencils of conics in RP2.

Theorem 4.7. Two non-degenerate pencils of conics in RP? are projectively equivalent
if and only if they are of the same (real) type.

Furthermore, the degenerate conics, their multiplicities, and a normal form for each
type are as stated in Table 17.

‘ Type‘ base points ‘ # real ‘ Deg. conics ‘ Roots ‘ Normal forms ‘

Ia 1,1,1,1 4 X, X, X 1,1,1 Mzt —23) + p(z —23) =0
Ib 1,1,(1,1) |2 X,0,0 1,(1,1) M2 + 23 — x3) + proxs

Ic (1,1),(1,1) | 0 X, ® 1,1,1 N2+ 23+ 23) + pras = 0
IMa |2,1,1 3 2%, x 2,1 Mz —23)+pze(re—23) = 0
b | 2,(1,1) 1 e, x 2,1 A2 + 23) + pwaxs =0
la | 2,2 2 211, x 2,1 Max? — x2) 4+ prd =0

b | (2,2) 0 21l ® 2,1 ANt +a3) + pai =0

vV |31 2 3x 3 Ax? — xox3) + 129 = 0
\ 4 1 3l 3 A% — xox3) + pxs =0

Figure 17. The classification of real pencils of conics. There exist four different types of
degenerate conics. (x) Two real intersecting lines. (o) Two non-intersecting complex lines.
() Two complex conjugate lines which intersect in a real point. (|) A real double line.

4.2 Classification of pencils of quadrics

The classification of pencils of conics by number and multiplicity of base points as dis-
cussed in Section 4.1 is specific to the 2-dimensional case. In higher dimensions the base
points in general do not consist of a finite amount of points anymore, but constitute a
subvariety of codimension 2.
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Definition 4.4. Let P < P Sym(C"*!) be a pencil of quadrics. Let Qp, Qg be two
quadrics in P with representative matrices Q1, Qg € Sym(C"™!). Then we call QA+ Qq €
C[A]+Dx(+) o characteristic matriz of P.

A characteristic matrix uniquely determines its pencil together with the two quadrics
spanning it. Vice versa, two characteristic matrices

Ql)‘ + QOJ and Ql/\ + QOJ

describe the same pencil if and only if

Q1 = aQ1 + cQo,
Qo = bQ1 + dQo,
with a,b,c,d € C, ad — bc # 0. And thus, the corresponding values of A are related by
_ aX+b
S+ d

i.e. by a 1-dimensional projective transformation.
Now consider a projective transformation f = [F] : CP" — CP™. It maps the pencil
P to f(P) by acting on the characteristic matrix Q1A + Qo as

FT Qi)+ Qo)F = FTQ,FA + FTQ,F.

Thus, two pencils P and P are projectively equivalent, i.e. related by a projective trans-
formation, if and only if there exist characteristic matrices A\Q + Qo and AQ; + Qo such
that @)1 and @y are simultaneously congruent to ()1 and @y, i.e.

Q1 =F'QiF,  Qy=FTQF

for some F' € GL(n+1,C). Note that this does not mean that for two projectively equiva-
lent pencils any pair of characteristic matrices is related by a simultaneously congruence.

For a classification, we should find a sufficient number of invariants of pencils under
projective transformations and under a change of characteristic matrices. Firstly note
that rank of a quadric is invariant under projective transformations, and thus degenerate
quadrics are mapped to degenerate quadrics. Furthermore, the multiplicities py, ..., s
of the degenerate quadrics given by

det(AQ1 + Qo) = c(A — A)" -+ (A = A", Zﬂz‘ =n+1
i=1

In the 2-dimensional case (classification of pencils of conics, see Table 15 and 17) it turns
out that rank and multiplicities of the degenerate conics is indeed sufficient to characterize
each equivalence class, and thus lead to a full classification. However, in higher dimensions
this information is still insufficient.

A closer investigation of how the rank drops for each degenerate quadric leads to
additional invariants.

Example 4.5.
(i) Pencil of conics with 3 degenerate conics:

A=A 00
)\Q1+Q0:< 8 A=X2 0 )

0 A=X3
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(iii)

The degenerate conic and their multiplicities are given by
det(AQ1 + Qo) = (A = A)(A = A2)(A = A3) =0
They have at most rank 2. Its non-trivial 2 x 2-minors are given by
(A= A)(A = A2), (A= A2)(A = A3), (A = A3)(A = A1),

and its monic greatest common divisor by 1. Thus, in particular, the pencil contains
no conic of rank 1.

Pencil of conics with 2 degenerate conics:

A=A 00
)\Q1+Q0:< 8 A=At 0 )

0 A=X
The degenerate conic and their multiplicities are given by
det(AQ1 + Qo) = (A = M)*(A—X2) =0
They have at most rank 2. Its non-trivial 2 x 2-minors are given by
A=2ADZ4L A=A\ = X2)

and its monic greatest common divisor by A — ;. Thus, in particular, for A = )\,
the rank drops down to 1.

Another pencil of conics with 2 degenerate conics:

0 X=X\ O )

AQr + Qo = (/\—0/\1 Lo

0 A=X2

The degenerate conic and their multiplicities are given by
det(AQ1 + Qo) = —(A = X1)2(A = \o)

They have at most rank 2. Its non-trivial 2 x 2-minors are given by
—A=2D)E A=A =), A — o

and its monic greatest common divisor by 1. Thus, in particular, the pencil contains
no conics of rank 1.

Definition 4.5. Let A € C[A\]("*V>*("*+1) he a square polynomial matrix of rank ¢ = rk A.
Then for k = 1,...,¢ the monic® greatest common divisor D;, of all k x k minors of A is
called the k-th minor divisor of A. We also define Dy := 1.

Lemma 4.8. D, divides Dy,q fork=0,...,0—1.

3Monic polynomials are polynomials with leading coefficient equal to 1.
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For the minor divisors of the characteristic matrix A@Q; + Qg of a pencil we obtain

Dpiy = (A=At (A= Ag)fomtt = cdet(AQq + Qo),
Dk — ()\ _ )\1>N1k~ .. ()\ _ )\S)Msk

Dk+1 — <>\ _ /\1>M1,k+1 .. (/\ _ )\S)us,k+1
Dy = 1.

The collection of multiplicities p;; are invariants for the pencil. By Lemma 4.8, the
sequences [i; n41, - - -, fio are decreasing, and instead of the multiplicities ;5 it is common
to use their differences

Vij = Wij — Hij—1,

which satisfy

n+1

Z Vij = Hin+1-
j=1
Together they constitute the Segre symbol of Q1 + Qo

[()\1 e 7V1,n+1>7 R <)\1 Vs1, 7Vs,n+1)]
where v;; equal to zero are omitted, and often so are the roots A;.
Example 4.6. The Segre symbols for Example 4.5 are given by:
(i) [(Ar:1
(i) [(A1:1,1), (A1 : 1)] which is abbreviated to [(11)1].
(iii) [(A1:1
(iv) The only other two possible Segre symbols in the 2-dimensional case are given by

[(3)] and [(21)], which leads to the 5 classes of pencils of conics in CP? as seen in
Section 4.1.

), (A1 : 1), (A3 : 1)] which is abbreviated to [111].

)
)
) ,2), (A1 : 1)] which is abbreviated to [21].
)

The Segre symbol may be used to obtain a full classification of pencils of quadrics in
CpP™.

Theorem 4.9. Two non-degenerate pencils of quadrics in CP™ are projectively equivalent
if and only if they have the same Segre symbol up to a (complex) projective transformation
of the roots.

In practice the Segre symbol of a given pencil may be obtained by the following normal
form.

Theorem 4.10. Let Q1, Qo € Sym(C") with Q, non-singular, and let

Nl
J = diag(Jy, ..., Jm), J; = ( .,A,i'zl>
A
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be the (complex) Jordan normal form of Q7 'Qo. Then Q1, Qo are simultaneously congru-
ent via a (complex) congruence transformation to

Q. = diag(FE,, ..., Ep),
Qo = diag(E1Jy, ..., Epdy),

1 Ai
E; = ) E;J; = _.{f-"l , dim F; = dim J;.
U Al

It turns out that the sizes of the Jordan blocks are exactly the v;; if the corresponding
Segre symbol. Note how the three pencils given in Example 4.5 are already in normal
form, and the Segre symbols can be read of immediately.

In a similar way, the following real version of Theorem 4.10 can be used for a classifi-
cation of pencils in RP".

where

Theorem 4.11. Let Q1,Qy € Sym(R™™) with Q, non-singular, and let
T = &ag(Tu, oy T Jrsts s Jon)

be the (real) Jordan normal form of Q1'Qo, where

are the Jordan blocks for real eigenvalues A1, ..., A, and

AT
S J2 A — (aj —bj> j —ra1 m
7 /{23 ) 9 bj aj ) gy

are the Jordan blocks for complex pairs of eigenvalues \; = a; + ib;, j\j =a;—1ibj,j =1+
1,...,m Then Q1, Qo are simultaneously congruent via a (real) congruence transformation
to

Ql = diag(lel, ce ,€TET, ET+1, e ,Em),
Qo = diag(e1 ErJy, .. e, Brdr, Epi1Jrsts ooy ),

where e = £1 (unique), and
1
.

The number of real eigenvalues together with the different possible signs ¢; account
for different real subclasses of each complex class with a given Segre symbol. In the real
classification one may also use invariants that encode the signature of the quadrics in the
pencil, such as the index sequence and the signature sequence.
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5 Fractals

Following [Fractal Geometry - Kenneth Falconer].

Example 5.1 (Cantor set). Start with the unit interval [0, 1] < R and consider a sequence
of of intervals, where in each step the middle third of all previous intervals is deleted.

Fy =10,1]
F = [Oa%]u[gvl]
F=[0.5]v 5 slviE sl vlE ]

This describes a decreasing sequence of sets, whose limit is called the Cantor set:

Q0
F=()F

k=0

It is an example of a compact uncountably infinite set without isolated points, that is
nowhere dense in [0, 1].

In the ternary (base 3) expansion of real numbers, deleting the middle third of each
interval corresponds to deleting the numbers containing the digit 1. Thus, an alternative
representation of the Cantor set is given by

0
F = {2 ai37"
i=1

Note that % has the ternary expansion 0.1 = 0.02 and therefore is captured by this
description. Furthermore, note that the limit set ' does not solely consist of boundary
points of intervals in the sequence Fj, e.g. i =0.02€ F.

Defining the following two similarity transformations

a; € {0,2}}.

1 1 2
51732 : [07 1] - [07 1]7 S1<I‘) = 533, Sg(l’)gl’ + =

each step may alternatively be written as
Fy, = Sl(kal) U SQ<Fk71)-
This describes a self-similarity which is still present in the limit:
F = S5,(F)uSy(F).

The total length of the intervals deleted is given by

o0

1 2 4 2k 1 1
T S —1.
3totar” ];)3’““ 31

2
3

Thus the length of F'is 0. While the interior of F' is empty, every point of F' is a limit
point.

The Cantor set exhibits the following properties, which are typical for “fractals”.
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(i) Defined in very simple ways, perhaps recursively.
(ii) Has a fine structure, with detail on arbitrary scale.

(iii) Too irregular to describe in traditional geometric terms (locally and globally).
Neither the locus of points that satisfy some simple geometric condition, nor the set of solutions

of any simple equation.
(iv) Some sort of self-similarity (possibly approximate or statistical).

(v) The size is not quantified by usual measures such as length.

The “fractal dimension” (defined in some way) is greater than the topological dimension.
Example 5.2. Some other simple examples:
(i) von Koch curve
(ii) Cantor dust

(iii) Sierpinski triangle

5.1 Iterated function systems

Definition 5.1. Let D < R" be closed. A map S : D — D is called a contraction if there
exists a 0 < r < 1 such that for all x,y € D

[S(z) = S(y)| <rl|z—yl.

Remark 5.1.
(i) Contractions are continuous.

(ii) If |S(x) — S(y)| < 7|z —yl|, then S is a similarity transformations, which is called a
contracting similarity.

Definition 5.2. An iterated function system (IFS) is a finite family of contractions
{Sl,...,Sm}, m = 2.
A non-empty compact F' < D is called an attractor (or invariant set) of the IFS if

F:O&w)

Remark 5.2. If the iterated function systems consists only of contracting similarities, then
the attractor is called a self-similar set.

Example 5.3 (Cantor set). Let D = [0, 1] and consider the two maps S1, 5 : D — D,

1 1 2
Sl(l') = -, SQ(l’)gx + g

Both are contracting similarities with = 5. Thus, {S1, S2} is an IFS.
The Cantor set satisfies
F = 5\(F)u Sy(F),

and thus is an attractor of the IFS.
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The fundamental property of IFS is that they determine a unique attractor, which is
usually a fractal.
To this end, denote
C={Ac D | # A compact},

and define the map
S:C—C, S(A) = Si(A).

=1

Then F € C is an attractor if and only if it is a fixed point of S, i.e.
S(F) =F.
Recall the Banach fixed point theorem:

Theorem 5.1 (Banach fixed point theorem). Let (X, d) be a non-empty complete metric
space and T : X — X a contraction. Then T has a unique fixed point x* € X.
Moreover, for any xog € X the fixed point is given by

r* = lim T"(xy).
k—o0

To use this theorem, we equip C with a metric.
Definition 5.3. For A, B € C the Hausdorff metric is given by
d(A,B) :=inf{0 >0 | Ac Bsand B c As}

where
As={xe D ||xr—a| <0 for some ae€ A} = UBg(a).
acA

is the (closed) 0-neighborhood of the set A.

Remark 5.3.
(i) The quantity d is well-defined since A, B are bounded and thus the infimum exists
(is finite).

(ii) The Hausdorff metric may also be given in the following way

d(A, B) = max {mahx d(a, B), max d(b, A)}

ae
where d(a, B) = mingep |a — b|.
Lemma 5.2. The Hausdorff metric d is a complete metric on C.

Proof. Exercise.
d is a metric. Show:

(i) d(A,B)>0and d(A,B) =0 <« A=1B.
(ii) d(A, B) =d(B, A).
(iii) d(A, B) < d(A,C) +d(C, B).

d is complete. Show:
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(iv) Every Cauchy sequence converges (in C).

Lemma 5.3. The map S is a contraction on (C,d).

Proof. Let 0 <r; <1,i=1,...,m, such that

For A,BeC

and thus

Thus, by the Banach fixed point theorem, S has a unique fixed point F' € C, and we
obtain the following theorem on IFS:

Theorem 5.4. Let {S1,...,Sn} be an IFS on D < R™. Then it has a unique attractor
F, i.e. an F €C such that

S(F)=F.
Moreover, for any E € C
F = lim SH(E).
—00

We make the following observations:

» In every step the sequence S*(E) provides a better approximation of the attractor:

d(S*(E), F) = d(S*(E),S(F)) < cd(S*Y(E),F) < --- < Fd(E, F),

(E)7

1k

Sk(E): U Silo"'os'

which is the union of m* sets.

» To visualize an approximation of the attractor, each of the m* sets of S*(E) may be
drawn fully, or a representative points S*(x() with 2y € E may be visualized.

» To obtain a statistical approximation of points in the attractor, we may draw the
sequences (i1, ...,4) randomly. Then the sequence of points x; = S;, o --- 0 S;, (z0)
may be drawn from a certain term onwards.
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» If we chose an E € C with S(F) < E, the sequence S*(E) is a decreasing sequence of
sets with limit and thus

k—o0

F = lim S*(E) = ﬁ SH(E).

Then for any x € F' there exists a (not necessarily unique) sequence (i, .. .,7) such
that z € S;, o---05;, (F). This sequence provides a natural encoding for = by

0
T = ﬂSil o---08; (F).
k=0

5.2 Fractal dimensions

For d € N consider a compact smooth d-dimensional submanifold M of R” (a curve for
d = 1, a surface for d = 2, ...) For § > 0, let N5 be the (smallest) number of d-boxes
(cubes of side length ¢) it takes to fully cover M.

If we halve the side lengths of the cubes (considering g—boxes), we expect the number
of boxes it takes to cover M to increase approximately by a factor 2¢. More generally, we
expect the number N5 to behave like

c
Ns ~ 5 (8)
in the limit 6 — 0, where ¢ is some constant.

The dimension d can be recovered from (8) by taking logarithms

log N5 ~ log ¢ — dlogé,

and the limit 6 — 0
log Ns  logc log N

~

logd  logd logd ~
The behavior of Nj given by (8) may equivalently be described by (without the need
of the constant c)

if d
Npo® {7 BT (6 — 0).
0 ifs>d

Thus, the function
f(s) = (lsir% N5o®

jumps from oo to 0 at the value s = d of the dimension of M.
We may use these ideas to define fractal dimensions for general (bounded) sets F' < R™.
To this end, let us generalize first from covers by d-boxes to general d-covers.

Definition 5.4. For U < R" the diameter of U is given by

diam(U) = sup |z —y|
z,yelU

For F < R™ a countable (or finite) collection (U;)2; of sets of diameter at most 6 > 0
that cover F' is called a d-cover of F, i.e.,

e}
F c U Ui, and diam(U;) <90, i=1,...,0.
i=1

Before we get deeper into the different definitions of fractal dimensions we give a
general overview of the ideas.
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Box-counting dimension Let FF < R" be bounded. If we are only interested in the
smallest number of sets in a d-cover, it is sufficient to consider finite covers. Thus, let

Ns =min {N | (U;){¥, is a d-cover of F'},
and if the limit exists define

log N,
dimp F' = — lim &,
6—0 log (S

which is called the box-counting dimension of F. It is given by the value s > 0 where the
function
w if s < dimg F,

= lim N;0° =
/() 5200 {0 if s > dimp F.
jumps from oo to 0.

In general the limit — 2%

o 5> does not exist (only limit inferior and limit superior do),

and there is a gap between the value oo and 0 of the function f(s). However, the box-
counting dimension leads to a definition of fractal dimension which is easy to approximate

computationally.

Hausdorff dimension A mathematically more satisfying definition may be obtained
by the following very similar idea. For F' < R" instead of Nsd°, consider

H; = inf {Z diam(U;)*

i=1

(U;)2, is a o-cover of F} < Nso®.

For s > 0 and in the limit 6 — oo, the function

oo if s < dimy F,

H* = lim HE =
s T {0 if s > dimg F.

jumps from oo to 0 at a well-defined value dimy F', which is called the Hausdorff dimension
of F.
Note that from Hj < N30 it follows that

Moreover, H* defines a measure (on the Borel sets of R"), called the Hausdorff measure,
which generalizes the Lebesgue measure. In particular, it satisfies the scaling property

H(g(F)) = AH(F)

for any similarity transformation g : R* — R" with scaling factor A > 0. However,
the Hausdorff dimension as a fractal dimension is harder to estimate by computational
methods than the box-counting dimension.
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Similarity dimension For self-similar sets it is particularly easy to define a corre-
sponding dimension. Thus, let {Sy,...,S,,} be an iterated function system of similarity
transformations

1Si(x) = Si(y)| = ri|x —yl

with some 0 < r; < 1. Then its attractor

0
F=|]Js(F) (9)
i=1

is a self-similar set. Assume this union in (9) is disjoint, and that s > 0 such that F" has
positive and finite Hausdorff measure 0 < H® < oo (or any reasonable measure satisfying

the scaling property).

HE) = S S = Do (F),

which implies
Z ri = 1. (10)

Thus, we may define
dims F=s

to be the number s satisfying (10) for any self-similar set, which is called the similarity
dimension of F.

In the case where the sets in (9) do not overlap too much (or the union is even disjoint)
the similarity dimension satsifies

dimg F' = dimyg ' = dimg F.

Note that, if all similarity transformations have the same scaling factor » = r; we
obtain mr® = 1, or equivalently,

1
dlmsF = — 08T

logr

Example 5.4 (Cantor set). We compute the three introduced dimensions for the Cantor
set F' = [0,1]. Recall that F} consists of 2¥ intervals of length 3% which have distance at

1
0
F:ﬂm
k=0

least 5z, and
(i) Box-counting dimension. It is sufficient to consider the decreasing sequence
O = =% (cf. Remark 5.5).

3F

» The 2% intervals of F}, provide a di-cover for F'. Thus, N;, < 2F, and therefore

log Nj, - log 2% _ klog2 _ log 2
—logd, —loggik klog3 log3
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» On the other hand, an interval of length J; intersects at most one of the 2F~!
intervals of Fj,_;, each of which contains points from F. Thus, N5, > 2¢~! and
therefore

log N, - log2" ! (k—1)log2 _ log2

> = k —
—logdr = —log 3% klog3 log 3 ( ®)

Thus the box-counting dimension is given by

log N, log N, log 2
dimp F' = lim O8N0 _ iy 280 _ 082
=0 —logd  k—oo —logdr log3

(ii) Hausdorff dimension. Let s = bgz We show that

1
- <H <1
2
» Consider the sequence 95, = % Then the 2% intervals of F}, provide a d;-cover of
F. And thus,
2k
My S g =1

and therefore H® < 1

» To prove H® > 5, we show

N 1
di U)’ =2 =-=—
; iam(Uj;) 5 = 3

for finite cover (U;)Y, consisting of closed intervals in [0, 1] (by the compactness
of F the same statement then holds for arbitrary covers).

For each U; let k; be such that

1
3ki+1

< diam(U;) < T
Then U; intersects at most one of the intervals in Fy,, and for j > k; it intersects
at most , )

27 27

ki 3sk S
of the intervals of Fj;. Choose j = max;_;
27 intervals of F}, and thus

27—k — < 273° diam(U;)*

~ ki. The cover (U;)Y, intersects all

-----

N N
< Y27 <Y 730 diam(U;)°
=1 =1
Thus, the Hausdorff dimension is given by
log 2
dimg F = s = .
H S log 3
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(iii)

Similarity dimension. The Cantor set is a self-similar set. With the two similar-
ities

Sl(l’) = Sz(l’) = +

)

wls
wl o

x
3
it is given by

F =5(F)u Sy(F),

where the union is disjoint. The scaling factors of S; and Sy are equal and given by
r= % Thus, the similarity dimension s of F' is given by

1
2= =1,
38

which is equivalent to
log 2

dimg F = 5 = —o
ST T 0g3

It turns out, that for the Cantor set all three dimensions are equal and given by

log 2

dimg F' = dimp F' = dimy F' = ~ (,630929754.

log 3

Properties of fractal dimensions Before we come to the formal definitions of the
introduced fractal dimensions, we list some properties that we will encounter, and might
possibly be considered desired properties of dimensions.

Monotonicity. £ c F' = dim E < dim F'.

Range of values. F c R" = 0<dimF <n.
Finite stability. dim(F u F) = max{dim E, dim F'}.
Countable stability. dim(| J;Z, F}) = sup; dim Fj.
Finite sets. dim F' = 0 if F' is finite.

Countable sets. dim F' = 0 if F' is countable.
Open sets. dim F' = n if F' is an open subset of R™.

Smooth manifold. dim F' = d if F' is a smooth d-dimensional submanifold of R".

Coincidence with topological dimension on topological manifolds is not desired.

Geometric invariance. dim f(F) = dim F' if f is a Euclidean, similarity, or affine
transformation of R™.
Note that the fractal dimensions are not of a topological nature, but of a geometric nature, in

particular involving the Euclidean metric.

Lipschitz invariance. dim f(F) = dim F if f is a bi-Lipschitz map.

This property is stronger than geometric invariance, but encountered for many fractal dimensions.
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5.2.1 Box-counting dimension

Definition 5.5 (Box-counting dimension). Let F' < R™ be bounded, and for 6 > 0 let
Ns be the least number of sets of any d-cover of F, i.e.

Ns = min {N | (U;)}\, is a é-cover of F'} .

Then log N log N
dimgF = lim—2"°  dimpF = lm—2
s—0—logd §—0—1log d

are called the lower and upper boz-counting dimension of F. If dimgF = dimgF, then
the common value

dimg F = — lim 282
50 logd

is called the box-counting dimension of F.

Remark 5.4. In the limit § — 0, the quantity Nsd®

R I
6—0 0 if s > dimgF.

has a gap between the determined values of o0 and 0. This gap vanishes in the case where
dimg F' = dimgF' = dimp F.

Remark 5.5. In the definition of box-counting dimensions it is enough to consider limits
of decreasing sequences d, that satisfy

041 < Oy,
for some 0 < ¢ < 1 (typically d;, = ¢*). Indeed, for § > 0 with 6,1 < & < i, we find

log Ns - log Ns,,, log N5, ., _ log N5, .,
—log 011 + log 6’3—:1 —log 041 + logc’

—logd — —logdy

and thus

mlog Ny < Tm log Nj, |
i—»0—logd ~ k—o—logdy

while the opposite inequality is trivially true for any subsequence. For the lower limit this
is shown in the same way.

There are various equivalent characterizations of the box-counting dimensions.

Theorem 5.5. The definition of box-counting dimensions is equivalent upon replacing the
number Ng by any of the following:

(i) the smallest number of closed balls of radius 0 that cover F.
(ii) the smallest number of cubes of side length & that cover F.
(7ii) the number of cubes in a §-grid that intersect F' (see Remark 5.6).

(iv) the largest number of disjoint balls of radius 6 and centers in F.
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Remark 5.6. A §-grid of R™ is a family of cubes of the form

with (1,...,4,) € Z™. This approach to box-counting dimension is the most convenient
for computational approximation. By Remark 5.5 it is sufficient to consider decreasing
sequences of d;-grids such as

1
5k:?7

halving the grid size in every step.

Remark 5.7. The characterization in (iv) uses packings by d-balls instead of coverings by
0-balls. Packing and coverings are sometimes considers as being “dual”.

Another way of obtaining the box-counting dimension is by observing the change of
volume of a set when it gets extruded. Consider the d-neighborhood of an d-dimensional

smooth manifold M
M; = | Bs(w).

zeEM

We can measure its n-dimensional volume using the Lebesgue measure £ on R™. Then
the volume will behave like

LM(Ms) ~ comd

in the limit 6 — 0 with some constant ¢, which is a meassure for the d-dimensional
volume (length, area, ...) of M. This is due to the Minkowski-Steiner formula. Thus,
the dimension of M may be recovered by

d=n— limm.
-0 logd

Similarly, an arbitrary set F' < R™ may be regarded as s-dimensional if
L"(F5) ~ co" %,
The so defined value s turns out to coincide with the box-counting dimension.
Theorem 5.6. Let F' < R" be bounded. Then
dimgF =n — limﬁn(Fd) e ()

dimpF =n — Ii
5—0 logd ' s (N logd ’

where Fys is the d-neighborhood of F' and L™ is the Lebesque measure.
The box-counting dimensions are invariant under bi-Lipschitz map.
Theorem 5.7. Let F' < R™ be bounded.
(i) If f: F — R™ is a Lipschitz map, i.e., there exists a constant ¢ > 0 such that
[f (@) = f()| < clz =yl
for all x,y € F, then

dimgf(F) < dimgF, and dimpf(F) < dimgF.
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(i) If f: F — R™ is a bi-Lipschitz map, i.e., there exist constants 0 < ¢; < ¢y such
that
cle —yl < |[f(z) = fy) < calz—yl

forall x,y € F, then

dimgf(F) = dimgF, and dimpf(F) = dimgF.

Proof.
(i) If (U;) is a d-cover of F, then so is (U; n F') Then (f(U; n F)) is a cé-cover of f(F),
and thus Ngs(f(F)) < Ns(F) for all § > 0. So

log Nes (f(F)) _ log Ns(F)
—log(cd) +loge ~  —logd

Taking limes superior and inferior as § — 0 gives the result.
(ii) Bi-Lipschitz maps are bijective. Apply (i) to f and f~.
O

Remark 5.8. The first statement of Theorem 5.7 may for example be used to show that
the box-counting dimension is reduced under projection, while the second implies that it
is invariant under affine transformations.

The following theorem summarizes properties of the box-counting dimension.
Theorem 5.8. The box-counting dimensions have the following properties:
(i) Monotonicity. If E c F, then

diimBE < MBF and MBE < HBF

(ii) Range of values.
OﬁdiimBFéﬁBFén,

(iii) Finite stability. dimp is finitely stable, i.e.,

EB(E U F) = max{mBE,mBF}.

(v) Finite sets. dimp F' =0 if F' is a finite set.

(vit) Open sets. dimg F' = n if F' is an open subset of R".

(viii) Smooth manifold. dimg F = d if F' is a smooth d-dimensional submanifold of R™.
(ir) Geometric invariance. See Remark 5.8.
(z) Lipschitz invariance. See Theorem 5.7.

Remark 5.9. Note that the finite stability only holds for dimg, not for dimp.

However, the following lemma leads to some undesired properties.
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Lemma 5.9. Let F < R” and F denote the closure of F (the smallest closed subset of
R™ containing F'). Then

diil’IlBﬁ| = @BF, and MBF = MBF

Proof. The smallest number of closed d-balls that cover F' equals the smallest number of
closed d-balls that cover F. m

This means that for any subset F' < R"™ which is dense in an open region of R", we
have
dimg F' = n.

In particular, for the countable set of rational numbers this implies
dimp Q = dimp Q = dimg R = 1,
and thus
(iv) Not zero on countable sets. dimp does in general not vanish on countable sets.

Furthermore, this implies that

1 = dimp Q # supdimg{a} = 0,
aeQ

and thus, the box-counting dimension does not satisfy countable stability

(vi) No countable stability.

7

o0
dimB(U F;) is in general not equal to sup dimg F;.
i=1

Example 5.5. Another example of a very sparse compact set with non-vanishing box-
counting dimension is given by

. 1
F= {0, 1, %,%, }, dimg F' = 5

5.2.2 Hausdorfl dimension
First the Hausdorfl measure is defined.
Definition 5.6. Let F' < R", and s > 0. Then we define

H3(F) = inf {Z diam(U;)*

i=1

(U;)2, is a d-cover of F}

for any ¢ > 0, and the (s-dimensional) Hausdorff measure of F by

HY(F) = lim 3

Remark 5.10. If 0 decreases the class of d-covers of F' decreases, and so does the infimum
H;. Thus Hj decreases as § — 0, and therefore the limit always exists.

Theorem 5.10. The Hausdorff measure H* is an outer measure on R™:
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(i) If Ac R, then 0 < H*(A) < 0.
(ii) H*() = 0.
(iii) if A, B < R™ with A B, then H*(A) < H*(B).

(iv) If (A;)2, countable (or finite) sequence of sets in R™, then
H? (U Ai> < H(A).
i=1 i=1

Furhermore, H® defines a measure on the Borel sets of R™ (or more generally on H*-
measurable sets):

(v) If (A;)2, countable (or finite) sequence of disjoint Borel sets in R™, then

( (G Ai> - i He(A,).

Finally, H" coincides with the Lebesque measure L™ up to a factor:

(vi) If A< R™ a Borel set, then

Hr(A) = S Ln(A),

Cn
where ¢, is the volume of the n-dimensional unit ball.

The Hausdorff measure behaves well under Lipschitz mappings, and more generally
under Holder mappings. in particular, this implies the scaling property (behavior under
similarity transformations).

Theorem 5.11. Let F' < R".
(i) Let f: F — R™ be a Holder map, i.e., there exist « > 0 and ¢ > 0 such that
[f(@) = f(y)] < cle =yl

forall x,y € F. Then
He(f(F)) < coH(F)

for all s = 0.

(ii) Let f: F — R™ be a Lipschitz map, i.e., there exist ¢ > 0 such that

|f(x) = fW)] < clz -y

forall x,y € F. Then
H(f(F)) < CHA(F)

(iii) Let f:R™ — R™ be a similarity transformation with scale factor A > 0. Then
H(f(F)) = NH(F)
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Proof.
(i) Similar to proof of Theorem 5.7.

(ii) Follows from (i) with o = 1.
(iii) Similarity transformations are bi-Lipschitz maps. Apply (ii) to f and f~'.
[l

For any 6 < 1, the function Hj is decreasing with s < 0. thus the function H* =
lims_,, H3 is decreasing with s. Even more, for a d§-cover (U;)72, of F, and t > s,

diam (U, diam(U;)"* diam(U;)* < 6'° ) diam(U,
Z Z Z

and taking infima over all J-covers, we have
Hy < 6" H;.

In the limit § — oo, we find that if H® < oo, then H! = 0 for ¢ > s. Thus, for a critical
value s = dimy F', the function H*® jumps from oo to O:

2y {oo if s < dimy F,
0 if s > dimy F.
Formally, we define the Hausdorff dimension in the following way:
Definition 5.7. let F' < R", then
dimg FF=inf{s >0 | H* =0} =sup{s >0 | H* = oo}
is called the Hausdorff dimension of F.
Remark 5.11. At the critical value s = dimy F, the function H*® may be 0, oo, or
0 <H® < oo

Remark 5.12. The Hausdorff dimension can be defined without referring to the Hausdorft
measure. to this end, let

H2 (F) = inf {2 diam(U;)*

(U;), is a countable cover of F}

Then
dimy F' = inf {s = 0 | H5, = 0}.
Remark 5.13. The Hausdorff measure and the Hausdorff dimension do not change if we
restrict the covers to just open sets or just closed sets.
Similar to Theorem 5.5, one could also think of replacing the coverings involving
arbitrary sets of diameter ¢ by say d-balls, and consider

B; = inf {Z diam(U;)*

i=1

(U;)2, is a cover of F' by 5—balls} > H;

Then B = lims_,o Bj leads to measure different from the Hausdorff measure, yet to the
same dimension.

Considering packings by balls (“dual”) to coverings by balls) leads to packing measures
and packing dimensions, both different from (yet considered to be closely related to)
Hausdorff measures and Hausdorff dimension.
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The Hausdorff dimension is always bounded from above by the lower box counting
dimension.

Proposition 5.12. Let F' < R"™ be bounded. Then

Proof. Follows from H5 < Ns0°, where Ny is the least number of sets of diameter o that
can cover F. ]

The behavior of the Hausdorff measure under Holder and thus Lipschitz mappings
(Theorem 5.11), implies corresponding properties for the Hausdorff dimension.

Theorem 5.13.
(i) Let f: F — R™ be a Holder map, i.e., there exist « > 0 and ¢ > 0 such that
[f(2) = f)l < cle =yl

forall x,y € F. Then
1
a

(ii) Let f: F — R™ be a Lipschitz map, i.e., there ezist ¢ > 0 such that

1f(x) = fy)| < clz -y

forall x,y € F. Then

(iii) If f : F — R™ is a bi-Lipschitz map, i.e., there exist constants 0 < ¢; < ¢y such
that

c e —y| < |[f(x) = f(y)| < calw —yl

forall x,y € F. Then

Proof.
(i) By Theorem 5.11, for s > dimy F’

S S

Hi(f(F)) < cH(F) = 0.

Thus, dimy f(F) < 2 for all s > dimy F.

(ii) Follows from (i) with o = 1.
(iii) Apply (ii) to f and f~1.
0

Remark 5.14. Similar to Remark 5.8, we obtain that the Hausdorff dimension can only
reduce under projection, and is invariant under affine transformations.
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Remark 5.15. One approach to fractal geometry is to regard two sets as equivalent if there
exists a bi-Lipschitz map between them. Since bi-Lipschitz maps are homeomorphisms,
topological invariants are bi-Lipschitz invariants, while Hausdorff dimension provides a
further invariant to distinguish equivalence classes.

Vice versa, the Hausdorff dimension provides little information about the topology of
a set. However, every set F' ¢ R"™ with dimy F' < 1 is totally disconnected (no two points
lie in the same connected component).

Again we summarize properties of the Hausdorff dimension, most of which follow
directly from the properties of Hausdorff measures.

Theorem 5.14. The Hausdorff dimension has the following properties:
(i) Monotonicity. If E c F, then

(ii) Range of values.
0 < dimgF < n.

(iii) Finite stability. dimy is finitely stable, i.e.,

dimg(E v F) = max{dimyF,dimgF}.

(iv) Countable stability. dimy(| J;-, F;) = sup, dimp F;.
(v) Finite sets. dimy F' =0 if ' is a finite set.
(vi) Countable sets. dimy F' =0 if F' is countable.
(vii) Open sets. dimy F' = n if F is an open subset of R".
(viii) Smooth manifold. dimy F = d if F' is a smooth d-dimensional submanifold of R™.
(izr) Geometric invariance. See Remark 5.14.

(z) Lipschitz invariance. See Theorem 5.13.

5.2.3 Similarity dimension

We had seen that for a self-similar set, applying a measure satisfying the scaling property;,
leads to the following reasonable definition of dimension.

Definition 5.8. Let I = R" be a self-similar sets, i.e., the attractor of an IFS {Sy, ..., S}

of similarity transformations with scaling factors 0 < r; < 1, ¢ = 1,...,m. Then the
number

dims F=s
with

irle
i—1

1=

is called the similarity dimension of F.
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By the heuristic argument made earlier we have also seen that it should coincide with
the Hausdorff dimension if the union in

F=0&@)

is disjoint. It even holds if the sets S;(F') do not overlap “too much”, which is described
by an “open set condition” as a condition on the similarity transformations S;. In this
case the similarity dimension also coincides with the box-counting dimension.

Theorem 5.15. Let {Si,...,S,} be an IFS of similarity transformations with scaling
factors 0 < r; < 1,1 =1,...,m satisfying the open set condition, i.c., there exists a
non-empty bounded open set U such that

U= Jsi().

i=1

Then the attractor .
F=|Js(F)

i=1

of the IF'S satisfies
dimg F = dimg F' = dimg F.

Moreover, for this value s = dimg F' the Hausdorff measure satisfies

0 < H® < 0.

Remark 5.16. In the special case r = r;, 1 = 1,...,m, on obtains
) logm
dimg F' = )
—logr

Remark 5.17. In particular, if S1(F),...,S,,(F) are disjoint, the open set condition holds.

1

Example 5.6. For the Sierpinski triangle, we have r = 5, m = 3, and thus,

Remark 5.18. Not assuming the open set condition, it still holds that

5.3 Iteration of complex functions

5.3.1 Julia sets

JT: [ The theory for Julia sets is almost the same for rational functions, provided that co is included in

the natural way. The main difference is that J(f) may not be bounded (still closed), and it may have
interior points (in which case J = C u {o0}.

A motivation can be analysing the Newton method. ]
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For a complex function f : C — C we investigate the behavior of the sequences

() = | o0 f(2)
k times k=0

for different z € C. The Julia set will be the curve that is the interface between different
qualitative behaviors of that sequence.

Example 5.7.
(i) Consider the function
f(z) =22,
so that f¥(z) = 22", For a point z € C with |z| < 1 the sequence f*(z) converges to

the origin
ff(z) =0 (k- o).

For a point z € C with |z| > 1 the (absolute value of the) sequence f*(z) converges
to infinity
ff(z) = o (k— o).

And for a point z € C with |(| z) = 1 the sequence remains bounded, staying on the
unit circle. Thus, the unit circle S! is interface between the two different behaviors
of converging to co and converging to 0, or more generally, staying bounded. The
unite circle is the Julia set of f in this example.

(ii) Consider the function
f(z)=2*+ec

for some ¢ € C with small absolute value. Then for sufficiently small |z| the sequence
f¥(2) converges to the fixed point of f close to 0, and for sufficiently large |z| the
sequence f¥(2) converges to infinity. In between there is a curve that is the interface
between these two behaviors, which in this case will be a fractal.

We will restrict our following considerations to polynomial functions f.
Definition 5.9. Let f : C — C be a polynomial function of degree n > 2, i.e.,

n—1

f(z) = anz" + an_12" "+ - +ap

with some complex numbers a, € C, £k =0,...,n, a, # 0.

(i) The filled-in Julia set of f is given by
K(f) = {ze(C ’ hm fF(z) # oo}

(ii) The Julia set of f is given by the boundary of K(f)

J(f) = OK(f)

i.e., z € J(f) ifin every neighborhood of z there are points z; such that limy_,, f¥(z;) =
o0 and points 2z, such that limy . f¥(29) # 0.
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(iii) The Fatou set (or stable set) of f is the complement of the Julia set
F(f) = C\J ().

Remark 5.19. The definition of the filled-in Julia K set suggests the following way of
visualization (we will encounter other methods later): Let r > 0 be large, and N € N
large. For every point z € C (e.g. on some grid) compute successive terms of the sequence

(fk(z))zozo until
> |f¥(2)| = r, then we consider z to be not in K
» or k = N, in which case we consider z to be contained in K.

To only (or additionally) draw the Julia set J, for every point in your grid, check the
behavior of f¥(z) with the method before. If all four corners show the same behavior
consider z to be not in J, and other wise consider z to be in J.

For a polynomial the sequence f*(z) converges to co if and only if it is unbounded as
the following lemma ensures. /7 [Follows directly from Liouville’s theorem.]

Lemma 5.16. Let [ be a polynomial of degree n = 2.

(i) There exists an r > 0 such that if z € C with |z| = r then

[f(2)| = 2]z

(ii) There exists an r > 0 such that if z € C with | f™(z)| = r for some m € N then

lim () =0 (k— o0)

(iii) For any z € C, either (f*(2))2, is bounded or limy_., f*(z) = 0.

Proof.
(i) For z € C we have

n n—1
[f(2)] = lan] 2" = (Jan-a| [2]" + - + |ao]) -
Choose r > 0 such that for z € C with |z| > r we have

1 _ 1
3 lan| |2|" = |an_1] |2]" Lo 4 lag| and 5 lan| |2|" = 2]z|.

Then ]
7 ¢ lal 2" > 22]

(ii) If [ f™(2)| = r, then

[ = 25 [/ (2)] = 2 > o0 (K — o).

(iii) If the sequence is unbounded, it will eventually satisfy the condition in (ii).
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Thus the Julia set is the interface between the points for which the sequence f*(z)
is unbounded and those for which it is bounded. The following proposition immediately
follows.

Proposition 5.17. J(f?) = J(f) for every positive integer p.

Proof. The condition in Lemma 5.16 (ii) is satisfied for (f*(2))7, if and only it is satisfied
for ((f7)*(2) = (f*(2))iZe. a

Furthermore, we can use Lemma 5.16 to infer some basic topological features of the
Julia set.

Proposition 5.18. The Julia set J(f) and the filled-in Julia set K(f) are both non-empty
and compact with J(f) < K(f). Furthermore, J(f) has an empty interior.

Proof. By Lemma 5.16, both K(f) and its boundary J(f) must be bounded.

We show that the complement of K(f)is open. Let z ¢ K(f). Then limy ., f¥(2) = o
and |f™(z)| > r for some integer m. By continuity of f™ this still holds for w in a small
neighborhood of z. By Lemma 5.16, limy_,., f*(w) = o, and thus w ¢ K (f). Thus, K(f)
is closed.

J(f) is the boundary of K(f) and thus closed. Since K(f) is closed, we also have
J(f) € K(f).

To see that K(f) is not empty, let zy be a solution to the equation f(z) = z (there
exists at least one). Then f*(z)) = 2o and thus 2y € K(f). On the other hand, by
Lemma 5.16, the complement C\K(f) is not empty. Thus, let z; € C\K(f). The line
segment connecting zy and z; must have at least one point on the boundary J(f). Thus,
J(f) is not empty.

The boundary of any set has empty interior. O]

The Julia set is invariant under the map f.

Proposition 5.19. The Julian set J = J(f) is forward and backward invariant under
the map f, i.e.,

f)=J=f"(J).
Proof. Let z € J < K. Then may find a sequence (z,)>_, ¢ C\K with lim,,_, 2, = z.
Thus, we have

ok k()
lim f*(z) # 0 and kh_r){‘lof (2,) = 0.

and therfore
lm fA(f2) # 0 and lim f((z) = o

By continuity of f, we can choose f(z,) arbitrarily close to f(z), and thus f(z) € J. So,
we have

J < f(J) and therefore also Jc ) < 7).

With z and (z,)%_, as before, let w such that f(w) = z. Then since f is a polynomial,
we may find (w,)*_, with lim, ., w, = w and f(w,) = z,. Thus

lim f*(w) #c  and lim f*(w,) = o,
n—00 9 k—o0 \ )
=fF1(2) =fF"1(zn)

and therefore w € J So, we have

f'(J)=J  and therefore also J=ffY)) < f(J).
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The following theorem is a consequence of Montel’s theorem on normal sequences of
holomorphic functions. /7* [What does (the existence of) the exceptional point say about f?]

Theorem 5.20. Let z € J(f) and U a neighborhood of of z. Then the set

Gf’“(U), 1=0,1,...
k=l

is the whole of C, except for possibly one single point. Any such point is called an excep-
tional point, is not contained in J(f), and is independent of z and U .

Proof. By use of Montel’s theorem. O]

Remark 5.20. To use Montel’s theorem one may show that Julia sets may equivalently be
represented in the following way:

J(f) ={z€C| ("), is normal at z}.

As a consequence, we prove the following theorem, which may be used for visualization
of Julia sets.

Theorem 5.21.
(i) The following holds for all z € C except at most one exception: Let U be an open
set with

UnlJ(f) # .

Then f=%(z) intersects U for infinitely many values of k. If there is an exceptional
value, it cannot be in J(f).

(ii) For any z € J(f)
J(F) = ).

Proof.
(i) By Theorem 5.20, a non-exceptional point z € U satisfies z € f*(U) for some k, and
thus f~%(z) intersects U. Applying this repeatedly, we can generate arbitrary large
k for which this holds.
(ii) Let z e J(f).
By Proposition 5.19, this implies f~%(2) < J(f), and thus

U F =) = (),

since J(f) is closed.

Recall that a point z is in the closure of a set A if every neighborhood of z con-
tains points of A. By (i), for a neighborhood U that intersects J(f) (which is a
neighborhood of a point in J(f)) there exists a k such that f~*(2) intersects U.
Thus

J(f) = ).
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We may use this to show that the Julia set has no isolated points.

Proposition 5.22. J(f) is a perfect set (closed and with no isolated points) and therefore
uncountable.

Proof. Let w e J(f) and U a neighborhood of w. We have to show that U contains points
of J(f) other than w. By Theorem 5.21, U contains a point of f~*(w) = J(f) for some
k > 1. If this point is different from w, we are done. However, this points might not be
different from w. It is equal to w if and only if

Fw) = w.

Consider the case k = 1 fist (w a fixed point of f). Thus, f(w) = w. If there is
no other solution to the equation f(z) = w € J(f), this would contradict Theorem 5.21
(ii). JT: [Unless J consists of exactly one point. Is that possible?] Thus, let v # w be such that
f(v) = w. Again, by Theorem 5.21, U contains a point of f~'(v) = f~1(w) < J(f) for
some [ > 1. Any such point u is distinct from w, since f'(u) =v # w = fY(w).

Now assume k > 1 (w is a periodic orbit of f). Thus, f*(w) = w and w is a fixed
point of f¥. By Theorem 5.17, J(f*) = J(f), and we may apply the previous argument
to fk JT: [one could just earlier consider f = f*, so that the order of arguments doesn’t have to be

reversed.] O

In the proof of the previous proposition, we have encountered fixed points and periodic
orbits of f, which may be used to characterize Julia sets.

Definition 5.10. Let f : C > U — C be a holomorphic function, and w € U.

(i) If f(w) = w, the point w is called a fized point of f.
In this case w is called attractive if | f'(w)| < 1 and it is called a repelling if | f'(w)| >
1.

(i) If fP(w) = w for some p = 1, the point w is called periodic point of f.
The smallest such p is called the period of w, and w, f(w), ..., fP(w) a periodic orbit
of f. wis called attractive if |(f?) (w)| < 1 and it is called repelling if |(f?) (w)| > 1.

Remark 5.21. Close to a fixed point w the function f may be expressed as
f(z) = f(w) + f(w)(z = w) + o(z = w) = w+ f(w)(z — w) + o(z — w)

It locally acts as a similarity transformation centered at w with scaling factor |f"(w)].

Thus, if |f'(w)| < 1, points close to w get closer to w after applying f and thus get

attracted in the sequence f*(w). If |f'(w)| > 1, points close to w get repelled from w.
For a periodic point w of period p we consider the same expression for

fr(w) = w+ (f7)(w)(z —w) + o(z — w)

Thus, if |(f?)(w)| < 1, points close to w, get closer to w after further p applications of
f and thus get attracted to the periodic orbit. If |(f?)'(w)| > 1, points close to w get
repelled from the periodic orbit.

Note that by successive application of the chain rule, the derivative (f?) (w) may be
expressed as

() (w) = f/(f7~ w)) - f/(f72w)) -+ f(w).

Thus, its value does not depend on the point in the periodic orbit.
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For later reference, we state the following lemma on attractive periodic orbits.

Lemma 5.23. Let f be a polynomial of degree n > 2, and w(# ) be an attractive
periodic point. Then there exists a z € C with f'(z) = 0 such that the sequence (f*(z ))
is attracted to the periodic orbit of w.

=0

In particular this means, that there can be at most as many attractive periodic orbits
as there are critical points (f’(z) = 0), which in turn are at most n — 1.

On the other hand, f has a large number of repelling periodic points. In fact their
closure constitute the entire Julia set.

Theorem 5.24. Let f be a polynomial of degree n = 2. Then J(f) is the closure of the
repelling periodic points of f.

Proof. By use of Montel’s theorem once more. O

Remark 5.22. Some additional properties of J(f) related to the previous theorem are the
following.

» Periodic orbits are dense in J(f). However, there are also points z € J(f) such that
the sequence f*(z) is dense in J(f).

» The dependence of f on initial conditions (starting value z € J(f)) is sensitive on
J(f). Thus, distances }fk(z) — fk(w)| can become large no matter how close z and w
are chosen.

» This may be summarized as “f acts chaotically on J(f)".

Another way to characterize Julia sets, is as the boundary of the basin of attractive
fixed points.

Definition 5.11. Let w € C u {00} be an attractive fixed point of f. Then
A(w) = {ZE(C‘ hmfk (2) = w}

is called the basin of attraction of w.

Remark 5.23. Note that by Lemma 5.16, co is always an attractive fixed point of a poly-
nomial f.

Lemma 5.25. The basin of attraction A(w) is open.

Proof. Since w is attractive there is an open set w € U < A(w). Thus, f~*(U) = A(w)
is open for all k > 0. For z € A(w), we have f¥(2) € U for some k > 0 and thus

ze f7RU). O

Theorem 5.26. Let f be a polynomial of degree n = 2, and w € C be an attractive fixed
point of f. Then

J(f) = 0A(w).

Proof. Let z € J(f). Then f*(z) € J(f) for all k, and thus z ¢ A(w). However, if U is
a neighborhood of z, by Theorem 5.20, the set f*(U) contains point of A(w) for some k.
Thus, there are points arbitrary close to z that iterate to w, and therefore z € A(w). So,

J(f) < dA(w).

The reverse inclusion may be shown by use of Montel’s theorem once more. O]
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5.3.2 Julia sets of quadratic polynomials (and the Mandelbrot set)
We now restrict to our study of Julia sets to quadratic polynomials.

Lemma 5.27. Let
f(2) = az2® + a1z + ag

be a quadratic polynomial, ay # 0. Then there exists a complex linear function h(z) =
az + B, a # 0 such that
fo(z)=hofoh ™ (z)=2*+c

for some c € C.

Proof. We go the reverse direction and substitute

2, .
hto f.oh(z) = az’ + 2Bz + w
o

From this arbitrary values for as, ai, ap may be obtained. O

Geometrically, the linear function A is a similarity transformation. Thus, we may
restrict our study further to the functions

foz)=2*+c

with some ¢ € C. The Julia sets will be similar to the corresponding ones obtained from
general quadratic polynomials.

We gather some facts that let us better understand how f. : C — C acts as a holo-
morphic function.

» f. is locally bijective away from every point except the critical point

z=0,  f(0)=0.

c

In fact, it is bijective on every open half-plane, whose boundary contains 0, which is
mapped by f. to a slitted plane, where the slit is a ray starting from c.

» The preimage of any point z # 0 consists of two points, the two square roots
oM@ = £(z - 02

The two branches of the square roots, may be considered as the two holomorphic
functions which are inverse to f. on two complementary half-planes.

» We call a smooth, closed, simple (non-self-intersecting) curve in the complex plane a
loop. Tt is the boundary of a simply-connected set, which is the inside of the loop. A
loop winds around every point of its interior exactly once. Let L = dU be a loop in
the complex plane, and U its simply-connected interior.

If 0 € U,then f.(L) is a loop.
If 0 ¢ U, then f.(L) is a curve that wraps around ¢ twice.

The following lemma states what the preimages of loops look like.

Lemma 5.28. Let L = 0U < C be a loop in the complex plane and U its simply-connected
interior.
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(i) If ce U, then f~Y(L) is a loop.
Moreover, f. maps the interior of f71(L) onto the interior of L, and the exterior of
fYL) onto the exterior of L.

(ii) If c ¢ U, then f~Y(L) comprises of two disjoint loops, neither contained within the
other.
Moreover, f. maps the interior of each loop of f71(L) onto the interior of L, and
the region outside both loops of f.1(L) onto the exterior of L.

Remark 5.24. If c € L, then f71(L) is a “figure of eight” (a single point of self-intersection).

Consider a large loop L = dU such that ¢ € U. Then Theorem 5.21 suggests, that the
sequence ( f _k(L))ZO:O should converge to the Julia set.
0
k=0 " ¢
as c lies inside the previous loop, or equivalently, as long as ( f* 0)) v €U

Then by Lemma 5.28, each curve in the sequence (f7*(L)),  is a single loop as long
Thus, we may distinguish two cases. One in which the sequence ( f’“(O))ZO:O stays

bounded, and the sequence ( f* (L))ZO:O consists of single loops. In this case, the limit
set, which is the Julia set, is connected. And the other case, in which the sequence

( fk(O))ZO:O goes to infinity, and the sequence ( f* (L))ZO:O at some point disconnects into

multiple components. In this case, the Julia set is disconnected, in fact even totally
disconnected.

Theorem 5.29. Let c € C. Then (fk(O))ZO:O is bounded if and only if J(f.) is connected.
Furthermore, if J(f.) is not connected, then it is totally disconnected.

Proof.
(=) Let (ff(O))ZO:O be bounded. Let L = 0U < C be a large circle with interior U, such
that

(i) (f£0),_y = U,
(i) foH(L) = U,

(iii) and all points outside L iterate to co.

By (i) and Lemma 5.28, the sequence (f.° k(L))ZO:O consists of single loops. By (ii)
[72U) < f7YU). Thus, (fc_k(L))ZO:O is a sequence of loops, each in the interior (or
on) of the previous one.

Let K be the closed set points inside or on every of the loops f.*(L):

K= () £40)

For z € K all points f*(z) € U, and thus (fck(z))zozo is bounded. If z ¢ K, then 2
is outside one of the loops f. (L) for some m, and therefore, fI*(z) ¢ U. By (iii),

limg o f¥(2). Thus, K is the filled-in Julia set of f..

The sequence f*(U) is a decreasing sequence of closed simply-connected sets. Thus,
K is simply-connected and therefore has connected boundary 0K = J(f.).

(<) Let (ff(O))ZO:O be unbounded. Let L = oU < C be a large circle with interior U, such
that
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i) (fF0),, ¢ L,
(i) (L)< U,

(iii) and all points outside L iterate to co.

Let m be the smallest integer such that f(0) lies outside L.

Then (f7* (L))Z:O1 is a (finite) sequence of loops, each in the interior (or on) of the
previous one. However, ¢ is outside of the loop f~™*!(L). Thus, by Lemma 5.28,
f~™(L) consists of two loops inside f~™"1(L), and f, maps the interior of those loops

onto the interior of f~™*1(L).

The Julia set J(f.) lies inside these two loops, since points outside iterate to infinity,
by (iii). Furthermore, since J(f,) is invariant under f~*, both loops must contain part
of the Julia set, and thus, J(f.) is not connected.

If we continuously apply Lemma 5.28 to the sequence ( I k(L))Z:Ol, we see that the
Julia set lies within a “Cantor-like” hierarchy of disjoint pairs of loops, and therefore

must be totally disconnected.

m
We now define the Mandelbrot set as all the values ¢ € C for which the Julia set J(f)
is connected, or equivalently, for which the sequence ( 1k (O))ZO:O is bounded.

Definition 5.12. The Mandelbrot set is defined by
M = {ce C| J(f.) is connected}
_ {c eC l (F5(0)2, s bounded}
_ {cec | lim f(0) # oo}

Remark 5.25. The boundary of the Mandelbrot set has zero area, yet is a fractal of
Hausdorff dimension dimg M = 2.

Remark 5.26. The first equality holds by Theorem 5.29 and the last by Lemma 5.16.
The characterization by Theorem 5.29 gives immediate rise to a way of visualizing
the Mandelbrot set, similar to the method discussed in Remark 5.19: Choose r > 2 and

N e N large. For each c € C compute successive terms of the sequence ( ff(())):lo until

> |f5(0)| = r, then c ¢ M,
» or k = N, in which case we consider ¢ to be contained in M.

One can additionally assign different colors to the complement of M, depending on the
first number k for which |f¥(0) > r.

Remark 5.27. The Mandelbrot set is bounded. At least the following bound may be given:
For ]
e > 75+ 2W6) ~ 2475... = c¢ M,

and thus f. is totally disconnected.

In this case the Julia set J(f.) is the attractor of the iterated function system (of
contractions) consisting of the two branches f7!(z) = +(z — ¢)2 of the square root for z
close to J(f.).
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Furthermore, for large |c|, its dimension behaves like
2log 2
~ log(4]e])’
A finer distinction of different qualitative behavior of the Julia sets J(f.) than by

the Mandolbrot set (and its complement), may be obtained by considering the attractive
periodic orbits of f..

Lemma 5.30.
(i) f. has at most one attractive periodic orbit.

dimg J(f.) = dimg J(f.)

(ii) If ¢ ¢ M then f. has no attractive periodic orbit

Proof.
(i) By Lemma 5.23, for every attractive periodic orbit, there exists a critical point of
fe that is attracted to it. The only critical point of f. is given by

fe(z) =22=0

is given by z = 0. Thus, f. has at most one attractive periodic orbit (including an
attractive fixed point different from oo).

(ii) If ¢ ¢ M, then limy . f¥(0) = oo, and thus, by (i), f. has no attractive periodic
orbit.

]

The complement of the Mandelbrot set only contains ¢ € M for which f. has no
attractive periodic points. It is conjectured that points ¢ € M for which f. does have
attractive periodic points fill the interior of M.

Conjecture 5.31 (density of hyperbolicity). The interior of M consists of the points
c € C for which f. has an attractive periodic point.

By Lemma 5.30, we have
fo has attractive periodic point = ce M.
Now different arias inside the Mandelbrot set may be identified by the period p of the

attractive orbit.

p = 1 f. has an attractive fixed point, i.e,

fo(z) =2z and |f.(2)] <1.

It can be shown that this is the case if and only if ¢ lies inside a cardioid, called the “main
cardioid” of the Mandelbrot set.

Theorem 5.32. f. has an attractive fixed point if and only if ¢ lies inside the cardioid

1. 1.
2(t) = ie” (1 — 26”) : t € [0, 27].

This is the cardioid obtained by rolling a circle of radius i along another circle of radius
i and center 0 following the initial point of contact i

Furthermore, in this case, J(f.) is a simple close loop.
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Remark 5.28. For small |c| the dimension of J(f.) behaves like

ef*

dimg J(f.) = dimyg J(f.) =1+ Tlog?

+0(cf’)

Moreover, 0 < H?® < o0.

p=2 f. has an attractive periodic orbit of period 2, i.e.

f2z) =z and [(f2)(2)] <1

Lemma 5.33. f. has an attractive fized point if and only if ¢ lies in the disk
lc+ 1] < L
C —
4

f. has two fixed points and two period 2 orbits (since f? has degre 4), one of which is
attractive. Let w; and wy be the two points of the attractive period 2 orbit. Both points
are fixed points of f2, thus by Theorem 5.26 and Proposition 5.17

I(fe) = J(f2) = 0A(wy, f2) = 0A(ws, f2).

It turns out that the region of the basins of attraction containing w; and wy each are
bounded by a simple closed curve, which touch each other at a fixed point of f.. The
Julia set consists of all preimages of these two loops, enclosing all preimages of w; and
ws, and always touching each other pairwise in “pinch points”.

p >2 The Julia set consists of all preimages of p loops, each enclosing one of the points
wy, ..., w, of the attractive period p orbit. The preimages of these loops enclose all the
preimages of the points wy, ..., w, and touch each other in tuples of p.

boundary There exist more intricate Julia sets J(f.) for values on the boundary of M.

No attractive orbits

¢
W N

Figure 18. Different regions of the Mandolbrot set according to the period of attractive
periodic orbits and the corresponding Julia sets.
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6 Mobius geometry

6.1 The elementary model of Mobius geometry

Consider the n-dimensional Euclidean space R™. The inversion in a hypersphere with
center ¢ € R™ and radius r > 0 can be described in the following way: The point x and its
image z’ lie on the same ray emanating from ¢ and the distances to c satisfy the relation

2
|z —c|-[2"—c| = r~

This gives rise to an involution on R"™, except that the center ¢ has no image and no

preimage. To fix this, we add one extra point to R", called co, and obtain the extended

Fuclidean space .
R» := R" U {o0}.

Definition 6.1. The (sphere) inversion in the hypersphere with center ¢ € R” and radius
r > 0 is the map defined by

7’2

S~ S~
R — Rn, x»—>x’=c+W(x—0) for x # ¢,
r—c
¢ —> 0

D+ cC

Sphere inversions preserve angles and map hyperspheres and hyperplanes to hyper-
spheres and hyperplanes. This statement becomes simpler and more specific at the same
time if we consider hyperplanes as special cases of hyperspheres through the point oo.
More precisly, let us adopt the following convention:

Definition 6.2. A sphere in R is either a sphere in R™ or the union of a plane in R"
with {co}.

Then we can simply say:

Theorem 6.1. Sphere inversions preserve angles and map hyperspheres in R" to hyper-
spheres in R™.

Since circles and, more generally, k-dimensional spheres for 1 < k < n are intersections
of n — k hyperspheres, sphere inversions preserve spheres of any dimension:

Corollary 6.2. Sphere inversions map k-spheres in R" to k-spheres in Rn.

Just as hyperplanes are limiting cases of hyperspheres, reflections in hyperplanes
are limiting cases of sphere inversions. The reflection in the hyperplane with equation
{(x — a,vy = 0 is the map

x—a,v
2< ) >'U

w0y 7

which we extend from R” to R" by declaring that reflections in hyperplanes map oo to oo.

r— 1 =x—
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Figure 19. Reflection in a hyperplane

Definition 6.3. A Mdbius transformation of R™ u {00} is a composition of sphere inver-
sions and reflections in hyperplanes. The Mobius transformations form a group called the
Moébius group and denoted by Mob(n).

Remark 6.1. A Mobius transformation is orientation reversing or preserving depending
on whether it is the composition of an odd or even number of reflections. The subgroup
of orientation preserving Mobius transformations is called the special Mébius group and
denoted by SMob(n).

Because reflections preserve angles and map spheres to spheres, Theorem 6.1 extends
to Mobius transformations:

Theorem 6.3. Mdbius transformations preserve angles and map spheres in R" to spheres
in R™.

Similarity transformations on R™ are the transformations of the form x — \Az + b
with A > 0, A € O(n), and b € R". Reflections in hyperplanes are a special case, and
like reflections in hyperplanes we extend all similarity transformations from R" to Rn by
declaring that co maps to oo.

Proposition 6.4. The Mdbius group contains all similarity transformations.

Proof. The group of similarity transformations is generated by translations, orthogonal
transformations, and scalings.

» A translation z — x + v is the composition of two reflections in parallel hyperplanes.

» An orthogonal transformation z — Ax with A € O(n) is the composition of at most n
reflections in hyperplanes through the origin.

» A scaling transformation x — Ax with A > 0 is the composition of a reflection in the
unit sphere followed by a reflection in a sphere with center 0 and radius v/\. n

Conversely, one only needs to add one sphere inversion to the group of similarity
transformations to generate the Mobius group:

Proposition 6.5. Every Mdébius transformation is a composition of similarity transfor-
mations and inversions in the unit sphere.

By Theorem 6.3, Mobius transformations map hyperspheres to hypersphers. This
property already characterizes all Mobius transformations.

Theorem 6.6 (Fundamental theorem of Mobius geometry) Any bijective map f - Rn —
R" which maps hyperspheres in R to hyperspheres in R" 4s a Mdobius transformation.
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6.2 Two-dimensional Mobius geometry

This case is special because we can identify R? with C and R? with the extended complex
plane C = C u {0}, which is the same as CP!, the complex projective line.

» The orientation preserving and reversing similarity transformations are z — az + b
and z — az + b with a € C\{0}, respectively.

» Complex conjugation z — Z is the reflection in the real line,

=

> and inversion in the unit circle |z[ = 1 is the map z — %5 =

Proposition 6.7. The orientation preserving and reversing Mdobius transformations of
C = CP! are precisely the maps of the forms
az + b az +b

or Z >

cz+d cz+d

—

with ad —bc + 0.

Corollary 6.8. The group of orientation preserving Mobius transformations of@ s
SMob(2) = PGL(2,C) = PSL(2,C),

so oriented two-dimensional Mdbius geometry is the same as one-dimensional complex
projective geometry.

Remark 6.2. For later reference, we state the form of two important subgroups. The
Moébius transformations mapping the upper half-plane to the upper half-plane are given
by

az+0b —az+0b

or zZ — — with a,b,c,d e R, ad — bc = 1.
cz+d —cz+d

—

The Mobius transformations mapping the upper half-plane to the upper half-plane are
given by

az+b az+b

2 — = — or Z o —
bz +a bz +a

with a,b€ C, |a|] — |b] = 1.

The connection between two-dimensional Mobius geometry and one-dimensional com-
plex projective geometry has the following immediate consequences:

Corollary 6.9. ~
(i) Orientation preserving Mébius transformations of C preserve the complex cross-ratio
of four points

(21 — 22)(23 — 24)
(22 — 23) (21 — Zl)’

cr(f(z1), f(22), f(23), f(21)) = cr(z1, 22, 23, 24) =

while orientation reversing Mobius transformations of@ satisfy

cr(f(zl), f(Z2)7 f(23), f(Z4)) = cr(2, 22, 23, 2’4)'
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(ii) For any three points zi, za, 23 € C and any three points wi, wy, ws € @, there is a
unique orientation preserving Mdobius transformation f with f(z;) = w;.

There is also a unique orientation reversing Mdbius transformation g with g(z;) =
w;, which is given by the composition of f followed by an inversion in the circle
through wy,we, w3, or, which is the same, inversion in the circle through zi, zo, 23

followed by f.

Furthermore, the complex cross-ratio yields a convenient way to determine whether
four points in the plane lie on a circle.

Proposition 6.10. Four points z, zs, 23,24 lie on a circle in C if and only if their
cross ratio is real. Moreover, they lie on a circle in that cyclic order if and only if
cr(zy, 22, 23, 24) < 0.

The fixed points of an orientation preserving Mobius transformation f are obtained

by solving
az+b
1) = cz+d

which (if ¢ # 0) is a quadratic equation in z given by

Zs

ez —(a—d)z—b=0.
It has at least one and at most two (if f # id), given by

(a—d) + VA

2+ =
- 2c

with discriminant
A = (a—d)? + 4bc = (a + b)* — 4(ad — bc) = (tr F)* — 4det F,

where

F= (i ZC)) e GL(2,C)

is a matrix representation of f. If we choose a representation F' € SL(2C), i.e., det F' = 1,
the trace of F' is uniquely determined up to sign. We obtain

f parabolic <  f has exactly one fixed point
= (trF)? =4,

and
f mon-parabolic :<  f has two distinct fixed point

< (trF )2 # 4.
In both cases, we may bring f to one of the following normal forms.

Proposition 6.11. Let f # id be an orientation preserving Mdobius transformation.

(i) If f is non-parabolic, then there exists a Mdébius transformation g and k € C\{0, 1}
such that

(g ofo g_l) (z) = k=z.
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(i) If f is parabolic, then there exists a Mébius transformation g and € C\{0} such

that
(gofog™)(z)=2+p.
Proof.
(i) Let 71,72 € C be the fixed points of f. Choose
cFTn
4 = )
9(z) F—

which satisfies g(71) = 0 and g(7y2) = .
(ii) Let v € C be the fixed point of f. Choose

which satisfies g(vy) = .

]

For non-parabolic Mobius transformation f the number £ is called the multiplier of
7. An SL(2, C) representative of the normal form is given by

F:(A?), k= )2
0 3

Thus, we obtain the following relation between the multiplier k£ and the trace

(tr F)? = (A+—i>2=:<v%4—;%>2

The multiplier is invariant under conjugation, and thus

f'n) = k.

Interchanging the two fixed points v; <> 75 leads to k < %, and thus
1
f'() = T

In particular, if one fixed point is attractive, then the other fixed point is repelling. One

defines
f elliptic = |kl=1 < (trF)*e][0,4),

f lozodromic = |k|#1 < (trF)*¢[0,4],
f hyperbolic = keR < (trF)?e (4,0).

From this definition and Proposition 6.11, we can easily conclude the following decompo-
sition of orientation preserving Mobius transformations into inversions in circles.

Proposition 6.12.
(i) Every loxodromic Mdbius transformation is the composition of an elliptic and a
hyperbolic Mébius transformation.
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(ii) Every parabolic, elliptic, and hyperbolic Mdobius transformation is the composition
of two inversions (or reflections).

(iii) Every orientation preserving Mébius transformation is the composition of at most
four inversions (or reflections).

An non-parabolic Mébius transformation is uniquely determined by its two fixed points
1,72 and the multiplier k.

Proposition 6.13. Let f # id be an orientation preserving Mdbius transformation.

(i) If f is non-parabolic, and 71,7y its two fized points, and k the multiplier (of 1),

then " "
- —1
F(k;m, ) = (%1 - (k% _)771272) e SL(2,C).

In the case 9 = 0

Fk;m,00) = (’5’ (1 _1k)71) e SL(2,C).

(ii) If f is parabolic, and vy € C its fized point, and 5 the translation length, then

2.2
F(B7) = (1 Ew 1 _B%) e SL(2,C).

In the case v = o

F(B;0) (é f) e SL(2,C).

Proof.
(i) Using the function g from the proof of Proposition 6.11, we have

gof(z)=kg(z) <= fe)=m _z=m

f(2) = Z =72

Solving for f(z) yields the result.

(ii) Similarly,

101D =9(:) 18 = o= 48

O

For a non-parabolic M6bius transformation f with fixed points 1,7y, € C, let us note
the elliptic pencil of circles through +; and 5 by

Ce(1,72) = {circles containing v, and 7.},
and the hyperbolic pencil of orthogonal circles by
Cn(71,72) = {circles orthogonal to all circles of Cy,(71,72)} -

Then
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» An elliptic transformation will map each circle from C, to another circle from C,, while
preserving each circle in Cy,. /7 [how does the angle relate to k7]

» A hyperbolic transformation will map each circle from C),, to another circle from Cy,
while preserving each circle in C.. ’7* [relation inversive distance and k]

» A loxodromic transformation will map each circle from C, to another circle from Cy,, but
not preserve the circles in C,. Instead it preserves loxodromic curves connecting v, and
~2. These are curves of constant angle with the circles from Cy,, or equivalently, Mobius
images of logarithmic spirals. /7 [should say much more about these curves...] ’7* [what is this
angle, should be again be related to k]

We may say a little more about this pairing of circles in Cy(7y1,72) by a loxodromic
transformations. To this end, let us distinguish the inside and outside of the circles
(Euclidean distinction). The family Cy(71,72) may be separated into two components by
the perpendicular bisector of v, and ~s.

» If f maps a circle C; of one component to a circle Cy of the same component, it maps
the inside of C to the inside of Cj.

» If f maps a circle C] of one component to a circle Cy of the other component, it maps
the inside of C; to the outside of (5.

In the second case the two circles C and Cy are called paired by f.

Definition 6.4. Two circles C, Cy < C non contained inside the other are called (Schottky-
)paired by the orientation preserving Mébius transformation f if f maps the inside of Cy
to the outside of Cy (and thus C; to Cy and the outside of C; to the inside of Cy).

Remark 6.3. If we cut out the inside of C'; and C5 and identify points of C'; and C5 that
are mapped to each other by f, the resulting surface is a topological torus.

Using the formula for a Mébius transformation from fixed points and multiplier (Propo-
sition 6.13), which circle in C,(7y1,72) is mapped to which is determined by the absolute
value |k:| of the multiplier. /7 [however, this still doesn’t give the general pairing.]

However, given two circles C; and Cs non contained inside the other, how can we
Schottky-pair them by a Mobius transformation? We can first translate and scale C to
the unit circle, then invert in the unit circle, and then scale and translate the unit circle
to Cy. By inserting a general Mobius transformation in between, that maps the unit disk
to itself, we obtain the most general form of such a transformation.

Proposition 6.14. Let C7,Cy < C be two circles with centers, ci1,co € C and radii
ri,7o > 0. Then a general orientation preserving Mdbius transforations, that maps Cy to
Cs is given by

b(z —c1) +ria

ith a,be C —|b] = 1.

JT: [what does all of this look like in the projective model?]
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6.3 Schottky groups and limit sets

Definition 6.5. A discrete subgroup (no limit points) of PSL(2,C) is called a Kleinian
group.
Remark 6.4. A discrete subgroup of PSL(2,R) is called a Fuchsian group. Thus, every

Kleinian group that preserves the real line is a Fuchsian group, and every Kleinian group
that preserves a circle is conjugate to a Fuchsian group.

Definition 6.6. Let Cy,CY, .. .,Cg,ég c C be 2¢ circles with disjoint interiors. and
fi,-.., f; € PSL(2,C) Mobius transformations such that C; and C; are (Schottky-)paired
by fifori=1,...,g, then the Kleinian group generated by fi, ..., f, is called a (classical)
Schottky group.

Remark 6.5. A fundamental domain F' for the action of a Schottky group G on C is
given by the common exterior of all the circles Cy, Ch, ..., C,, Cy. The quotient F'/G is a
compact Riemann surface of genus g.

For simplicity, from now on we consider Schottky groups generated by two loxodromic
Moébius transformations. We introduce the following notations, and make some observa-
tions, following [Indra’s pearls - David Mumford, Caroline Series, David Wright]:

» We denote the two generators of the group by
a’ b7
and its inverse transformations by

A=qat, B:=bp"l

» We denote the circles paired by a by C4 and C,, and their interior disks by D4 and
D,. Thus, a maps

a(Ca) = Cy, a(€\Dy) = Da, a(Dy) = C\Dy,
A(Cy) = Ca, A@\D,) = Da, A(D,) = C\Dy.

Successive application of a or A leads to nested disks, which we call

Dg...q =a-a(D,)cDg...q €+ < Dy, Dy,

k+1 k k
—
k+1 k k

These two sequences converge to the attractive fixed point of a and A respectively.
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Similarly, for b, B, Cg, Cy, Dg, D,.
» Every element of the Schottky group is represented by a sequence
oL o,
sometimes called a word consisting of the letters o; given by
a,Ab,B.
The only relations in the group satisfied are
aA=Aa=bB=PBb=1,

which lead to non-unique representations and possible cancellations of letters in a
word. If all possible cancellations are applied (no adjacent a, A and no adjecent b, B),
the word is called reduced.

aaa

aaB \L{ aab
aBa aba
aBB >T aa k abb
aBA aB ab abA

Baa  Bab \/ baB  paa

a

BaB bab
Ba ba

BBa \ / bba
BBB A> BB B 1 b bb <‘ bbb
BBA / \ bbA

BA bA

BAB ‘7\ bAb
A 4 ;
BAA  BAb / \ bAB  bAA
AB. Aba
NS AB Ab
ABB Abb
ABA AA AbA
AAB AAb

AAA

All reduced words are represented by this word tree.

» We now apply all elements of the Schottky group to the initial disks D,, D4, Dy, Dp,
and denote the images by

D

oropey = 01 0k(Doy ) € Doy, © -+ € Doygy © Doy

For example applying the transformation a to the disks D,, D, Dg leads to 3 new
disks
Daa; Dab7 DaB - Da
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all contained in D,. Similarly,

Daa, Dap, Dap <Dy,
Dy, Dya, Dy, <Dy,
Dpa,Dpa, Dpp < Dsp,

which brings us to 12 disks on the second level.

9 of these 12 disks lie outside D4, thus applying a to those disks, yields 9 disks
contained in D,, 3 contained in D,,, 3 in contained in D, and 3 contained in D,p.
In total, we obtain 36 disks on the third level.

Baa Bab aBA aBB
BaB,
BB Ay BBab P
S BBaa }
BB
° BBaB a ®
BBA OO o.
Q0 oo A
% o g 8
‘aoo Ab ‘.oe bABA
hAA bABB
bAB bABa

The collection of all disks obtained in that way
{Do,..c, | 01+ 0) word}

is a “pattern” or “tiling” called Schottky array. /T [instead of using words, here we can just
say its obtained by applying any element of the group to an initial disk] It is invariant under
applying the Schottky group.

In particular, we call the collection of disks of the k-th level

Dy = U Dgl,..ok

o010 reduced word

the level-k Schottky array.

The set of points belonging to a disk of every level of the Schottky array

o0
F = ﬂDk
k=1

is called them limit set of the Schottky group. It is again invariant under the Schottky
group.

The level-k Schottky arrays are a decreasing sequence of sets, leading to a Cantor
set-like construction. In fact the radii are decreasing exponentially fast, approaching
points. As long as the initial disks do not touch, this leads to a totally disconnected
set, which has Hausdorff dimension 0 < dimy F' < 1.
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» Each such limit point corresponds to an infinite (reduced) word, coming from a nested
sequence of disks
DU10203"- o D010203 = D0102 = ‘D01

In particular, every periodic word
W= www - -, W=01"0p
corresponds to a nested sequence
Dz € Dyww € Dy € Dy,
which converges to the attractive fixed point of w. Thus, the limit set contains all

attractive fixed points of elements of the Schottky group.

Furthermore it contains all images of attractive fixed points under elements of the
Schottky group, in particular all images of the four attractive fixed points of a, A, b, B.
Those correspond to words of the form wa etc.

» This leads to the following ways of visualizing the limit set of a Schottky group: Let
N e N large.
e Plot the disks D,, for all reduced words w of length N.
e For some point zg € C plot w(zp) for all reduced words w of length N.
e Plot all fixed points of words of length at most N.

e Plot all points w(7;) for all reduced words w of length at most N, where ; are the
attractive fixed points of i = a, A, b, B. (Alternatively choose another finite set of
attractive fixed points of elements of the Schottky group.)

» Special case: All initial disks orthogonal to a common circle.

In this case all disks of the Schottky array are orthogonal to this circle, and thus the
limit set is contained in the circle.

The Schottky group is (conjugate to) a Fuchsian group in this case.
» Special case: The initial disks D,, Dy, D4, Dp touch cyclically, and the generators
match the touching points

In this case each level-k Schottky array is a chain of touching disks, and the limit set
becomes a (fractal) curve.
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