
Mathematical Visualization

Jan Techter

September 22, 2025

Lecture notes for Mathematical Visualization 1, Summer 2025.

Contents
1 Projective geometry 3

1.1 Some motivation: Incidences between points and lines . . . . . . . . . . . . 3
1.2 Definition of projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Homogeneous coordinates on RPn . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Projective subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Meet and join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Desargues’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Projective transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Plane curves and envelopes of lines 16
2.1 Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Discrete plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Evolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Involute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Conics and quadrics 27
3.1 Bilinear forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Projective classification of quadrics in RPn . . . . . . . . . . . . . . . . . . 30
3.4 Affine classification of quadrics in Rn Ă RPn . . . . . . . . . . . . . . . . . 35
3.5 Signature of subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Tangent lines and tangent cones . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Polarity and tangent planes . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Pencils of quadrics 40
4.1 Classification of pencils of conics . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Classification of pencils of quadrics . . . . . . . . . . . . . . . . . . . . . . 46

1



5 Fractals 51
5.1 Iterated function systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Fractal dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Iteration of complex functions . . . . . . . . . . . . . . . . . . . . . . . . . 68
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1 Projective geometry

1.1 Some motivation: Incidences between points and lines
The elementary figures of projective geometry are points, straight lines, and
planes. The elementary results of projective geometry deal with the simplest
possible relations between these entities, namely their incidence. The word
incidence covers all the following relations: A point lying on a straight line,
a point lying in a plane, a straight line lying in a plane. Clearly, the three
statements that a straight line passes through a point, that a plane passes
through a point, that a plane passes through a straight line, are respectively
equivalent to the first three. The term incidence was introduced to give these
three pairs of statements symmetrical form: a straight line is incident with a
point, a plane is incident with a point, a plane is incident with a straight line.
(Geometry and the Imagination – Hilbert, Cohn-Vossen)

In projective geometry, we are interested in statements and configurations that are
invariant under projective transformations. E.g., the incidence of a point lying on a line
is invariant under projection from one plane to another (from some point). Let us take a
closer look at this incidence in the plane.

A point in the Euclidean plane R2 can be described by two Cartesian coordinates

p “ pp1, p2q P R2,

and a line by
ℓ “

␣

p “ pp1, p2q P R2 ˇ

ˇ xn, py ` h “ 0
(

with some n “ pn1, n2q P S1 and h P R, where n can be interpreted as the unit normal
vector of ℓ and h as the oriented distance of the origin to ℓ.

Note that the equation for ℓ can be multiplied by any scalar λ P R, λ ‰ 0 without
changing the line. Thus, we can replace pn1, n2, hq by

¨

˝

a1
a2
a3

˛

‚“ λ

¨

˝

n1
n2
h

˛

‚, with some λ P R, λ ‰ 0,

and write the equation for the line as

a1p1 ` a2p2 ` a3 “
`

a1 a2 a3
˘

¨

˝

p1
p2
1

˛

‚“ 0

Similarly, we can replace pp1, p2, 1q by any non-zero scalar multiple
¨

˝

x1
x2
x3

˛

‚“ µ

¨

˝

p1
p2
1

˛

‚, with some µ P R, µ ‰ 0,

from which the Cartesian coordinates of p can be recovered by

p1 “
x1

x3
, p2 “

x2

x3
.
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The triple px1, x2, x3q, and in particular pp1, p2, 1q, are called homogeneous coordinates
of p.

Now the equation of the incidence of the point p lying on the line ℓ (p P ℓ), or
equivalently, the line ℓ passing through the point p (ℓ Q p) has the symmetric form

a1x1 ` a2x2 ` a3x3 “
`

a1 a2 a3
˘

¨

˝

x1
x2
x3

˛

‚“
`

x1 x2 x3
˘

¨

˝

a1
a2
a3

˛

‚“ 0 (1)

Example 1.1. How to determine if three points p, q, r P R2 lie on a line?
Equation (1) is a linear homogeneous equation in pa1, a2, a3q. Thus, there exists a line

passing through these three points if and only if the linear homogeneous system
¨

˝

p1 p2 1
q1 q2 1
r1 r2 1

˛

‚

¨

˝

a1
a2
a3

˛

‚“ 0

has a non-trivial solution, which is equivalent to

det

¨

˝

p1 p2 1
q1 q2 1
r1 r2 1

˛

‚“ 0.

Example 1.2. How to compute the intersection point of two lines?

ℓ “
␣

p P R2 ˇ

ˇ a1p1 ` a2p2 ` a3 “ 0
(

ℓ̃ “
␣

p P R2 ˇ

ˇ ã1p1 ` ã2p2 ` ã3 “ 0
(

Its homogeneous coordinates are given by a solution of the linear homogeneous system

ˆ

a1 a2 a3
ã1 ã2 ã3

˙

¨

˝

x1
x2
x3

˛

‚“ 0. (2)

If we assume that the two lines are distinct, i.e., the two rows are independent, then the
solution space is one-dimensional

spantxu “ tλx | λ P Ru with some x P R3, x ‰ 0,

and we obtain the intersection point p P R2 with

p1 “
x1

x3
, p2 “

x2

x3
.

What if x3 “ 0? Then
det

ˆ

a1 a2
ã1 ã2

˙

“ 0

and thus ℓ and ℓ̃ are parallel.
The linear homogeneous system (2) always has a solution. Thus, in homogeneous

coordinates of the plane two lines always intersect. In particular, for two parallel lines, the
point of intersection has homogeneous coordinates of the form px1, x2, 0q which represents
a point not in R2, but “at infinity”.
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1.2 Definition of projective spaces
Let V be a vector space of dimension n ` 1 over a field F. Then the projective space of V
is the set

PpV q :“ t1-dimensional subspaces of V u

Its dimension is given by
dim PpV q :“ dim V ´ 1 “ n.

For x P V zt0u we write rxs :“ spantxu. Then rxs is a point in PpV q, and x is called a
representative vector for this point.

If λ P Fzt0u then rλxs “ rxs, and λx is another representative vector for the same
point. This defines an equivalence relation on V zt0u

x „ y ô x “ λy, for some λ P Fzt0u,

and we can identify
PpV q – pV zt0uqä„.

For now we will only consider the real projective space

RPn :“ PpRn`1
q.

1.3 Homogeneous coordinates on RPn

For a point rx1, . . . , xn`1s P RPn the coordinates of a representative vector
px1, . . . , xn`1q P Rn`1 are called homogeneous coordinates. They are unique up to a
common scalar multiple

rx1, . . . , xn`1s “ rλx1, . . . , λxn`1s

for λ P Rzt0u.
If xn`1 ‰ 0 then

rx1, . . . , xn`1s “

„

x1

xn`1
, . . . ,

xn

xn`1
, 1
ȷ

“ ry1, . . . , yn, 1s,

and py1, . . . , ynq are called affine coordinates of the point rxs. This yields a decomposition
of RPn into an affine part and a hyperplane at infinity

RPn
“ trx1, . . . , xn`1s | xn`1 ‰ 0u
loooooooooooooooomoooooooooooooooon

»Rn

Y trx1, . . . , xn`1s | xn`1 “ 0u
loooooooooooooooomoooooooooooooooon

»RPn´1

.

x2 “ 1

x2 “ 0

x3 “ 1

x3 “ 0

Figure 1. Affine coordinates for RP1 and RP2.

5



Example 1.3 (The real projective line RP1). For the real projective line this decompo-
sition is given by

RP1
– R Y RP0

“ R Y t8u,

where RP0 consists of only one point r1, 0s, which is usually denoted by 8, and allowed
as an “admissible” affine coordinate.

Example 1.4 (The real projective plane RP2). For the real projective plane this decom-
position is given by

RP2
– R2

Y RP1.

Thus, we obtain the Euclidean plane compactified by a (projective) line at infinity.

Example 1.5 (The real projective 3-space RP3). For the real projective plane this de-
composition is given by

RP3
– R3

Y RP2.

Thus, we obtain the Euclidean 3-space compactified by a (projective) plane at infinity.

More generally, let b1, . . . , bn`1 be a basis of Rn`1. For x P Rn`1 let x1, . . . , xn`1 P R
such that

x “

n`1
ÿ

i“1
xibi.

Then px1, . . . , xn`1q are called homogeneous coordinates of the point rxs P RPn (with
respect to b1, . . . , bn`1). They depend on the chosen basis and are unique up to a common
scalar multiple. We then identify

rxs – rx1, . . . , xn`1s.

A change of basis acts on the homogeneous coordinates as a general linear transformation
»

—

–

x1
...

xn`1

fi

ffi

fl

ÞÑ

»

—

–

A

¨

˚

˝

x1
...

xn`1

˛

‹

‚

fi

ffi

fl

with A P GLpRn`1q.

1.4 Projective subspaces
For a pk ` 1q-dimensional linear subspace U Ă Rn`1 its projective space

PpUq Ă RPn

is called a k-dimensional projective subspace of RPn.

dim PpUq name
0 point
1 line
2 plane
k k-plane

n ´ 1 hyperplane

Table 1. Naming conventions for projective (sub)spaces.

6



1.5 Meet and join
Let PpU1q, PpU2q Ă RPn be two projective subspaces. Then their intersection, or meet, is
given by

PpU1q X PpU2q “ PpU1 X U2q,

and their span, or join, is given by

PpU1q _ PpU2q “ PpU1 ` U2q.

The dimension formula for linear subspaces carries over to projective subspaces:

dim pPpU1q _ PpU2qq ` dim pPpU1q X PpU2qq “ dim PpU1q ` dim PpU2q.

In particular, a k1-plane and a k2-plane in an n-dimensional projective space with k1 ` k2 ě n
always intersect in an at least pk1 `k2 ´nq-dimensional projective subspace. Thus, certain
incidences are always guaranteed in a projective space.
Example 1.6 (RP2). In RP2 two (distinct) lines always intersect in a point. In affine
coordinates, the two lines are parallel if and only if the intersection point lies on the line
at infinity.
Example 1.7 (RP3). In RP3 two (distinct) planes always intersect in a line. In affine
coordinates, the two planes are parallel if and only if the intersection line lies in the plane
at infinity.

However, in RP3, two lines do not always intersect. They intersect if and only if they
lie in a plane. In affine coordinates, two lines are parallel if and only if the intersection
point lies in the plane at infinity.

1.6 Desargues’ theorem
An incidence theorem is a statement about a projective configuration (of e.g. projective
subspaces) where a certain set of incidences implies another set of incidences. As an
example we state the theorem of Desargues. First in RP3 where it is very easy to verify,
and then in RP2.

Figure 2. Three triangles in perspective and their shadow.
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Theorem 1.1 (Desargues). Let A, A1, B, B1, C, C 1 be six points in RP3, such that
A, B, C span a plane, and A1, B1, C 1 span another plane.

If the three lines AA1, BB1, and CC 1 are distinct and pass through a common point,
then the three points A2 “ BC X B1C 1, B2 “ CA X C 1A1, and C2 “ AB X A1B1 lie on a
common line.

Proof. First, the statement contains the implicit claim, that, e.g., the lines BC and B1C 1

intersect in a point. Indeed, the four points B, C, B1, C 1 lie in a plane since BB1 and CC 1

are concurrent. Thus, the point A2 “ BC X B1C 1 exists.
The two planes

E “ A _ B _ C, E 1
“ A1

_ B1
_ C 1

intersect in a line ℓ “ E X E 1. Since BC P E and B1C 1 P E 1, their intersection point A2

lies in ℓ. Similarly, B2, C2 P ℓ.

Consider what happens if we project such a configuration in RP3 from a point into a
plane, and denote the image points by Ã, B̃, C̃, .... Then we obtain again six points Ã,
Ã1, B̃, B̃1, C̃, C̃ 1 that satisfy that the lines ÃÃ1, B̃B̃1, and C̃C̃ 1 are concurrent and that
the points Ã2 “ B̃C̃ X B̃1C̃ 1, B̃2 “ C̃Ã X C̃ 1Ã1, and C̃2 “ ÃB̃ X Ã1B̃1 are collinear.

Indeed, Desargues theorem also holds in RP2 which can be shown by lifting it to RP3.

Theorem 1.2. Let A, A1, B, B1, C, C 1 be six points in RP2, such that no three lie on a
line.

If the three lines AA1, BB1, and CC 1 pass through a common point, then the three
points A2 “ BC X B1C 1, B2 “ CA X C 1A1, and C2 “ AB X A1B1 lie on a common line.

Proof. We embed RP2 into RP3 as the plane RP2 – E Ă RP3. Thus, E is the plane
which contains the two triangles ABC, A1B1C 1, and the point P which is incident with
the three lines AA1, BB1, and CC 1.

Choose a line through P which is not in E and two points X and Y on it.
The lines XA and Y A1 lie in a plane, so they intersect in a point Ã. Thus,

Ã “ XA X Y A1,

and similarly
B̃ “ XB X Y B1,

C̃ “ XC X Y C 1.

Now A, B, C span E and Ã, B̃, C̃ span another plane Ẽ. The three lines AÃ, BB̃, and
CC̃ pass through a common point (namely X). Thus, we can apply Theorem 1.1 to the
six points A, Ã, B, B̃, C, C̃, and find that the line of intersection E X Ẽ contains

A2
“ BC X B̃C̃ “ BC X B1C 1,

and similarly B2 and C2.
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Figure 3. Desargues’ theorem in RP2 from Desargues’ theorem in RP3.

1.7 Duality
As we have seen in Section 1.1, in homogeneous coordinates x1, x2, x3, the equation for a
line in a projective plane is

a1x1 ` a2x2 ` a3x3 “ 0,

where not all coefficients ai are zero. The coefficients a1, a2, a3 can be seen as homogeneous
coordinates for the line, because if we replace in the equation ai by λai for some λ ‰ 0 we
get an equivalent equation for the same line. Thus, the set of lines in a projective plane
is itself a projective plane, the dual plane. Points in the dual plane correspond to lines
in the original plane. Moreover, if we consider in the above equation the xi as fixed and
the ai as variables, we get an equation for a line in the dual plane. Points on this line
correspond to lines in the original plane that contain rxs. Thus, a the points on a line in
the dual plane correspond to lines in the original plane through a point.

It makes sense to look at this phenomenon in a basis independent way and for arbitrary
dimension. It boils down to the duality of vector spaces.

1.7.1 Dual space

The dual vector space of Rn`1 is the space of linear functionals Rn`1 Ñ R

pRn`1
q

˚ :“
␣

a
ˇ

ˇ a : Rn`1
Ñ R linear

(

.

The dual projective space of RPn is correspondingly defined by

pRPn
q

˚ :“ PppRn`1
q

˚
q.

The natural identification pRn`1q˚˚ “ Rn`1 carries over to the projective setting pRPnq˚˚ “

RPn.
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1.7.2 Dual subspaces

For a projective subspace PpUq Ă RPn its dual projective subspace PpUq‹ Ă pRPnq˚ is
defined by

PpUq
‹ :“ tras P pRPn

q
˚

| apxq “ 0 for all x P Uu .

The dimensions of a projective subspace and its dual projective subspace are related by

dim PpUq ` dim PpUq
‹

“ n ´ 1.

Incidences are reversed by duality

PpU1q Ă PpU2q ô PpU2q
‹

Ă PpU1q
‹.

and meet and join are interchanged

pPpU1q _ PpU2qq
‹

“ PpU1q
‹

X PpU2q
‹,

pPpU1q X PpU2qq
‹

“ PpU1q
‹

_ PpU2q
‹.

Figure 4. Duality in RP2 and RP3.

1.7.3 Duality in coordinates

Let b1, . . . , bn`1 be a basis of Rn`1 and b˚
1 , . . . , b˚

n`1 the corresponding dual basis of pRn`1q˚,
i.e.,

b˚
i pbjq “ δij “

#

1, i “ j

0, i ‰ j.

In homogeneous coordinates with respect to those bases the duality of two points

rx1, . . . , xn`1s – rxs P RPn, ra1, . . . , an`1s – ras P pRPn
q

˚

is expressed by

apxq “ pa1 . . . an`1q

¨

˚

˝

x1
...

xn`1

˛

‹

‚

“

¨

˚

˝

a1
...

an`1

˛

‹

‚

⊺¨

˚

˝

x1
...

xn`1

˛

‹

‚

“ 0.

Thus, duality in linear algebra as well as in projective geometry expresses in a formal way
that a subspace can either be expressed as the span of points or the solutions to a set of
linear equations.

10



If a change of basis acts on the homogeneous coordinates of RPn as
»

—

–

x1
...

xn`1

fi

ffi

fl

ÞÑ

»

—

–

A

¨

˚

˝

x1
...

xn`1

˛

‹

‚

fi

ffi

fl

with A P GLpRn`1q, it acts on the homogeneous coordinates of the dual space pRPnq˚ as
»

—

–

a1
...

an`1

fi

ffi

fl

ÞÑ

»

—

–

A´⊺

¨

˚

˝

a1
...

an`1

˛

‹

‚

fi

ffi

fl

.

1.7.4 The dual of Desargues’ theorem

The interchangeability of points and lines is called the principle of duality
in the projective plane. According to this principle, there belongs to every
theorem a second theorem that corresponds to it dually, and to every figure a
second figure that corresponds to it dually. (Geometry and the Imagination –
Hilbert, Cohn-Vossen)

As an example consider the theorem of Desargues in in RP2 (Theorem 1.2). Then its
dual turns out to be the converse statement, which therefore also holds.

1.8 Projective transformations
Let F P GLpRn`1q an invertible linear transformation. Then the map

rF s : RPn
Ñ RPn, rvs ÞÑ rF pvqs

is called a projective transformation.

Proposition 1.3.

(i) Projective transformations are well-defined maps (do not depend on the representa-
tive vectors of points).

(ii) For F, G P GLpRn`1q

rF s “ rGs ô G “ λF with some λ P R, λ ‰ 0.

(iii) Projective transformations map projective subspaces to projective subspaces, while
preserving their dimension and incidences.

(iv) Vice versa, any bijective map on RPn, n ě 2, that maps lines to lines is a projective
transformation.

(v) Let A1, . . . , An`2 P RPn be n ` 2 points in general position, and let B1, . . . , Bn`2 P

RPn be n ` 2 points in general position. Then there exists a unique projective
transformation

f : RPn
Ñ RPn with fpAiq “ Bi for i “ 1, . . . , n ` 2.

(vi) Projective transformations preserve the cross-ratio of four points on a line.
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1.8.1 Projective transformations in homogeneous coordinates

In homogeneous coordinates a projective transformation rF s : RPn Ñ RPn is represented
by a non-singular matrix F P Rpn`1qˆpn`1q (up to non-zero scalar multiples).

For representative vectors x “ pu1, . . . , un, 1q and with

F “

ˆ

A b
c⊺ d

˙

where A P Rnˆn, b, c P Rn, d P R

we obtain
F pxq “

ˆ

A b
c⊺ d

˙ˆ

u
1

˙

“

ˆ

Au ` b
c⊺u ` d

˙

„

ˆ

Au`b
c⊺u`d

1

˙

if c⊺u ` d ‰ 0. Thus, in affine coordinates, projective transformations are fractional linear
transformations:

Rn
Ñ Rn u ÞÑ Au`b

c⊺u`d

1.8.2 Affine transformations

If we choose a representative matrix of the form

F “

ˆ

A b
0 1

˙

where A P GLpRn
q, b P Rn,

we obtain
ˆ

A b
0 1

˙ˆ

u
1

˙

“

ˆ

Au ` b
1

˙

In affine coordinates, this in an affine transformation

Rn
Ñ Rn u ÞÑ Au ` b

Thus, affine transformations are projective transformations.
Note that affine transformations map the hyperplane at infinity trxs P RPn | xn`1 “ 0u

to itself:
ˆ

A b
0 1

˙ˆ

u
0

˙

“

ˆ

Au ` b
0

˙

In fact, affine transformations are characterized by this property among the projective
transformations.

Proposition 1.4. A projective transformation f : RPn Ñ RPn is an affine transforma-
tion if and only if f maps the hyperplane at infinity trxs P RPn | xn`1 “ 0u to itself.

1.8.3 Euclidean transformations

Euclidean transformations are affine transformations, and thus, projective transforma-
tions. Indeed, if we choose a representative matrix of the form

F “

ˆ

A b
0 1

˙

where A P Opnq, b P Rn,

in affine coordinates, this is a Euclidean transformation.
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Example 1.8 (reflection in a line). Consider a line with unit normal n “ pn1, n2q P S1

through the point q P R2

ℓ “
␣

u “ pu1, u2q P R2 ˇ

ˇ xn, u ´ qy “ 0
(

Then the (Euclidean) reflection σ̂ : R2 Ñ R2 is given by

σ̂puq “ u ´ 2 xu ´ q, ny n

With h :“ ´ xq, ny the equation for the line becomes

xn, uy ` h “ 0

and the reflection can be rewritten as

σ̂puq “ u ´ 2 xu, ny n ´ 2hn “ pI ´ 2nn⊺qu ´ 2hn

Thus, in homogeneous coordinates we can write
ˆ

σ̂puq

1

˙

“

ˆ

I ´ 2nn⊺ ´2hn
0 1

˙

looooooooooooomooooooooooooon

“:F

ˆ

u
1

˙

,

where, indeed, I ´ 2nn⊺ P Op2q. As an extension of σ̂, we can now define a projective
transformation σ : RP2 Ñ RP2 by σprxsq “ rFxs. Note that F 2 “ I and thus σ is an
involution: σ ˝ σ “ id.

Let us also derive the matrix F for the reflection in the case that the line is given in
homogeneous coordinates

ℓ “
␣

rxs P RP2 ˇ

ˇ a⊺x “ a1x1 ` a2x2 ` a3x3 “ 0
(

“ ras
‹ with some a P R3

zt0u

With â :“ pa1, a2q and |â| ‰ 0 it relates to the Euclidean equation by

n “
â

|â|
, h “

a3

|â|
.

Thus,

F “

˜

I ´ 2 ââ⊺

|â|
2 ´2a3â

|â|
2

0 1

¸

„

ˆ

|â|
2 I ´ 2ââ⊺ ´2a3â

0 |â|
2

˙

Note that this formula easily generalizes to the (Euclidean) reflection in a hyperplane in
Rn Ă RPn given by

L “ trxs P RPn
| a⊺x “ 0u “ ras

‹,

which yields

F “

ˆ

|â|
2 I ´ 2ââ⊺ ´2an`1â

0 |â|
2

˙

,

where â “ pa1, . . . , anq.
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1.8.4 Central projections

Another important class of projective transformations are projections.

Example 1.9 (orthogonal projection to a line). Consider a line

ℓ “
␣

u “ pu1, u2q P R2 ˇ

ˇ xn, u ´ qy “ xn, uy ` h “ 0
(

,

with some n P S1, q P R2, and h “ ´ xn, qy. Then the orthogonal projection π̂ : R2 Ñ ℓ is
given by

π̂puq “ u ´ xu ´ q, ny n “ u ´ xu, ny n ´ hn “ pI ´ nn⊺qu ´ hn

Thus, in homogeneous coordinates we can write
ˆ

σ̂puq

1

˙

“

ˆ

I ´ nn⊺ ´hn
0 1

˙

looooooooooomooooooooooon

“:F

ˆ

u
1

˙

.

Note that here F is not invertible, since in particular F p n
0 q “ 0. Thus, we can be extend

π̂ to a map
π : RP2

ztr n
0 su Ñ ℓ

by πprxsq “ rFxs. Since π is not invertible, it does not constitute a projective transfor-
mation. But the restriction of π to any line (that does not contain r n

0 s is.
Similar, to Example 1.8, this can easily be generalized to the orthogonal projection

onto a hyperplane in Rn Ă RPn given by

L “ trxs P RPn
| a⊺x “ 0u “ ras

‹,

which yields

F “

ˆ

|â|
2 I ´ ââ⊺ ´an`1â

0 |â|
2

˙

, (3)

where â “ pa1, . . . , anq.

More generally, let L Ă RPn be a hyperplane and P P RPn a point P R L. Then the
central projection to L with center P is given by

π : RPn
ztP u Ñ L, X ÞÑ pP _ Xq X L

P and X span a line, since X ‰ P . This line intersects L in exactly one point, since
P R L. Thus, this map is well-defined.

Let us show that π is indeed a given by a linear map on the representative vectors.
Let the hyperplane L be given by

L “ trxs P RPn
| apxq “ 0u “ ras

‹ with some a P pRn`1
q

˚
zt0u.

The image of a point X “ rxs ‰ P “ rps lies on the line

X _ P “ Pp
␣

λx ` µp
ˇ

ˇ λ, µ P R2(
q.

Thus, the intersection pX _ P q X L is determined by the condition

apλx ` µpq “ λapxq ` µappq “ 0

14



With λ “ appq and µ “ ´apxq, we obtain
πprxsq “ rappqx ´ apxqps,

which is indeed linear in x.
Again, this linear map is not invertible, since p is in its kernel. Furthermore, dimRPn “

n ą dim L “ n ´ 1. Yet the map becomes a projective transformation once we restrict it
to another hyperplane K with P R K:

π : K Ñ L X “ rxs ÞÑ pP _ Xq X L “ rappqx ´ apxqps

To see that now it is invertible, note that dim K “ dim L. Further appqx ´ apxqp “ 0
implies x “ 0, otherwise we would have rxs “ rps, which contradicts P R K.

In homogeneous coordinates, we can write the representative matrix for the central
projection as

F “ a⊺pI ´ pa⊺.

Example 1.10 (orthogonal projection as central projection). Let us recover the orthog-
onal projection from Example 1.9 as central projection with center at infinity.

Consider the hyperplane
L “ trxs P RPn

| a⊺x “ 0u “ ras
‹ with some a P pRn`1

q
˚
zt0u.

and P “ rps “ râ, 0s “ ra1, . . . , an, 0s. Then
F “ a⊺pI ´ pa⊺

“
`

â⊺ an`1
˘

ˆ

â
0

˙

I ´

ˆ

â
0

˙

`

â⊺ an`1
˘

“ |â|
2 I ´

ˆ

ââ⊺ an`1â
0 0

˙

,

which indeed coincides with (3).
The definition for central projections can be generalized further by decreasing the

dimension of the image space which at the same time increasing the dimension of the
center.

Let L, C Ă RPn be projective subspaces with
C X L “ ∅, C _ L “ RPn

Then the map
π : RPn

zC Ñ L, X ÞÑ pC _ Xq X L

is called (generalized) central projection onto L with center C. Indeed, this map is well-
defined, since dimpC _ Xq “ dim C ` 1 and dim L ` dim C “ n ´ 1 and therefore, C _ X
and L intersect in exactly one point.

Again, the map π becomes invertible and in particular a projective transpormation,
π : K Ñ L, X ÞÑ pC _ Xq X L

once restricted to any subspace K Ă RPn with
dim K “ dim L, C X K “ ∅

Example 1.11 (central projection). If L is a hyperplanes, i.e. dim L “ n´1, the center C
is a point, and the generalized central projection becomes the standard central projection.
Example 1.12 (three skew lines). If n “ 3 and K, L are two non-intersecting lines, then
the center C is another line, and we obtain three skew lines.
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2 Plane curves and envelopes of lines

2.1 Plane curves
Definition 2.1.

(i) A (plane) curve is a smooth map

γ : I Ñ R2

with some interval I Ă R.

(ii) Let γ be a curve.

§ The vectors
9γptq

are called the velocity or tangent vectors of γ.
§ The function

vptq :“ } 9γptq}

is called the speed of γ.
§ The function

sptq :“
ż t

t1

vptqdt

is called the arc-length of γ, here I “ rt1, t2s.
§ If vptq “ 1 for all t P I, then γ is called arc-length parametrized.

(iii) A curve γ is called regular if

9γptq ‰ 0 for all t P I.

(iv) Let γ be a regular curve and t P I.

§ Any non-zero scalar multiple of 9γptq is called a tangent vector at t P I.
§ The line

T ptq :“ tγptq ` α 9γptq | α P Ru

is called the tangent line at t P I.
§ Any vector nptq orthogonal to 9γptq, i.e.,

xnptq, 9γptqy “ 0,

is called a normal vector at t P I. In particular one can choose.

nptq “
1

vptq
J 9γptq, J “ p 0 ´1

1 0 q,

which is called the unit normal vector at t P I.
§ The line

Nptq :“
␣

x P R2 ˇ

ˇ x 9γptq, x ´ γptqy “ 0
(

“ tγptq ` αnptq | α P Ru .

is called the normal line at t P I.
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Note that the derivative of the arc-length is the speed

9sptq “ vptq.

For a regular curve γ the arc-length sp¨q is monotonically increasing, and thus invertible.
We call its inverse function tp¨q “ s´1p¨q and thus write

γpsq “ pγ ˝ tqpsq.

For the derivative w.r.t. arc-length we write

γ1
“

d
ds

γ “
dt

ds

d
dt

γ “
1
v

9γ.

In particular, the parametrization of γ w.r.t. arc-length has unit speed

}γ1
} “ 1,

which implies
0 “

d
ds

}γ1
}

2
“

d
ds

xγ1, γ1
y “ 2 xγ2, γ1

y .

Thus γ2 always points in normal direction.

Definition 2.2. Let γ be a regular curve, and let n be the unit normal vector field of γ.
Then

κpsq “ xγ2
psq, npsqy

is called the (signed) curvature of γ at s, i.e.

γ2
psq “ κpsqnpsq.

In terms of an arbitrary parametrization, and with unit tangent vector

τptq :“ 9γptq

vptq

the curvature can be written as

κptq “
1

vptq
x 9τptq, nptqy “

1
vptq2 x:γptq, nptqy

“
1

vptq3 x:γptq, J 9γptqy “
1

vptq3 detp 9γptq, :γptqq.

Example 2.1. Consider a parametrized circle of radius r ą 0

γptq “ r

ˆ

cosptq
sinptq

˙

, t P r0, 2πs.

Then

9γptq “ r

ˆ

´ sinptq
cosptq

˙

, vptq “ } 9γptq} “ r, τptq “
9γptq

vptq
“

ˆ

´ sinptq
cosptq

˙

,

nptq “ Jτptq “

ˆ

´ cosptq
´ sinptq

˙

, 9τptq “

ˆ

´ cosptq
´ sinptq

˙

.

Thus, the curvature of γ is

κptq “
1

vptq
x 9τptq, nptqy “

1
r

.
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Definition 2.3. Let γ : I Ñ R2 be a regular curve, and n its unit normal vector field. If
κptq ‰ 0, then the osculating circle at t P I is the circle with center

cptq “ γptq `
1

κptq
nptq

and radius
rptq “

1
|κptq|

.

If κptq “ 0, then we consider the tangent line at t P I to be the osculating circle.

The osculating circle touches its curve the corresponding point. Furthermore, if
parametrized in the same direction as the curve, it has the same (signed) curvature.

It can also be shown that it is the best approximating circle in the following sense.
Consider the circle through three points of the curve γptq, γpt ´ ϵq, and γpt ` ϵq. Then in
the limit ϵ Ñ 0, this circle converges to the osculating circle.

2.2 Discrete plane curves
Definition 2.4.

(i) A discrete (plane) curve is a map

γ : I Ñ R2

with some interval I Ă Z. We denote its vertices by

γk “ γpkq for k P I.

(ii) Let γ be a discrete curve.

§ The vectors
∆γk :“ γk`1 ´ γk

are called discrete velocity vectors, vertex difference vectors, or edge tangent vec-
tors. They are naturally defined on edges pk, k ` 1q.

§ We define the turning angle at a vertex k P I by

φk – ?p∆γk, ∆γk´1q P r´π, πs.

Δγk-1

Δγk

φk

Figure 5. Turning angle at a vertex of a discrete curve.

§ If
}∆γk} “ }γk`1 ´ γk} “ 1

then γ is called discrete arc-length parametrized curve.

18



(iii) A discrete curve γ is called regular if any three successive points γk´1, γk, γk`1 are
distinct, or equivalently, if any two successive edge tangent vectors are not anti-
parallel.

(iv) Let γ be a discrete curve, k P I.

§ The line
Tk :“ γk _ γk`1

is called the edge tangent line at the edge pk, k ` 1q.
§ The perpendicular bisector Nk of γk and γk`1 is called the edge normal line at

the edge pk, k ` 1q.

We now introduce two types of discrete osculating circles.
Definition 2.5. Let γ : I Ñ R2 be a regular discrete curve. Then the circle Ck through
three successive points γk´1, γk, γk`1 is called the vertex osculating circle at k P I.

γk

γk`1

γk´1

Figure 6. Vertex osculating circle.

§ Note that the two involved edge normals Nk´1 and Nk both contain the center of Ck.

§ The discrete curvature at vertex k can now be defined by the radius of the vertex
osculating circle. The radius is given by }γk`1 ´ γk´1} “ 2Rk sin φk which leads to the
curvature

κk “
2 sin φk

}γk`1 ´ γk´1}
.

§ The vertex osculating circle inherits an orientation from the order of the three points
on it. This can be used to also associate a sign to the discrete curvature, which
corresponds to the sign in the formula above.

§ The vertex osculating circle can also be used to define vertex tangent lines as the line
tangent to Ck in the point γk.

Definition 2.6. Let γ : I Ñ R2 be a regular discrete curve. Then the circle Ck that
touches three consecutive edge tangent lines Tk´1, Tk, Tk`1 is called the edge osculating
circle at pk, k ` 1q P I.

R

γk ||∆γ||

γk`1

ϕk

2 ϕk`1
2

Figure 7. Edge osculating circle.
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§ For three (non-concurrent) lines in R3 there are four circles touching them. By en-
dowing the tangent lines with the orientation coming from the order of the points of
the curve on them, this choice can be made unique.

⇝

Figure 8. Edge osculating circle from oriented tangent lines.

§ Note that the (correctly chosen) angle bisectors of successive edge tangent lines contain
the center of the edge osculating circle. Thus, the edge osculating circle can be used
to define edge normal lines.

§ The (oriented) edge osculating circle can be used to define a (signed) discrete curvature
at the edge pk, k ` 1q. The radius is given by }∆γk} “ Rkptan φk

2 ` tan φk`1
2 q. This

leads to the curvature
κk “

tan φk

2 ` tan φk`1
2

}∆γk}
.

Computing angle bisectors Consider two oriented lines

ℓ “
␣

x P R2 ˇ

ˇ xn, xy ` h “ 0
(

, ℓ̃ “
␣

x P R2 ˇ

ˇ xñ, xy ` h̃ “ 0
(

with n, ñ P S1, h, h̃ P R, and orientation coming from the normal vectors n, ñ.
Then the two angle bisectors of ℓ and ℓ̃ are given by

m` “
@

x P R2, xn ` ñ, xy ` h ` h̃ “ 0
D

,

m´ “
@

x P R2, xn ´ ñ, xy ` h ´ h̃ “ 0
D

.

Reflection in m´ maps ℓ to ℓ̃, but with opposite orientation, while reflection in m` maps
ℓ to ℓ̃ with the same orientation.

Thus, for two adjacent edge tangent lines Tk, Tk`1 the orientation reversing angle
bisector m´ is the desired vertex normal line.

2.3 Envelopes
Consider a one-parameter family of curves C (implicitly) given by

Cptq “
␣

x P R2 ˇ

ˇ F pt, xq “ 0
(

, t P I

with some smooth map F : I ˆ R2 Ñ R.

Definition 2.7. A curve γ : I Ñ R2 is called envelope of the one-parameter family C if
γ is tangent to Cptq in the point γptq, i.e.

F pt, γptqq “ 0 (γptq lies on Cptq) (4)
x∇xF pt, γptqq, 9γptqy “ 0 (γ in tangent direction of Cptq at γptq) (5)
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This is a differential equation for γ. But we can reformulate this in the following way.
Equation (4) implies

0 “
d
dt

F pt, γptqq “ DF pt, γptqq

ˆ

1
9γptq

˙

“
`

BtF Bx1F Bx2F
˘

ˆ

1
9γptq

˙

“ BtF pt, γptqq ` x∇xF pt, γptqq, 9γptqy .

Thus, equations (4) and (5) are equivalent to

F pt, γptqq “ 0
BtF pt, γptqq “ 0,

which is not a differential equation in γ anymore.
In particular, if C is a family of lines, then the equations for the envelope are two

linear equations in γ.

Example 2.2. For a regular curve γ : I Ñ R2 the envelope of its tangent lines is the
curve γ itself,

Example 2.3. Consider
F pt, xq “ x1 ´ 2tx2 ` t2.

Then
BtF pt, xq “ ´2x2 ` 2t.

implies x2 “ t. Substituting this into F pt, xq “ 0 we obtain x1 “ t2. Thus the envelope is
given by

γptq “

ˆ

t2

t

˙

which is a parabola.
Note, that, in homogeneous coordinates, the equation for the lines is given by

x1 ´ 2tx2 ` t2x3 “
`

1 ´2t t2˘

¨

˝

x1
x2
x3

˛

‚“ 0

which describes a curve t ÞÑ r1, ´2t, t2s in pRP2q˚. This curve is implicitly given by

x2
2 ´ 4x1x3 “ 0,

which is a conic in pRP2q˚. This is an example of the general fact, that (the envelope) of
the dual of a conic is a conic.

Discrete envelope of a family of lines Let C : Z Ą I Ñ LinespR2q be a discrete
one-parameter family of lines, such that no adjacent lines are equal or parallel.

Then we can define the discrete envelope as the discrete curve given by intersections
of adjacent lines

γk :“ Ck X Ck`1.

In this way the edge tangent lines of γk coincide with the lines of C,

Tk “ Ck`1.
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2.4 Evolute
Definition 2.8. The evolute of a regular curve γ is the envelope of its normal lines N .

The envelope of the family of normal lines is described by the equations

F pt, xq :“ x 9γptq, x ´ γptqy “ 0
BtF pt, xq “ x:γ, x ´ γptqy ´ } 9γptq}

2
“ 0

With unit normal field n of γ, the first equation is equivalent to

x “ eptq “ γptq ` αptqnptq

with some function α. Then, αptq can be determined by the second equation

x:γ, eptq ´ γptqy ´ } 9γptq}
2

“ αptq x:γptq, nptqy ´ } 9γptq}
2

“ 0

to be
αptq “

} 9γ}
2

x:γptq, nptqy
“

1
κptq

,

which is well-defined as long as x:γptq, nptqy ‰ 0, i.e., κptq ‰ 0. Thus, the evolute of γ is
given by

eptq “ γptq `
1

κptq
nptq,

and we find

Proposition 2.1. The evolute of a regular curve consists of the centers of its osculating
circles.

Proposition 2.2. Let γ : I Ñ R2 be a regular curve. Then its evolute e is non-regular in
t P I if and only if the curvature κ of γ has a local extremum in t P I, i.e.,

9eptq “ 0 ô 9κptq “ 0

Proof. Let γ be arc-length parametrized. Then

e1
psq “ γ1

psq `

ˆ

1
κpsq

˙1

npsq `
1

κpsq
n1

psq.

For the normal vector we have 0 “ d
ds

xnpsq, npsqy “ 2 xn1psq, npsqy, thus n1psq “ αpsqγ1psq

where
αpsq “ xn1

psq, γ1
psqy “ ´ xnpsq, γ2

psqy “ ´κpsq.

So,
n1

psq “ ´κpsqγ1
psq

Thus,

e1
psq “

ˆ

1
κpsq

˙1

npsq “ ´
κ1psq

κpsq2 npsq
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Definition 2.9. A parallel curve of γ is a curve of the form

γrptq :“ γptq ` rnptq, r P R.

where n is the unit normal vector field of γ

Proposition 2.3. Parallel curves have the same evolutes.

Proof. We show that parallel curves have the same normal lines.

x 9γrptq, nptqy “ x 9γptq ` r 9nptq, nptqy “ 0.

Example 2.4. Consider a parabola

γptq :“
ˆ

t
t2

˙

Then
9γptq “

ˆ

1
2t

˙

, :γptq “

ˆ

0
2

˙

, nptq “ J 9γptq

ˆ

´2t
1

˙

and
x:γptq, nptqy “ 2, } 9γptq}

2
“ 1 ` 4t2.

Therefore, the evolute is given by

eptq “ γptq `
} 9γ}

2

x:γptq, nptqy
nptq “

ˆ

´4t3

1
2 ` 3t2

˙

,

which is a semicubic parabola.
Note that it has a cusp at the point where the parabola has maximal curvature.

Discrete evolutes Let γ : Z Ą I Ñ R2 be a regular discrete curve.

§ We can define its vertex evolute as the discrete envelope of adjacent edge normal lines.
The vertex evolute consists of the centers of the vertex osculating circles.

§ Alternatively, we can define its edge evolute as the discrete envelope of adjacent vertex
normal lines. The edge evolute consists of the centers of the edge osculating circles.
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Figure 9. Top: Smooth and discrete curve and its tangent lines. Bottom: Smooth and
discrete curve and its evolute.

2.5 Involute
Definition 2.10. An involute of a regular curve γ is a curve orthogonal to the tangent
lines.

Thus, an involute Γ : I Ñ R2 must satisfy

Γptq “ γptq ` αptqτptq, τptq “
9γptq

} 9γptq}

with some α : I Ñ R and

0 “

A

9Γptq, 9γptq
E

“ x 9γptq, 9γptq ` 9αptqτptq ` αptq 9τptqy “ } 9γptq}
2

` 9αptq } 9γ} .

Thus,
9αptq “ ´ } 9γptq}

We obtain

Γaptq “ γptq ´
9γptq

} 9γptq}

ż t

a

} 9γptq} dt “ γptq ´
9γptq

} 9γptq}
psptq ´ spaqq,

where s is the arc-length of γ.
Thus, in terms of arc-length parametrization the involute is given by

Γapsq “ γpsq ´ γ1
psqps ´ aq.

The distance of the involute to the corresponding curve (along the tangent line) satisfies

}Γapsq ´ γpsq} “ |s ´ a| .
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§ Thus, the involute is the locus of a point on a piece of taut string as the string is either
unwrapped from or wrapped around the curve starting at the point γpaq.

§ Equivalently, it is the locus of the point on a straight line as it rolls without slipping
along the curve.

Proposition 2.4. Let γ be a regular curve.

(i) The involute is regular at points where κptq ‰ 0 and t ‰ a.

(ii) The normal lines of the involute are the tangents of γ.

(iii) The evolute of the involute is γ.

(iv) The involutes are parallel curves.

Proof.

(i) Γ1
apsq “ γ1psq ´ γ2psqps ´ aq ´ γ1psq “ ´ps ´ aqκpsqnpsq.

(ii) By definition of the involute xΓ1
apsq, γ1psqy “ 0.

(iii) Follows from (ii).

(iv) Γapsq “ Γ0psq ` aγ1psq, where γ1psq is the unit normal at Γ0psq.

Remark 2.1. The one-parameter family of tangent lines of a curve together with its one-
parameter family of involutes form an orthogonal coordinate system.

Example 2.5 (Involutes of a circle). Consider a parametrized circle of radius r ą 0

γptq “ r

ˆ

cosptq
sinptq

˙

, t P r0, 2πs.

Then
9γptq “ r

ˆ

´ sinptq
cosptq

˙

, vptq “ } 9γptq} “ r, sptq ´ spaq “ rpt ´ aq.

Thus, the involutes of γ are given by

Γaptq “ r

ˆ

cosptq ´ pt ´ aq sinptq
sinptq ` pt ´ aq cosptq

˙

This is a common shape for the teeth of gears, the so called “involute gears”.

Example 2.6 (Involute of a semi-cubic). Consider the semicubic parabola, we obtained
as the evolute of a parabola. We reconstruct the parabola as one involute of semicubic
parabola.

γptq “

ˆ

´4t3

1
2 ` 3t2

˙

, t ą 0.

Then

9γptq “

ˆ

´12t2

6t

˙

, } 9γptq} “ 6t
?

1 ` 4t2,

ż t

0
} 9γptq} dt “

1
2p1 ` 4t2

q
3
2 ´

1
2 .
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For simplicity, we add a constant of integration 1
2 and obtain

Γ0ptq “

ˆ

´4t3

1
2 ` 3t2

˙

`
1

6t
?

1 ` 4t2

ˆ

´12t2

6t

˙

1
2p1 ` 4t2

q
3
2 “

ˆ

t
t2

˙

,

which is a parabola.
Note that the other involutes of the semicubic parabola are not parabolas.

Discrete involutes We can derive constructions for discrete involutes from the property
that evolute of the involute should be the original curve, i.e., the tangent lines of the
original curve should be the normal lines of the evolute.

Let γ : Z Ă I Ñ be a regular discrete curve.

§ Choose some starting point Γ0 P R2

§ Obtain Γk`1 from Γk by reflection in tangent line Tk of γ.

Then Tk is the edge normal line of Γ at the edge pk, k ` 1q.
Alternatively:

§ Choose some starting edge tangent line T̃0 “ Γ0 _ Γ1.

§ Obtain T̃k`1 from T̃k by reflection in tangent line Tk of γ, and thus, Γk`1 “ T̃k X Tk`1.

Then Tk is the vertex normal line of Γ at the vertex k ` 1.

Figure 10. Top: Smooth and discrete curve and its normal lines. Bottom: Smooth and
discrete curve and one of its involutes.
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3 Conics and quadrics
While projective subspaces are described by linear homogeneous equations, we now add
the objects that are described by quadratic homogeneous equations.

Conics or conic sections are planar sections of a cone of revolution (or a cylinder)

hyperbola

ellipse

parabola

Figure 11. Ellipse, hyperbola, and parabola as a planar section of a cone.

It can be shown that conic sections correspond exactly to the sets of solutions of
quadratic equations

␣

px, yq P R2 ˇ

ˇ q11x
2

` 2q12xy ` q22y
2

` 2q13x ` 2q23y ` q33 “ 0.
(

Introducing homogeneous coordinates x “ x1
x3

, y “ x2
x3

, the (non-homogeneous) quadratic
equation in 2 variables can be written as a homogeneous quadratic equation in 3 variables

q11x
2
1 ` 2q12x1x2 ` q22x

2
2 ` 2q13x1x3 ` 2q23x2x3 ` q33x

2
3 “ 0,

or equivalently,

bpx, xq :“
`

x1 x2 x3
˘

¨

˝

q11 q12 q13
q12 q22 q23
q13 q23 q33

˛

‚

loooooooooomoooooooooon

“:Q

¨

˝

x1
x2
x3

˛

‚“ 0

where Q is a symmetrice matrix, i.e. Q⊺ “ Q, and b is a symmetric bilinear form on R3

b : R3
ˆ R3

Ñ R.

Example 3.1. An ellipse is a conic section. In normal form in R2 (up to a Euclidean
transformation) it is given by

"

px, yq P R2
ˇ

ˇ

ˇ

ˇ

´x

a

¯2
`

´y

b

¯2
“ 1

*

.

Introducing homogeneous coordinates x “ x1
x3

, y “ x2
x3

, we can write its equation as a
homogeneous quadratic equation

x2
1

a2 `
x2

2
b2 ´ x2

3 “
`

x1 x2 x3
˘

¨

˝

1
a2

1
b2

´1

˛

‚

¨

˝

x1
x2
x3

˛

‚“ 0.
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3.1 Bilinear forms
Let V be a vector space over R of dimension n ` 1.

A bilinear form on V is a map

b : V ˆ V Ñ R

which is linear in both arguments.
Let e1, . . . , en`1 be a basis of V . Then the matrix Q “ pqijq P Rpn`1qˆpn`1q

qij :“ bpei, ejq for i, j “ 1, . . . , n ` 1

is called the representative matrix, or Gram matrix, of the bilinear form b.
For two coordinate vectors x “

ř

i xiei, y “
ř

i yiei P V we have

bpx, yq “ x⊺Qy.

A change of coordinates x̃ “ Ax with A P GLpn ` 1q acts on the representative matrix
as

Q̃ “ A´⊺QA´1.

Symmetric bilinear forms and quadratic forms

A bilinear form is called symmetric if

bpx, yq “ bpy, xq for x, y P V,

or equivalenty, if its representative matrix is symmetric

Q⊺ “ Q.

The space of symmetric bilinear forms SympV q is a linear subspace of dimension

dim SympV q “
pn ` 1qpn ` 2q

2 .

A symmetric bilinear form bp¨, ¨q defines a corresponding quadratic form bp¨q

bpxq :“ bpx, xq for x P V.

Vice versa, a quadratic form uniquely determines its bilinear form (polarization identity)

2bpx, yq “ bpx ` yq ´ bpxq ´ bpyq,

and thus, the vector spaces of symmetric bilinear forms on V and quadratic forms on V
are isomorphic.

3.2 Quadrics
Definition 3.1. Let V be a vector space over R of dimension n ` 1, and b a non-zero
symmetric bilinear form on V . Then the zero set

Qb :“ trxs P PpV q | bpxq “ 0u .

is called a quadric in PpV q.
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Example 3.2. The quadratic form

bpxq “ x2
1 ` x2

2 ´ x2
3

defines a quadric (conic) in RP2

Qb “
␣

rxs P RP2 ˇ

ˇ bpxq “ x2
1 ` x2

2 ´ x2
3 “ 0

(

In affine coordinates x3 “ 1 this is a circle

x2
1 ` x2

2 “ 1.

A non-zero scalar multiple of b defines the same quadric:

Qb “ Qλb for λ ‰ 0.

Remark 3.1. For some very degenerate images, e.g. if Qb is empty, the reverse statement is
not true over R. However, if we either exclude these cases, or consider the complexification
of real quadrics, it holds that

QC
b “ QC

b̃ ô b “ λb̃ for some λ ‰ 0.

Example 3.3. The quadratic forms

bpxq “ x2
1 ` x2

2 ` x2
3, b̃pxq “ x2

1 ` 4x2
2 ` x2

3,

both define empty conics in RP2

Qb “ Qb̃ “ H

even though b ‰ λb̃ for all λ ‰ 0. However, the point r1, i, 0s is contained in QC
b , but not

in QC
b̃
. Thus,

QC
b ‰ QC

b̃ .

Thus, we can identify the space of quadrics with the projective space P SympV q. Its
dimension is given by

dim P SympV q “ dim SympV q ´ 1 “
pn ` 1qpn ` 2q

2 ´ 1 “
npn ` 3q

2 .

and the coefficients
qij “ bpei, ejq, for j ď i

can be taken as homogeneous coordinates on the space of quadrics.

Determining a quadric through given points

For a point rxs P PpV q, the quadrics represented by rQs P P SympV q that contain this
point are given by the equation

x⊺Qx “

n`1
ÿ

i,j“1
xixjqij “ 0,

which is an equation in the pn`1qpn`2q

2 variables qij and determines a hyperplane in the
space of quadrics P SympV q. Similarly, pn`1qpn`2q

2 ´ 1 points determine a system of linear
equations, which has a one-dimensional solution space (if all equations are linearly inde-
pendent). Thus, generically, pn`1qpn`2q

2 ´ 1 points uniquely determine a quadric though
them.
Example 3.4. In RP5, five points (no four of which are on a line) determine a unique
conic.
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Singular points of a quadric

A point rxs P PpV q is called a singular point of the quadric Qb if x P ker b, where

x P ker b “ tx P V | bpx, yq “ 0 for all y P V u ,

or equivalently, in homogeneous coordinates, if

Qx “ 0.

Thus, if rk Q “ k the singular points of Qb are contained in a projective subspace of
dimension n ´ k, given by

Ppker bq.

The quadric Qb is called non-degenerate if it has no singular points, or equivalently, if
Q has full rank.

Example 3.5. The quadratic form on R3

bpxq “ x2
1 ´ x2

2 “ px1 ´ x2qpx1 ` x2q

defines a conic in RP2 consisting of a pair of lines

Qb “
␣

rxs P RP2 ˇ

ˇ bpxq “ x2
1 ´ x2

2 “ 0
(

“
␣

rxs P RP2 ˇ

ˇ x1 ´ x2 “ 0
(

Y
␣

rxs P RP2 ˇ

ˇ x1 ´ x2 “ 0
(

“
␣

rλ, ˘λ, µs P RP2 ˇ

ˇ λ, µ P R
(

It has one singular point given by r0, 0, 1s. Thus it is a degenerate conic.

Lines on a quadric

Lemma 3.1. If three collinear points are on a conic, then the conic contains the whole
line.

Proof. Exercise.

3.3 Projective classification of quadrics in RPn

Two quadrics Q, Q̃ Ă RPn are called projectively equivalent if there exists a projective
transformation f : RPn Ñ RPn such that

fpQq “ Q̃

or equivalently, if there exists F P GLpn ` 1q and λ P R, λ ‰ 0, such that

Q̃ “ λF ⊺QF,

where Q and Q̃ are representative matrices for Q and Q̃, respectively. Note, that f “

rF ´1s.
By Sylvester’s law of inertia, there exists an F P Opn ` 1q such that

Q̃ “ F ⊺QF “ diagpλ1, . . . , λr, µ1, . . . , µs, 0, . . . , 0
loomoon

t

q
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where,
λi ą 0, µi ă 0, r ` s ` t “ n.

Thus, after applying this transformation the equation for the quadric is of the form

λ1x
2
1 ` . . . ` λrx

2
r ` µ1x

2
r`1 ` . . . µsx

2
r`s “ 0

By applying a second transformation

F “ diagp 1?
λ1

, . . . , 1?
λr

, 1?
´µ1

, . . . , 1?
´µs

, 1, . . . , 1
loomoon

t

q

we obtain
Q̃ “ diagp1, . . . , 1

loomoon

r

, ´1, . . . , ´1
looooomooooon

s

, 0, . . . , 0
loomoon

t

q,

or as an equation for the quadric

x2
1 ` . . . ` x2

r ´ x2
r`1 ` . . . ´ x2

r`s “ 0.

The tuple pr, s, tq, also written as

p` ¨ ¨ ¨ `
loomoon

r

´ ¨ ¨ ¨ ´
loomoon

s

0 ¨ ¨ ¨ 0
loomoon

t

q,

is called the signature of the quadric. We define the signature up to the following equiv-
alence

pr, s, tq „ ps, r, tq,

and obtain the following classification result.

Theorem 3.2. Two quadrics in RPn are projectively equivalent if and only if they have
the same signature.

Quadrics in RP1

§ p``q empty quadric. By complexification these are two complex conjugate points.

§ p`´q two points.

§ p`0q one (double) point.

Quadrics in RP2 (conics)

§ p` ` `q empty conic. By complexification this is an imaginary conic.

§ p` ` ´q oval conic. Its normal form is given by

x2
1 ` x2

2 ´ x2
3 “ 0

In affine coordinates this conic is an ellipse, a hyperbola, or a parabola. Indeed, if we
choose x3 “ 1, the equation becomes the equation for a circle

x2
1 ` x2

2 “ 1.
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If we choose coordinates y1 “ x1, y2 “ x3, y3 “ x2 and y3 “ 1, the equation becomes
the equation for a hyperbola

y2
1 ´ y2

2 “ 1

If we choose coordinates y1 “ x1, y2 “ x2 ` x3, y3 “ x3 ´ x2 and y3 “ 1, the equation
becomes the equation for a parabola

y2
1 “ y2.

hyperbola

parabola

projective

transf. ellipse

projective

transf.

projective

transf.

line mapped
to infinity

Figure 12. Projective transformations mapping a circle onto an ellipse, a parabola, or a
hyperbola.

§ p` ` 0 q point. By complexification these are two imaginary lines that intersect in a
real point.

§ p` ´ 0 q pair of lines.

§ p` 0 0 q one (double) line.

Remark 3.2. Note that in RP2 only degenerate conics may contain lines.
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Quadrics in RP3

non-degenerate quadrics:

affine type
affine signature

affine normal form picture
signature

projective normal form

ellipsoid p` ` `´q´

x2 ` y2 ` z2 “ 1 p` ` `´q

x2
1 ` x2

2 ` x2
3 ´ x2

4 “ 0

2-sheeted
hyperboloid

p` ` `´q`

x2 ` y2 ´ z2 “ ´1

elliptic
paraboloid

p` ` `´qp
z “ x2 ` y2

1-sheeted
hyperboloid

p` ` ´´q´

x2 ` y2 ´ z2 “ 1 p` ` ´´q

x2
1 ` x2

2 ´ x2
3 ´ x2

4 “ 0

hyperbolic
paraboloid

p` ` ´´qp
z “ x2 ´ y2

empty
(imaginary)

p` ` ``q`

x2 ` y2 ` z2 “ ´1
p` ` ``q

x2
1 ` x2

2 ` x2
3 ` x2

4 “ 0

Table 2. Affine types of non-degenerate quadrics in R3 and the corresponding projective
types in RP3.

33



degenerate quadrics:

affine type
affine signature

affine normal form picture
signature

projective normal form

cone p` ` ´0q0
x2 ` y2 ´ z2 “ 0

p` ` ´0q

x2
1 ` x2

2 ´ x2
3 “ 0

elliptic
cylinder

p` ` ´0q´

x2 ` y2 “ 1

hyperbolic
cylinder

p` ` ´0q`

x2 ´ y2 “ 1

parabolic
cylinder

p` ` ´0qp
z “ x2

one point
(imaginary cone)

p` ` `0q0
x2 ` y2 ` z2 “ 0 p` ` `0q

x2
1 ` x2

2 ` x2
3 “ 0

empty
(imaginary cylinder)

p` ` `0q`

x2 ` y2 “ ´1

two intersecting
planes

p` ´ 00q0
x2 ´ z2 “ 0 p` ´ 00q

x2
1 ´ x2

2 “ 0

two parallel
planes

p` ´ 00q´

x2 “ 1

one plane
(and one at infinity)

p` ´ 00qp
x “ 0

one line
(two intersecting imaginary planes)

p` ` 00q0
x2 ` z2 “ 0 p` ` 00q

x2
1 ` x2

2 “ 0

empty
(two parallel imaginary planes)

p` ` 00q`

x2 “ ´1

one “double” plane p`000q0
x2 “ 0 p`000q

x2
1 “ 0

empty
(one “double” plane at infinity)

p`000q`

1 “ 0

Table 3. Affine types of degenerate quadrics in R3 and the corresponding projective types
in RP3.
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Remark 3.3. In RP3 the non-degenerate quadrics of signature (++--) contain lines.

3.4 Affine classification of quadrics in Rn Ă RPn

Two quadrics Q, Q̃ Ă RPn are called affine equivalent if there exists an affine transfor-
mation f : RPn Ñ RPn such that

fpQq “ Q̃

or equivalently, if there exists F P GLpn ` 1q with

F “

ˆ

A b
0 1

˙

, A P GLpnq, b P Rn,

and a λ P R, λ ‰ 0, such that
Q̃ “ λF ⊺QF.

With
Q “

ˆ

S q
q⊺ σ

˙

, S P Sympnq, q P Rn, σ P R.

we obtain
F ⊺QF “

ˆ

A⊺SA A⊺pSb ` qq

pb⊺S ` q⊺qA b⊺Sb ` 2q⊺b ` σ

˙

,

Thus, in a first step, we can use A to bring S to the form

S “ diagp1, . . . , 1, ´1, . . . , ´1
looooooooooomooooooooooon

k

, 0, . . . , 0q.

Case 1: There exists b P Rn such that Sb ` q “ 0. Then Q can be brought to the form

Q “

ˆ

S 0
0 σ

˙

, S “ diagp1, . . . , 1, ´1, . . . , ´1, 0, . . . , 0q, σ “ 0, 1, ´1.

Here σ “ 0, 1, ´1 can be achieved by rescaling Q and then using A to rescale S. If pr, s, tq
is the projective signature of Q, we write the affine signature in this case as

pr, s, tqσ

with
pr, s, tqσ „ ps, r, tq´σ

Case 2: There exists no b P Rn such that Sb ` q “ 0. Then S must be singular, i.e.,
k ă n. Now we apply the following steps:

§ We choose b P Rn such that the first k components of Sb ` q vanish.

§ We choose A such that A⊺pSb ` qq “ en without changing S.

§ We choose b “ ´σ
2 en to eliminate σ.

35



Thus, Q can be brought to the form

Q “

¨

˝

Ŝ 0

0 0 1
1 0

˛

‚, Ŝ “ diagp1, . . . , 1, ´1, . . . , ´1, 0, . . . , 0q

If pr, s, tq is the projective signature of Q, we write the affine signature in this case as

pr, s, tqp

with
pr, s, tqp „ ps, r, tqp.

Note that the block p 0 1
1 0 q corresponds to a projective signature of p`´q. Thus, an affine

signature pr, s, tqp is only possible with r ą 0 and s ą 0.

Theorem 3.3. Two quadrics in RPn are affine equivalent if and only if they have the
same affine signature.

3.5 Signature of subspaces
Let Q Ă RPn be a quadric, and K “ PpUq Ă RPn a projective subspace. Then the
signature of K (with respect to Q) is the signature of Q restricted to K:

trxs P K | bpxq “ 0u

Thus, it is determined by the restriction of the symmetrice bilinear form b to U .

Signature of a point A quadric Q Ă RPn separates RPn into two connected compo-
nents. For point rxs P RPn the signature can take 3 possible values:

§ (+) if bpxq ą 0. The point lies on one side of Q.

§ (-) if bpxq ă 0. The point lies on the other side of Q.

§ (0) if bpxq “ 0. The point lies on Q.

Signature of a line A line ℓ Ă RPn can have the following possible signatures:

§ (++) The line does not intersect Q.

§ (+-) The line intersects Q in two points.

§ (+0) The line intersects Q in one point.

§ (00) The line is contained in Q.

If the line is given as the span of two points ℓ “ rxs _ rys, the representative matrix
for b on the corresponding subspace is given by

Q “

ˆ

bpx, xq bpx, yq

bpx, yq bpy, yq

˙

.

36



Note that its determinant

det Q “ bpx, xqbpy, yq ´ bpx, yq
2

is the product of its eigenvalues. Thus, if we exclude the case p00q, which corresponds to
Q “ 0, the other three cases can be distinguished by the sign of the determinant. The
line ℓ has signature

(+-) ô det Q ă 0,

(++) ô det Q ą 0,

(+0) ô det Q “ 0.

3.6 Tangent lines and tangent cones
Let Q Ă RPn be a quadric.

A tangent line of Q is a line that intersects Q in exactly one point. We have established
that these are the lines of signature (+0), and can be characterized in the following way.

Lemma 3.4. A line rxs _ rys not contained in Q is a tangent line of Q, if and only if

bpx, xqbpy, yq ´ bpx, yq
2

“ 0.

Let X “ rxs Ă RPnzQ a point not on Q. Then the tangent cone to Q from P is
defined as the union of all tangent lines to Q that contain the point P :

CX “
ď

ℓQX,
ℓ tangent of Q

ℓ “
␣

rys P RPn
ˇ

ˇ cpyq :“ bpx, xqbpy, yq ´ bpx, yq
2

“ 0
(

.

Note that c defines a quadratic form, and thus CX is a quadric itself.
By definition, every tangent line has a point on Q, which we call the point of tangency.

Thus, to obtain the tangent cone it is sufficient to join X with all points of tangency. By
Lemma 3.4, for a point rys P Q on Q, the line rxs _ rys is a tangent line if and only if

bpx, yq “ 0.

Thus, the points of tangency of all tangent lines through X lie in a hyperplane,

XK
“ trys P RPn

| bpx, yq “ 0u

called the polar hyperplane of X (with respect to Q). Thus, we can write the tangent
cone in the following way

CX “
ď

Y PQXXK

X _ Y.

Example 3.6 (Shadow of an ellipsoid).

What form does the shadow of an ellipsoid have?

Consider an ellipsoid E Ă R3 Ă RP3 (an affine image of a sphere). Let X be a point
outside E , and K a plane. The shadow of the ellipsoid cast onto K by a light source in X
is bounded by the intersection with (one half of) the tangent cone CX . Thus it is a conic
section.
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Which type of conic section can we obtain? Can it be a hyperbola?

The type of conic section (ellipse, parabola, hyperbola) depends on how many points
of intersection (0, 1, 2) it has with the line at infinity on K, or equivalently, how many
generators of CX intersect K in the line at infinity.

Generally, a line intersects the plane K in the line at infinity, if it is parallel to K.
Thus, consider the plane KX through X parallel to K. Then the number of generators of
CX in KK is the number of intersection points of CX X K with infinity.

Consider the two planes K1, K2 parallel to K touching E in one point. This separates
RPn into two regions, one containing E , and one not containing E .

§ If X is in the region not containing E , then CX X K is an ellipse.

§ If X is in the region containing E , then CX X K is a hyperbola.

§ If X lies in K1 or K2, then CX X K is a parabola.

Figure 13. Shadow of an ellipsoid.

3.7 Polarity and tangent planes
Let Q Ă RPn be a quadric of signature pr, s, tq.

For a point X “ rxs, its polar hyperplane (with respect to Q) is given by

XK
“ trys P RPn

| bpx, yq “ 0u .

If the point X has signature

§ (+), then XK has signature pr ´ 1, s, tq.

§ (-), then XK has signature pr, s ´ 1, tq.

§ (0), then XK has signature pr ´ 1, s ´ 1, t ` 1q.
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For the cases (+) and (-), we have established, that the intersection of XK with Q
consists of all points common with the cone of contact CX .

In the case (0), every point Y P XK that does not lie on the quadric is a tangent line
of Q. Thus for a point X P Q on the quadric, the polar hyperplane is the plane containing
(and spanned by) all tangent lines though X, which we call the tangent plane of Q in the
point X.

Example 3.7 (Tangent planes of a hyperboloid). Consider a one-sheeted hyperboloid
H Ă RP3, i.e. a quadric of signature (++--). Then a tangent plane XK in any point
X P H has signature (+-0). Thus, the restriction of H to XK consists of two lines.

In particular this means, that a one-sheeted hyperboloid, contains two lines through
every point. In fact, it is a doubly ruled surface, and contains two families of lines, called
its generators.

Example 3.8 (Projection of a generator).

What is the shadow of a generator of a hyperboloid?

Consider a one-sheeted hyperboloid H Ă RP3, a generator ℓ Ă H, and a center of
projection X not on H. We consider the projection to XK.

The projection of H to XK is given by a conic section

D :“ CX X XK
“ H X XK

of signature (++-). Its affine type can be determined in a similar way to Example 3.6.
Denote the central projection of ℓ to XK by ℓ̃. The line ℓ intersects XK in some point

A P D, which is fixed under the projection to XK. Thus, A P ℓ̃.
Assume there exists another point B P ℓ such that its projection B̃ lies on D. Then

the line X _ B̃ is a tangent line of H. On the other hand, this line intersects H in the two
distinct points B and B̃, which is a contradiction. Thus, the projection ℓ only intersects
D in A, and therefore is a tangent line of D.

Note that projection to any other plane preserves this property.

Figure 14. Shadow of the generators of a hyperboloid.
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Differential geometric tangent plane Let us compare the notion of tangent plane
that we have introduced for quadrics to the corresponding notion from Differential Ge-
ometry. In affine coordinates, we can view a quadric as a submanifold of Rn given as a
level set of the function

0 “ x⊺Qx “
`

u⊺ 1
˘

ˆ

S q
q⊺ σ

˙ˆ

u
1

˙

“ u⊺Su ` 2q⊺u ` σ “: fpuq

Then the normal vector of the tangent plane at some point u0 P Rn with fpu0q “ 0 is
given by the gradient

∇ufpu0q “ 2Su0 ` 2q.

Thus, the tangent plane at u0 P R is given by

tu P Rn
| xSu0 ` q, u ´ u0y “ 0u

With

xSu0 ` q, u ´ u0y “ u0
⊺Su ` q⊺u ´ u0

⊺Su0 ´ q⊺u0 “ u0
⊺Su ` q⊺u ` q⊺u0 ` σ

this coincides with the polar plane at u0 in affine coordinates.

4 Pencils of quadrics
Definition 4.1. A projective subspace in the space of quadrics P SympV q is called a linear
system of quadrics. A linear system of quadrics is called degenerate if it solely consists of
degenerate quadrics.

All quadrics through k generic points in PpV q form a linear system of quadrics of
codimension k.

Example 4.1. The space of conics in RP2 is a 5-dimensional projective space

P SympR3
q – RP5.

In homogeneous coordinates rxs “ rx1, x2, x3s on RP2 and the corresponding homogeneous
coordinates Q “ rq11, q22, q33, q12, q23, q13s on the space of conics the equation for the point
rxs lying on the conic Q is given by

q11x
2
1 ` q22x

2
2 ` q33x

2
3 ` q12x1x2 ` q23x2x3 ` q13x1x3 “ 0.

Let X1, X2, X3, X4 P RP2 be four points in general position. Consider the set P of all
conics containing these four points. To explicitly describe this family of conics we simply
the corresponding equations by choosing homogeneous coordinates such that

X1 “

”

1
1
1

ı

, X2 “

”

´1
1
1

ı

, X3 “

”

´1
´1

1

ı

, X4 “

”

1
´1

1

ı

Then the representative matrices Q “ pqijq1ďiďjď3 for the conics in P must satisfy

q11 ` q22 ` q33 ` 2q12 ` 2q23 ` 2q13 “ 0
q11 ` q22 ` q33 ´ 2q12 ` 2q23 ´ 2q13 “ 0
q11 ` q22 ` q33 ` 2q12 ´ 2q23 ´ 2q13 “ 0
q11 ` q22 ` q33 ´ 2q12 ´ 2q23 ` 2q13 “ 0
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By subtracting equations we obtain

q12 ` q13 “ 0, q13 ´ q23 “ 0, q12 ´ q13 “ 0,

which implies q12 “ q13 “ q23 “ 0. By adding up all four equations we additionally obtain

q11 ` q22 ` q33 “ 0

Thus, every conic in P is given by

Q “

¨

˝

λ 0 0
0 µ 0
0 0 ´λ ´ µ

˛

‚

for some rλ, µs P RP1, which describes a one-dimensional projective supbspace in RP5

and thus a pencil of conics. The equations of the conics in this pencil are given by

λpx2
1 ´ x2

3q ` µpx2
2 ´ x2

3q “ 0.

A linear system of quadrics of dimension 1, such as the one considered in Example 4.1,
is called a pencil of quadrics.

Definition 4.2 (pencil of quadrics). A one-parameter family of quadrics in RPn that
corresponds to a line in the space of quadrics P SympV q is called a pencil of quadrics.

A pencil of quadrics is called non-degenerate if not all quadrics in the pencil are
degenerate.

Any two quadrics Q1, Q2 P P SympV q span a pencil, which is given in homogeneous
coordinates by

Q1 _ Q2 “ rλQ1 ` µQ2s
rλ,µsPRP1 .

Lemma 4.1. A point which is contained in two quadrics of a pencil is contained in every
quadric of that pencil.

Proof. Exercise.

Definition 4.3 (base point). A point which is contained in two (and thus every) quadric
of a pencil of quadric is called a base point of that pencil.

Example 4.2. The pencil of conics in Example 4.1 has four base points.

Degenerate quadrics of a pencil

The degenerate quadrics of the pencil are characterized by the equation

detpλQ1 ` µQ2q “ 0.

If the pencil is not degenerate, we may assume Q2 is non-singular and set λ “ 1. This
leads to

detpQ1 ` µQ2q “ 0,

which now is a polynomial equation in µ of order at most n ` 1. Note that over C it has
exactly n ` 1 solutions counting multiplicities.
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Proposition 4.2. A non-degenerate pencil of quadrics contains at most n ` 1 degenerate
quadrics. Over C the multiplicities of the degenerate quadrics add up to n ` 1.

Example 4.3. The degenerate conics in the pencil of conics from Example 4.1 are given
by

x2
1 ´ x2

3 “ 0, x2
2 ´ x2

3 “ 0, x2
1 ´ x2

2 “ 0,

which each consists of a pair of opposite lines from the complete quadrangle defined by
the four base points. They all have rank 2 and multiplicity 1.

Note that the diagonal triangle

A “

”

1
0
0

ı

, B “

”

0
1
0

ı

, C “

”

0
0
1

ı

of the complete quadrangle of base points is a polar triangle for all conics of the pencil,
i.e., each point is the pole of the opposite line.

Some geometric properties of pencils

Proposition 4.3. Let P be a pencil of quadrics. Let X be a point and H a hyperplane
containing the point X. If two quadrics from P are tangent to H in X, then X is a base
point of P and all quadrics from P are tangent to H in X.

Proof. Exercise.

Example 4.4. Not every pencil of conics is given by all conics through four given points
(such as Example 4.1) as this example shows.

Let X1, X2 P RP2 be two (distinct) points and ℓ1, ℓ2 Ă RP2 two (distinct) lines such
that X1 lies on ℓ1 and X2 lies on ℓ2. Consider the set P of conics which are tangent to ℓ1
in X1 and to ℓ2 in X2. We will show that P is a non-degenerate pencil with base points
X1, X2 and two degenerate conics, one of rank 2 and multiplicity 2 and one of rank 1 and
multiplicity 1.

Choose homogeneous coordinates such that

X1 “

”

1
0
1

ı

, X2 “

”

´1
0
1

ı

, ℓ1 “

”

´1
0
1

ı‹

, ℓ2 “

”

1
0
1

ı‹

.

The two tangency conditions are given by

Q
´

1
0
1

¯

„

´

´1
0
1

¯

, Q
´

´1
0
1

¯

„

´

1
0
1

¯

,

which yields
q12 ` q23 “ 0
q12 ` q23 “ 0

q11 ` q33 ` 2q13 “ 0
q11 ´ q33 ` 2q13 “ 0,

or equivalently,
q12 “ q23 “ q13 “ 0, q11 “ q33.

Thus, all conics from P are given by

Q “

¨

˝

λ 0 0
0 µ 0
0 0 ´λ

˛

‚
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for some rλ, µs P RP1. The equations of the conics in this pencil are given by

λpx2
1 ´ x2

3q ` µx2
2 “ 0.

Its degenerate quadrics are given by

x2
1 ´ x2

3 “ 0,

which has multiplicity 1 and consists of the two lines ℓ1, ℓ2, and

x2 “ 0,

which has multiplicity 2 and consists of the (double) line X1 _ X2.

Proposition 4.4. Let P be a pencil of quadrics. Let H a hyperplane tangent to two
quadrics of P in the two points X, Y . Then X and Y are conjugate with respect to all
quadrics in the pencil.

Proof. Exercise.

4.1 Classification of pencils of conics
A classification of pencils of conics can be achieved by investigating base points (number
and multiplicities).

Proposition 4.5. A non-degenerate pencil of conics has at most four base points.

Proof. Assume the pencil has five base points. As stated in Example 3.4, five points (no
four of which are on a line) determine a unique conic. If three of them would lie on a line,
by Lemma 3.1 and Lemma 4.1, the entire line would be contained in every conic of the
pencil, which contradicts that the pencil is non-degenerate.

Determining the base points of a pencil of conics

Let
P “ Q1 _ Q2

be a non-degenerate pencil of conics. Since P is non-degenerate we may assume Q1 is
non-degenerate and choose homogeneous coordinates in which its equation is given by1

x2
1 ´ x2x3 “ 0.

The conic Q2 is given by

q11x
2
1 ` q22x

2
2 ` q33x

2
3 ` q12x1x2 ` q23x2x3 ` q13x1x3 “ 0.

The point
”

0
1
0

ı

P Q1

is the only point of Q1 on the line x3 “ 0. We can further assume that2

”

0
1
0

ı

R Q2,

1This is possible since every pencil contains at least one conic of signature (++-).
2This is possible since any three points on a conic can be mapped to any other three points while

preserving the conic.
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or equivalently,
q22 ‰ 0.

Thus, we can introduce affine coordinates

x “
x1

x3
, y “

x2

x3

without having any base points on the line at infinity. In affine coordinates the two
equations for Q1, Q2 are give by

y “ x2

q11x
2

` q22y
2

` 2q12xy ` 2q23y ` 2q13x ` q33 “ 0.
(6)

Substituting the first equation into the second we obtain

q22x
4

` 2q12x
3

` pq11 ` 2q23qx2
` 2q13x ` q33 “ 0. (7)

and every solution of (7) corresponds to exactly one solution of (6). One can assign the
multiplicities of the roots to the base points of the pencil.

Over C equation (7) has exactly 4 solutions counting multiplicities. Thus, for a non-
degenerate pencil in CP2 there are exactly five possible cases, which we denote as follows:

(I) four simple base points p1, 1, 1, 1q

(II) one double and two simple base points p2, 1, 1q

(III) two double base points p2, 2q

(IV) one triple and one simple base point p3, 1q

(V) one quadruple base point p4q

Using this one can prove the following classification result for pencils of conics in CP2.

Theorem 4.6. Two non-degenerate pencils of conics in CP2 are projectively equivalent
if and only if they are of the same type.

Furthermore, the degenerate conics, their multiplicities, and a normal form for each
type are as stated in Table 15.

Type Base points Deg. conics Normal form
I 1, 1, 1, 1 ˆ, ˆ, ˆ λpx2

1 ´ x2
3q ` µpx2

2 ´ x2
3q “ 0

II 2, 1, 1 2ˆ, ˆ λpx2
1´x2

2q`µx2px2´x3q “ 0
III 2, 2 2 “, ˆ λpx2

1 ´ x2
3q ` µx2

2 “ 0
IV 3, 1 3ˆ λpx2

1 ´ x2x3q ` µx1x2 “ 0
V 4 3 “ λpx2

1 ´ x2x3q ` µx2
2 “ 0

Figure 15. The classification of pencils of conics in CP2. The two types of degenerate
conics are two lines (ˆ), and a double line (}).
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Type Pencil Dual Pencil

I

II
2ˆ

III 2 ∥

IV 3ˆ

V

3 ∥

Figure 16. Primal pencils of types I-V and the corresponding dual pencils.

Remark 4.1. From Table 15 we see that the types of pencils can also be characterized by
the number and rank of their degenerate conics.

By complexification of all conics in a pencil the number of base points (counting
multiplicities) of a real pencil is still 4. Yet some base points may be imaginary, which
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always come in complex conjugate pairs. Thus, some of the complex cases split into
multiple real cases:

(Ia) four simple real base points p1, 1, 1, 1q

(Ib) two simple real base points and a pair of simple imaginary base points p1, 1, p1, 1̄qq

(Ic) two pairs of simple imaginary base points pp1, 1̄q, p1, 1̄qq

(IIa) one double and two simple real base points p2, 1, 1q

(IIb) one double real base point and a pair of simple imaginary base points p2, p1, 1̄qq

(IIIa) two double real base points p2, 2q

(IIIb) a pair of double imaginary base points p2, 2̄q

(IV) one triple and one simple real base point p3, 1q

(V) one quadruple real base point p4q

Similarly, this leads to the following classification result for pencils of conics in RP2.

Theorem 4.7. Two non-degenerate pencils of conics in RP2 are projectively equivalent
if and only if they are of the same (real) type.

Furthermore, the degenerate conics, their multiplicities, and a normal form for each
type are as stated in Table 17.

Type base points # real Deg. conics Roots Normal forms
Ia 1, 1, 1, 1 4 ˆ, ˆ, ˆ 1, 1, 1 λpx2

1 ´ x2
3q ` µpx2

2 ´ x2
3q “ 0

Ib 1, 1, p1, 1̄q 2 ˆ, ˝, ¯̋ 1, p1, 1̄q λpx2
1 ` x2

2 ´ x2
3q ` µx2x3

Ic p1, 1̄q, p1, 1̄q 0 ˆ, ‚, ‚ 1, 1, 1 λpx2
1 ` x2

2 ` x2
3q ` µx1x3 “ 0

IIa 2, 1, 1 3 2ˆ, ˆ 2, 1 λpx2
1´x2

2q`µx2px2´x3q “ 0
IIb 2, p1, 1̄q 1 2‚, ˆ 2, 1 λpx2

1 ` x2
2q ` µx2x3 “ 0

IIIa 2, 2 2 2 “, ˆ 2, 1 λpx2
1 ´ x2

3q ` µx2
2 “ 0

IIIb p2, 2̄q 0 2 “, ‚ 2, 1 λpx2
1 ` x2

2q ` µx2
3 “ 0

IV 3, 1 2 3ˆ 3 λpx2
1 ´ x2x3q ` µx1x2 “ 0

V 4 1 3 “ 3 λpx2
1 ´ x2x3q ` µx2

2 “ 0

Figure 17. The classification of real pencils of conics. There exist four different types of
degenerate conics. (ˆ) Two real intersecting lines. (˝) Two non-intersecting complex lines.
(‚) Two complex conjugate lines which intersect in a real point. (}) A real double line.

4.2 Classification of pencils of quadrics
The classification of pencils of conics by number and multiplicity of base points as dis-
cussed in Section 4.1 is specific to the 2-dimensional case. In higher dimensions the base
points in general do not consist of a finite amount of points anymore, but constitute a
subvariety of codimension 2.
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Definition 4.4. Let P Ă P SympCn`1q be a pencil of quadrics. Let Q1, Q0 be two
quadrics in P with representative matrices Q1, Q0 P SympCn`1q. Then we call Q1λ`Q0 P

Crλspn`1qˆpn`1q a characteristic matrix of P .

A characteristic matrix uniquely determines its pencil together with the two quadrics
spanning it. Vice versa, two characteristic matrices

Q1λ ` Q0, and Q̃1λ ` Q̃0,

describe the same pencil if and only if

Q̃1 “ aQ1 ` cQ0,

Q̃0 “ bQ1 ` dQ0,

with a, b, c, d P C, ad ´ bc ‰ 0. And thus, the corresponding values of λ are related by

λ “
aλ̃ ` b

cλ̃ ` d
,

i.e. by a 1-dimensional projective transformation.
Now consider a projective transformation f “ rF s : CPn Ñ CPn. It maps the pencil

P to fpPq by acting on the characteristic matrix Q1λ ` Q0 as

F ⊺pQ1λ ` Q0qF “ F ⊺Q1Fλ ` F ⊺Q0F.

Thus, two pencils P and P̃ are projectively equivalent, i.e. related by a projective trans-
formation, if and only if there exist characteristic matrices λQ1 ` Q0 and λQ̃1 ` Q̃0 such
that Q1 and Q0 are simultaneously congruent to Q̃1 and Q̃0, i.e.

Q̃1 “ F ⊺Q1F, Q̃0 “ F ⊺Q0F

for some F P GLpn`1,Cq. Note that this does not mean that for two projectively equiva-
lent pencils any pair of characteristic matrices is related by a simultaneously congruence.

For a classification, we should find a sufficient number of invariants of pencils under
projective transformations and under a change of characteristic matrices. Firstly note
that rank of a quadric is invariant under projective transformations, and thus degenerate
quadrics are mapped to degenerate quadrics. Furthermore, the multiplicities µ1, . . . , µs

of the degenerate quadrics given by

detpλQ1 ` Q0q “ cpλ ´ λ1q
µ1 ¨ ¨ ¨ pλ ´ λ1q

µ1 ,
s
ÿ

i“1
µi “ n ` 1

In the 2-dimensional case (classification of pencils of conics, see Table 15 and 17) it turns
out that rank and multiplicities of the degenerate conics is indeed sufficient to characterize
each equivalence class, and thus lead to a full classification. However, in higher dimensions
this information is still insufficient.

A closer investigation of how the rank drops for each degenerate quadric leads to
additional invariants.

Example 4.5.
(i) Pencil of conics with 3 degenerate conics:

λQ1 ` Q0 “

´

λ´λ1 0 0
0 λ´λ2 0
0 0 λ´λ3

¯
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The degenerate conic and their multiplicities are given by

detpλQ1 ` Q0q “ pλ ´ λ1qpλ ´ λ2qpλ ´ λ3q “ 0

They have at most rank 2. Its non-trivial 2 ˆ 2-minors are given by

pλ ´ λ1qpλ ´ λ2q, pλ ´ λ2qpλ ´ λ3q, pλ ´ λ3qpλ ´ λ1q,

and its monic greatest common divisor by 1. Thus, in particular, the pencil contains
no conic of rank 1.

(ii) Pencil of conics with 2 degenerate conics:

λQ1 ` Q0 “

´

λ´λ1 0 0
0 λ´λ1 0
0 0 λ´λ2

¯

The degenerate conic and their multiplicities are given by

detpλQ1 ` Q0q “ pλ ´ λ1q
2
pλ ´ λ2q “ 0

They have at most rank 2. Its non-trivial 2 ˆ 2-minors are given by

pλ ´ λ1q
2, pλ ´ λ1qpλ ´ λ2q

and its monic greatest common divisor by λ ´ λ1. Thus, in particular, for λ “ λ1
the rank drops down to 1.

(iii) Another pencil of conics with 2 degenerate conics:

λQ1 ` Q0 “

´ 0 λ´λ1 0
λ´λ1 1 0

0 0 λ´λ2

¯

The degenerate conic and their multiplicities are given by

detpλQ1 ` Q0q “ ´pλ ´ λ1q
2
pλ ´ λ2q

They have at most rank 2. Its non-trivial 2 ˆ 2-minors are given by

´pλ ´ λ1q
2, pλ ´ λ1qpλ ´ λ2q, λ ´ λ2

and its monic greatest common divisor by 1. Thus, in particular, the pencil contains
no conics of rank 1.

Definition 4.5. Let A P Crλspn`1qˆpn`1q be a square polynomial matrix of rank ℓ “ rk A.
Then for k “ 1, . . . , ℓ the monic3 greatest common divisor Dk of all k ˆ k minors of A is
called the k-th minor divisor of A. We also define D0 :“ 1.

Lemma 4.8. Dk divides Dk`1 for k “ 0, . . . , ℓ ´ 1.
3Monic polynomials are polynomials with leading coefficient equal to 1.
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For the minor divisors of the characteristic matrix λQ1 ` Q0 of a pencil we obtain

Dn`1 “ pλ ´ λ1q
µ1,n`1 ¨ ¨ ¨ pλ ´ λsq

µs,n`1 “ c detpλQ1 ` Q0q,

...
Dk “ pλ ´ λ1q

µ1k ¨ ¨ ¨ pλ ´ λsq
µsk

Dk`1 “ pλ ´ λ1q
µ1,k`1 ¨ ¨ ¨ pλ ´ λsq

µs,k`1

...
D0 “ 1.

The collection of multiplicities µij are invariants for the pencil. By Lemma 4.8, the
sequences µi,n`1, . . . , µi,0 are decreasing, and instead of the multiplicities µij it is common
to use their differences

νij :“ µij ´ µi,j´1,

which satisfy
n`1
ÿ

j“1
νij “ µi,n`1.

Together they constitute the Segre symbol of λQ1 ` Q0

rpλ1 : ν1,1, ¨ ¨ ¨ , ν1,n`1q, . . . , pλ1 : νs,1, ¨ ¨ ¨ , νs,n`1qs

where νij equal to zero are omitted, and often so are the roots λi.

Example 4.6. The Segre symbols for Example 4.5 are given by:

(i) rpλ1 : 1q, pλ1 : 1q, pλ3 : 1qs which is abbreviated to r111s.

(ii) rpλ1 : 1, 1q, pλ1 : 1qs which is abbreviated to rp11q1s.

(iii) rpλ1 : 1, 2q, pλ1 : 1qs which is abbreviated to r21s.

(iv) The only other two possible Segre symbols in the 2-dimensional case are given by
rp3qs and rp21qs, which leads to the 5 classes of pencils of conics in CP2 as seen in
Section 4.1.

The Segre symbol may be used to obtain a full classification of pencils of quadrics in
CPn.

Theorem 4.9. Two non-degenerate pencils of quadrics in CPn are projectively equivalent
if and only if they have the same Segre symbol up to a (complex) projective transformation
of the roots.

In practice the Segre symbol of a given pencil may be obtained by the following normal
form.

Theorem 4.10. Let Q1, Q0 P SympCn`1q with Q1 non-singular, and let

J “ diagpJ1, . . . , Jmq, Ji “

˜

λi 1

1
λi

¸
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be the (complex) Jordan normal form of Q´1
1 Q0. Then Q1, Q0 are simultaneously congru-

ent via a (complex) congruence transformation to

Q̃1 “ diagpE1, . . . , Emq,

Q̃0 “ diagpE1J1, . . . , EmJmq,

where

Ei “

˜ 1

1

¸

, EiJi “

˜

λi
1

λi 1

¸

, dim Ei “ dim Ji.

It turns out that the sizes of the Jordan blocks are exactly the νij if the corresponding
Segre symbol. Note how the three pencils given in Example 4.5 are already in normal
form, and the Segre symbols can be read of immediately.

In a similar way, the following real version of Theorem 4.10 can be used for a classifi-
cation of pencils in RPn.

Theorem 4.11. Let Q1, Q0 P SympRn`1q with Q1 non-singular, and let

J “ diagpJ1, . . . , Jr, Jr`1, . . . , Jmq

be the (real) Jordan normal form of Q´1
1 Q0, where

Ji “

˜

λi 1

1
λi

¸

, i “ 1, . . . , r

are the Jordan blocks for real eigenvalues λ1, . . . , λr, and

Jj “

˜Λj I2

I2
Λj

¸

, Λj “

ˆ

aj ´bj

bj aj

˙

, j “ r ` 1, . . . , m

are the Jordan blocks for complex pairs of eigenvalues λj “ aj ` ibi, λ̄j “ aj ´ ibj, j “ r `

1, . . . , m Then Q1, Q0 are simultaneously congruent via a (real) congruence transformation
to

Q̃1 “ diagpε1E1, . . . , εrEr, Er`1, . . . , Emq,

Q̃0 “ diagpε1E1J1, . . . , εrErJr, Er`1Jr`1, . . . , EmJmq,

where ϵ “ ˘1 (unique), and

Ei “

˜ 1

1

¸

, dim Ei “ dim Ji.

The number of real eigenvalues together with the different possible signs εi account
for different real subclasses of each complex class with a given Segre symbol. In the real
classification one may also use invariants that encode the signature of the quadrics in the
pencil, such as the index sequence and the signature sequence.
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5 Fractals
Following [Fractal Geometry - Kenneth Falconer].

Example 5.1 (Cantor set). Start with the unit interval r0, 1s Ă R and consider a sequence
of of intervals, where in each step the middle third of all previous intervals is deleted.

F0 “ r0, 1s

F1 “ r0, 1
3s Y r2

3 , 1s

F2 “ r0, 1
9s Y r2

9 , 1
3s Y r2

3 , 7
9s Y r8

9 , 1s

...

This describes a decreasing sequence of sets, whose limit is called the Cantor set:

F “

8
č

k“0
Fk

It is an example of a compact uncountably infinite set without isolated points, that is
nowhere dense in r0, 1s.

In the ternary (base 3) expansion of real numbers, deleting the middle third of each
interval corresponds to deleting the numbers containing the digit 1. Thus, an alternative
representation of the Cantor set is given by

F “

#

8
ÿ

i“1
ai3´i

ˇ

ˇ

ˇ

ˇ

ˇ

ai P t0, 2u

+

.

Note that 1
3 has the ternary expansion 0.1 “ 0.02̄ and therefore is captured by this

description. Furthermore, note that the limit set F does not solely consist of boundary
points of intervals in the sequence Fk, e.g. 1

4 “ 0.02 P F .
Defining the following two similarity transformations

S1, S2 : r0, 1s Ñ r0, 1s, S1pxq “
1
3x, S2pxq

1
3x `

2
3

each step may alternatively be written as

Fk “ S1pFk´1q Y S2pFk´1q.

This describes a self-similarity which is still present in the limit:

F “ S1pF q Y S2pF q.

The total length of the intervals deleted is given by

1
3 `

2
9 `

4
27 ` ¨ ¨ ¨ “

8
ÿ

k“0

2k

3k`1 “
1
3

1
1 ´ 2

3
“ 1.

Thus the length of F is 0. While the interior of F is empty, every point of F is a limit
point.

The Cantor set exhibits the following properties, which are typical for “fractals”.
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(i) Defined in very simple ways, perhaps recursively.

(ii) Has a fine structure, with detail on arbitrary scale.

(iii) Too irregular to describe in traditional geometric terms (locally and globally).
Neither the locus of points that satisfy some simple geometric condition, nor the set of solutions
of any simple equation.

(iv) Some sort of self-similarity (possibly approximate or statistical).

(v) The size is not quantified by usual measures such as length.
The “fractal dimension” (defined in some way) is greater than the topological dimension.

Example 5.2. Some other simple examples:

(i) von Koch curve

(ii) Cantor dust

(iii) Sierpinski triangle

5.1 Iterated function systems
Definition 5.1. Let D Ă Rn be closed. A map S : D Ñ D is called a contraction if there
exists a 0 ă r ă 1 such that for all x, y P D

|Spxq ´ Spyq| ď r |x ´ y| .

Remark 5.1.
(i) Contractions are continuous.

(ii) If |Spxq ´ Spyq| ď r |x ´ y|, then S is a similarity transformations, which is called a
contracting similarity.

Definition 5.2. An iterated function system (IFS) is a finite family of contractions
tS1, . . . , Smu, m ě 2.

A non-empty compact F Ă D is called an attractor (or invariant set) of the IFS if

F “

m
ď

i“1
SipF q.

Remark 5.2. If the iterated function systems consists only of contracting similarities, then
the attractor is called a self-similar set.

Example 5.3 (Cantor set). Let D “ r0, 1s and consider the two maps S1, S2 : D Ñ D,

S1pxq “
1
3x, S2pxq

1
3x `

2
3 .

Both are contracting similarities with r “ 1
3 . Thus, tS1, S2u is an IFS.

The Cantor set satisfies
F “ S1pF q Y S2pF q,

and thus is an attractor of the IFS.
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The fundamental property of IFS is that they determine a unique attractor, which is
usually a fractal.

To this end, denote
C “ tA Ă D | H ‰ A compactu ,

and define the map

S : C Ñ C, SpAq “

m
ď

i“1
SipAq.

Then F P C is an attractor if and only if it is a fixed point of S, i.e.

SpF q “ F.

Recall the Banach fixed point theorem:

Theorem 5.1 (Banach fixed point theorem). Let pX, dq be a non-empty complete metric
space and T : X Ñ X a contraction. Then T has a unique fixed point x˚ P X.

Moreover, for any x0 P X the fixed point is given by

x˚
“ lim

kÑ8
T k

px0q.

To use this theorem, we equip C with a metric.

Definition 5.3. For A, B P C the Hausdorff metric is given by

dpA, Bq :“ inf tδ ą 0 | A Ă Bδ and B Ă Aδu

where
Aδ :“ tx P D | |x ´ a| ď δ for some a P Au “

ď

aPA

Bδpaq.

is the (closed) δ-neighborhood of the set A.

Remark 5.3.
(i) The quantity d is well-defined since A, B are bounded and thus the infimum exists

(is finite).

(ii) The Hausdorff metric may also be given in the following way

dpA, Bq “ max
!

max
aPA

dpa, Bq, max
bPB

dpb, Aq

)

where dpa, Bq “ minbPB |a ´ b|.

Lemma 5.2. The Hausdorff metric d is a complete metric on C.

Proof. Exercise.
d is a metric. Show:

(i) dpA, Bq ě 0 and dpA, Bq “ 0 ô A “ B.

(ii) dpA, Bq “ dpB, Aq.

(iii) dpA, Bq ď dpA, Cq ` dpC, Bq.

d is complete. Show:
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(iv) Every Cauchy sequence converges (in C).

Lemma 5.3. The map S is a contraction on pC, dq.

Proof. Let 0 ă ri ă 1, i “ 1, . . . , m, such that

|Sipxq ´ Sipyq| ď ri |x ´ y| .

For A, B P C

SipAq Ă pSipBqqδ ñ

m
ď

i“1
SipAq Ă

˜

m
ď

i“1
SipBq

¸

δ

,

and thus

dpSpAq, SpBqq “ d

˜

m
ď

i“1
SipAq,

m
ď

i“1
SipBq

¸

ď max
i“1,...,m

dpSipAq, SipBqq ď

ˆ

max
i“1,...,m

ri

˙

dpA, Bq.

Thus, by the Banach fixed point theorem, S has a unique fixed point F P C, and we
obtain the following theorem on IFS:

Theorem 5.4. Let tS1, . . . , Smu be an IFS on D Ă Rn. Then it has a unique attractor
F , i.e. an F P C such that

SpF q “ F.

Moreover, for any E P C
F “ lim

kÑ8
Sk

pEq.

We make the following observations:

§ In every step the sequence SkpEq provides a better approximation of the attractor:

dpSk
pEq, F q “ dpSk

pEq, SpF qq ď c dpSk´1
pEq, F q ď ¨ ¨ ¨ ď ckdpE, F q,

where c “ maxi“1,...,m ri.

§ The approximation in the k-th step is given by

Sk
pEq “

ď

pi1,...,ikqPt1,...,muk

Si1 ˝ ¨ ¨ ¨ ˝ Sik
pEq,

which is the union of mk sets.

§ To visualize an approximation of the attractor, each of the mk sets of SkpEq may be
drawn fully, or a representative points Skpx0q with x0 P E may be visualized.

§ To obtain a statistical approximation of points in the attractor, we may draw the
sequences pi1, . . . , ikq randomly. Then the sequence of points xk “ Si1 ˝ ¨ ¨ ¨ ˝ Sik

px0q

may be drawn from a certain term onwards.
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§ If we chose an E P C with SpEq Ă E, the sequence SkpEq is a decreasing sequence of
sets with limit and thus

F “ lim
kÑ8

Sk
pEq “

8
č

k“0
Sk

pEq.

Then for any x P F there exists a (not necessarily unique) sequence pii, . . . , ikq such
that x P Si1 ˝ ¨ ¨ ¨ ˝ Sik

pEq. This sequence provides a natural encoding for x by

x “

8
č

k“0
Si1 ˝ ¨ ¨ ¨ ˝ Sik

pEq.

5.2 Fractal dimensions
For d P N consider a compact smooth d-dimensional submanifold M of Rn (a curve for
d “ 1, a surface for d “ 2, ...) For δ ą 0, let Nδ be the (smallest) number of δ-boxes
(cubes of side length δ) it takes to fully cover M.

If we halve the side lengths of the cubes (considering δ
2 -boxes), we expect the number

of boxes it takes to cover M to increase approximately by a factor 2d. More generally, we
expect the number Nδ to behave like

Nδ „
c

δd
(8)

in the limit δ Ñ 0, where c is some constant.
The dimension d can be recovered from (8) by taking logarithms

log Nδ „ log c ´ d log δ,

and the limit δ Ñ 0
d „ ´

log Nδ

log δ
`

log c

log δ
Ñ ´

log Nδ

log δ
.

The behavior of Nδ given by (8) may equivalently be described by (without the need
of the constant c)

Nδδ
s

Ñ

#

8 if s ă d

0 if s ą d
pδ Ñ 0q.

Thus, the function
fpsq “ lim

δÑ0
Nδδ

s

jumps from 8 to 0 at the value s “ d of the dimension of M.
We may use these ideas to define fractal dimensions for general (bounded) sets F Ă Rn.

To this end, let us generalize first from covers by δ-boxes to general δ-covers.
Definition 5.4. For U Ă Rn the diameter of U is given by

diampUq “ sup
x,yPU

|x ´ y|

For F Ă Rn a countable (or finite) collection pUiq
8
i“1 of sets of diameter at most δ ą 0

that cover F is called a δ-cover of F , i.e.,

F Ă

8
ď

i“1
Ui, and diampUiq ď δ, i “ 1, . . . , 8.

Before we get deeper into the different definitions of fractal dimensions we give a
general overview of the ideas.
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Box-counting dimension Let F Ă Rn be bounded. If we are only interested in the
smallest number of sets in a δ-cover, it is sufficient to consider finite covers. Thus, let

Nδ “ min
␣

N
ˇ

ˇ pUiq
N
i“1 is a δ-cover of F

(

,

and if the limit exists define

dimB F “ ´ lim
δÑ0

log Nδ

log δ
,

which is called the box-counting dimension of F . It is given by the value s ě 0 where the
function

fpsq “ lim
δÑ0

Nδδ
s

“

#

8 if s ă dimB F,

0 if s ą dimB F.

jumps from 8 to 0.
In general the limit ´

log Nδ

log δ
does not exist (only limit inferior and limit superior do),

and there is a gap between the value 8 and 0 of the function fpsq. However, the box-
counting dimension leads to a definition of fractal dimension which is easy to approximate
computationally.

Hausdorff dimension A mathematically more satisfying definition may be obtained
by the following very similar idea. For F Ă Rn instead of Nδδ

s, consider

Hs
δ “ inf

#

ÿ

i“1
diampUiq

s

ˇ

ˇ

ˇ

ˇ

ˇ

pUiq
8
i“1 is a δ-cover of F

+

ď Nδδ
s.

For s ě 0 and in the limit δ Ñ 8, the function

Hs
“ lim

δÑ0
Hs

δ “

#

8 if s ă dimH F,

0 if s ą dimH F.

jumps from 8 to 0 at a well-defined value dimH F , which is called the Hausdorff dimension
of F .

Note that from Hs
δ ď Nδδ

s it follows that

dimH F ď dimH B.

Moreover, Hs defines a measure (on the Borel sets of Rn), called the Hausdorff measure,
which generalizes the Lebesgue measure. In particular, it satisfies the scaling property

Hs
pgpF qq “ λsHs

pF q

for any similarity transformation g : Rn Ñ Rn with scaling factor λ ą 0. However,
the Hausdorff dimension as a fractal dimension is harder to estimate by computational
methods than the box-counting dimension.
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Similarity dimension For self-similar sets it is particularly easy to define a corre-
sponding dimension. Thus, let tS1, . . . , Smu be an iterated function system of similarity
transformations

|Sipxq ´ Sipyq| “ ri |x ´ y|

with some 0 ă ri ă 1. Then its attractor

F “

8
ď

i“1
SipF q (9)

is a self-similar set. Assume this union in (9) is disjoint, and that s ě 0 such that F has
positive and finite Hausdorff measure 0 ă Hs ă 8 (or any reasonable measure satisfying
the scaling property).

Hs
pF q “

m
ÿ

i“1
Hs

pSipF qq “

m
ÿ

i“1
rs

i Hs
pF q,

which implies
m
ÿ

i“1
rs

i “ 1. (10)

Thus, we may define
dimS F “ s

to be the number s satisfying (10) for any self-similar set, which is called the similarity
dimension of F .

In the case where the sets in (9) do not overlap too much (or the union is even disjoint)
the similarity dimension satsifies

dimS F “ dimH F “ dimB F.

Note that, if all similarity transformations have the same scaling factor r “ ri we
obtain mrs “ 1, or equivalently,

dimS F “ ´
log m

log r
.

Example 5.4 (Cantor set). We compute the three introduced dimensions for the Cantor
set F Ă r0, 1s. Recall that Fk consists of 2k intervals of length 1

3k which have distance at
least 1

3k , and

F “

8
č

k“0
Fk.

(i) Box-counting dimension. It is sufficient to consider the decreasing sequence
δk “ 1

3k (cf. Remark 5.5).

§ The 2k intervals of Fk provide a δk-cover for F . Thus, Nδk
ď 2k, and therefore

log Nδk

´ log δk

ď
log 2k

´ log 1
3k

“
k log 2
k log 3 “

log 2
log 3
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§ On the other hand, an interval of length δk intersects at most one of the 2k´1

intervals of Fk´1, each of which contains points from F . Thus, Nδk
ě 2k´1, and

therefore

log Nδk

´ log δk

ě
log 2k´1

´ log 1
3k

“
pk ´ 1q log 2

k log 3 Ñ
log 2
log 3 pk Ñ 8q

Thus the box-counting dimension is given by

dimB F “ lim
δÑ0

log Nδ

´ log δ
“ lim

kÑ8

log Nδk

´ log δk

“
log 2
log 3 .

(ii) Hausdorff dimension. Let s “
log 2
log 3 . We show that

1
2 ď Hs

ď 1.

§ Consider the sequence δk “ 1
3k . Then the 2k intervals of Fk provide a δk-cover of

F . And thus,

Hs
δk

ď
2k

3ks
“ 1

and therefore Hs ď 1.
§ To prove Hs ě 1

2 , we show

N
ÿ

i“1
diampUiq

s
ě

1
2 “

1
3s

for finite cover pUiq
N
i“1 consisting of closed intervals in r0, 1s (by the compactness

of F the same statement then holds for arbitrary covers).
For each Ui let ki be such that

1
3ki`1 ď diampUiq ă

1
3ki

.

Then Ui intersects at most one of the intervals in Fki
, and for j ě ki it intersects

at most
2j´ki “

2j

2ki
“

2j

3ski
ď 2j3s diampUiq

s

of the intervals of Fj. Choose j “ maxi“1,...,N ki. The cover pUiq
N
i“1 intersects all

2j intervals of Fj, and thus

2j
ď

N
ÿ

i“1
2j´ki ď

N
ÿ

i“1
2j3s diampUiq

s

Thus, the Hausdorff dimension is given by

dimH F “ s “
log 2
log 3 .
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(iii) Similarity dimension. The Cantor set is a self-similar set. With the two similar-
ities

S1pxq “
x

3 , S2pxq “
x

3 `
2
3 ,

it is given by
F “ S1pF q Y S2pF q,

where the union is disjoint. The scaling factors of S1 and S2 are equal and given by
r “ 1

3 . Thus, the similarity dimension s of F is given by

2 1
3s

“ 1,

which is equivalent to
dimS F “ s “

log 2
log 3 .

It turns out, that for the Cantor set all three dimensions are equal and given by

dimS F “ dimB F “ dimH F “
log 2
log 3 « 0, 630929754.

Properties of fractal dimensions Before we come to the formal definitions of the
introduced fractal dimensions, we list some properties that we will encounter, and might
possibly be considered desired properties of dimensions.

(i) Monotonicity. E Ă F ñ dim E ď dim F .

(ii) Range of values. F Ă Rn ñ 0 ď dim F ď n.

(iii) Finite stability. dimpE Y F q “ maxtdim E, dim F u.

(iv) Countable stability. dimp
Ť8

i“1 Fiq “ supi dim Fi.

(v) Finite sets. dim F “ 0 if F is finite.

(vi) Countable sets. dim F “ 0 if F is countable.

(vii) Open sets. dim F “ n if F is an open subset of Rn.

(viii) Smooth manifold. dim F “ d if F is a smooth d-dimensional submanifold of Rn.
Coincidence with topological dimension on topological manifolds is not desired.

(ix) Geometric invariance. dim fpF q “ dim F if f is a Euclidean, similarity, or affine
transformation of Rn.
Note that the fractal dimensions are not of a topological nature, but of a geometric nature, in
particular involving the Euclidean metric.

(x) Lipschitz invariance. dim fpF q “ dim F if f is a bi-Lipschitz map.
This property is stronger than geometric invariance, but encountered for many fractal dimensions.
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5.2.1 Box-counting dimension

Definition 5.5 (Box-counting dimension). Let F Ă Rn be bounded, and for δ ą 0 let
Nδ be the least number of sets of any δ-cover of F , i.e.

Nδ “ min
␣

N
ˇ

ˇ pUiq
N
i“1 is a δ-cover of F

(

.

Then
dimBF “ lim

δÑ0

log Nδ

´ log δ
, dimBF “ lim

δÑ0

log Nδ

´ log δ

are called the lower and upper box-counting dimension of F . If dimBF “ dimBF , then
the common value

dimB F “ ´ lim
δÑ0

log Nδ

log δ

is called the box-counting dimension of F .

Remark 5.4. In the limit δ Ñ 0, the quantity Nδδ
s

lim
δÑ0

Nδδ
s

“

#

8 if s ă dimBF,

0 if s ą dimBF.

has a gap between the determined values of 8 and 0. This gap vanishes in the case where
dimBF “ dimBF “ dimB F .
Remark 5.5. In the definition of box-counting dimensions it is enough to consider limits
of decreasing sequences δk that satisfy

δk`1 ď cδk

for some 0 ă c ă 1 (typically δk “ ck). Indeed, for δ ą 0 with δk`1 ď δ ă δk, we find

log Nδ

´ log δ
ď

log Nδk`1

´ log δk

“
log Nδk`1

´ log δk`1 ` log δk`1
δk

ď
log Nδk`1

´ log δk`1 ` log c
,

and thus
lim
δÑ0

log Nδ

´ log δ
ď lim

kÑ8

log Nδk

´ log δk

,

while the opposite inequality is trivially true for any subsequence. For the lower limit this
is shown in the same way.

There are various equivalent characterizations of the box-counting dimensions.

Theorem 5.5. The definition of box-counting dimensions is equivalent upon replacing the
number Nδ by any of the following:

(i) the smallest number of closed balls of radius δ that cover F .

(ii) the smallest number of cubes of side length δ that cover F .

(iii) the number of cubes in a δ-grid that intersect F (see Remark 5.6).

(iv) the largest number of disjoint balls of radius δ and centers in F .
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Remark 5.6. A δ-grid of Rn is a family of cubes of the form

ri1δ, pi1 ` 1qδs ˆ ¨ ¨ ¨ ˆ rinδ, pin ` 1qδs

with pi1, . . . , inq P Zn. This approach to box-counting dimension is the most convenient
for computational approximation. By Remark 5.5 it is sufficient to consider decreasing
sequences of δk-grids such as

δk “
1
2k

,

halving the grid size in every step.
Remark 5.7. The characterization in (iv) uses packings by δ-balls instead of coverings by
δ-balls. Packing and coverings are sometimes considers as being “dual”.

Another way of obtaining the box-counting dimension is by observing the change of
volume of a set when it gets extruded. Consider the δ-neighborhood of an d-dimensional
smooth manifold M

Mδ “
ď

xPM
Bδpxq.

We can measure its n-dimensional volume using the Lebesgue measure Ln on Rn. Then
the volume will behave like

Ln
pMδq „ cδn´d

in the limit δ Ñ 0 with some constant c, which is a meassure for the d-dimensional
volume (length, area, ...) of M. This is due to the Minkowski–Steiner formula. Thus,
the dimension of M may be recovered by

d “ n ´ lim
δÑ0

LnpMδq

log δ
.

Similarly, an arbitrary set F Ă Rn may be regarded as s-dimensional if

Ln
pFδq „ cδn´s.

The so defined value s turns out to coincide with the box-counting dimension.

Theorem 5.6. Let F Ă Rn be bounded. Then

dimBF “ n ´ lim
δÑ0

LnpFδq

log δ
, dimBF “ n ´ lim

δÑ0

LnpFδq

log δ
,

where Fδ is the δ-neighborhood of F and Ln is the Lebesgue measure.

The box-counting dimensions are invariant under bi-Lipschitz map.

Theorem 5.7. Let F Ă Rn be bounded.

(i) If f : F Ñ Rm is a Lipschitz map, i.e., there exists a constant c ą 0 such that

|fpxq ´ fpyq| ď c |x ´ y|

for all x, y P F , then

dimBfpF q ď dimBF, and dimBfpF q ď dimBF.
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(ii) If f : F Ñ Rm is a bi-Lipschitz map, i.e., there exist constants 0 ă c1 ď c2 such
that

c1 |x ´ y| ď |fpxq ´ fpyq| ď c2 |x ´ y|

for all x, y P F , then

dimBfpF q “ dimBF, and dimBfpF q “ dimBF.

Proof.
(i) If pUiq is a δ-cover of F , then so is pUi X F q Then pfpUi X F qq is a cδ-cover of fpF q,

and thus NcδpfpF qq ď NδpF q for all δ ą 0. So

log NcδpfpF qq

´ logpcδq ` log c
ď

log NδpF q

´ log δ
.

Taking limes superior and inferior as δ Ñ 0 gives the result.

(ii) Bi-Lipschitz maps are bijective. Apply (i) to f and f´1.

Remark 5.8. The first statement of Theorem 5.7 may for example be used to show that
the box-counting dimension is reduced under projection, while the second implies that it
is invariant under affine transformations.

The following theorem summarizes properties of the box-counting dimension.

Theorem 5.8. The box-counting dimensions have the following properties:

(i) Monotonicity. If E Ă F , then

dimBE ď dimBF and dimBE ď dimBF.

(ii) Range of values.
0 ď dimBF ď dimBF ď n.

(iii) Finite stability. dimB is finitely stable, i.e.,

dimBpE Y F q “ maxtdimBE, dimBF u.

(v) Finite sets. dimB F “ 0 if F is a finite set.

(vii) Open sets. dimB F “ n if F is an open subset of Rn.

(viii) Smooth manifold. dimB F “ d if F is a smooth d-dimensional submanifold of Rn.

(ix) Geometric invariance. See Remark 5.8.

(x) Lipschitz invariance. See Theorem 5.7.

Remark 5.9. Note that the finite stability only holds for dimB, not for dimB.
However, the following lemma leads to some undesired properties.
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Lemma 5.9. Let F Ă Rn and sF denote the closure of F (the smallest closed subset of
Rn containing F ). Then

dimB
sF “ dimBF, and dimB sF “ dimBF.

Proof. The smallest number of closed δ-balls that cover F equals the smallest number of
closed δ-balls that cover sF .

This means that for any subset F Ă Rn which is dense in an open region of Rn, we
have

dimB F “ n.

In particular, for the countable set of rational numbers this implies

dimB Q “ dimB sQ “ dimB R “ 1,

and thus

(iv) Not zero on countable sets. dimB does in general not vanish on countable sets.

Furthermore, this implies that

1 “ dimB Q ‰ sup
aPQ

dimBtau “ 0,

and thus, the box-counting dimension does not satisfy countable stability

(vi) No countable stability.

dimBp

8
ď

i“1
Fiq is in general not equal to sup

i
dimB Fi.

Example 5.5. Another example of a very sparse compact set with non-vanishing box-
counting dimension is given by

F “
␣

0, 1, 1
2 , 1

3 , ...
(

, dimB F “
1
2 .

5.2.2 Hausdorff dimension

First the Hausdorff measure is defined.

Definition 5.6. Let F Ă Rn, and s ě 0. Then we define

Hs
δpF q “ inf

#

ÿ

i“1
diampUiq

s

ˇ

ˇ

ˇ

ˇ

ˇ

pUiq
8
i“1 is a δ-cover of F

+

for any δ ą 0, and the (s-dimensional) Hausdorff measure of F by

Hs
pF q “ lim

δÑ0
Hs

δ

Remark 5.10. If δ decreases the class of δ-covers of F decreases, and so does the infimum
Hs

δ. Thus Hs
δ decreases as δ Ñ 0, and therefore the limit always exists.

Theorem 5.10. The Hausdorff measure Hs is an outer measure on Rn:
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(i) If A Ă Rn, then 0 ď HspAq ď 8.

(ii) HspHq “ 0.

(iii) if A, B Ă Rn with A Ă B, then HspAq ď HspBq.

(iv) If pAiq
8
i“1 countable (or finite) sequence of sets in Rn, then

Hs

˜

8
ď

i“1
Ai

¸

ď

8
ÿ

i“1
Hs

pAiq.

Furhermore, Hs defines a measure on the Borel sets of Rn (or more generally on Hs-
measurable sets):

(v) If pAiq
8
i“1 countable (or finite) sequence of disjoint Borel sets in Rn, then

Hs

˜

8
ď

i“1
Ai

¸

“

8
ÿ

i“1
Hs

pAiq.

Finally, Hn coincides with the Lebesgue measure Ln up to a factor:

(vi) If A Ă Rn a Borel set, then

Hn
pAq “

1
cn

Ln
pAq,

where cn is the volume of the n-dimensional unit ball.

The Hausdorff measure behaves well under Lipschitz mappings, and more generally
under Hölder mappings. in particular, this implies the scaling property (behavior under
similarity transformations).

Theorem 5.11. Let F Ă Rn.

(i) Let f : F Ñ Rm be a Hölder map, i.e., there exist α ą 0 and c ą 0 such that

|fpxq ´ fpyq| ď c |x ´ y|
α

for all x, y P F . Then
H

s
α pfpF qq ď c

s
α Hs

pF q

for all s ě 0.

(ii) Let f : F Ñ Rm be a Lipschitz map, i.e., there exist c ą 0 such that

|fpxq ´ fpyq| ď c |x ´ y|

for all x, y P F . Then
Hs

pfpF qq ď csHs
pF q

(iii) Let f : Rn Ñ Rn be a similarity transformation with scale factor λ ą 0. Then

Hs
pfpF qq “ λsHs

pF q
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Proof.
(i) Similar to proof of Theorem 5.7.

(ii) Follows from (i) with α “ 1.

(iii) Similarity transformations are bi-Lipschitz maps. Apply (ii) to f and f´1.

For any δ ă 1, the function Hs
δ is decreasing with s ď 0. thus the function Hs “

limδÑ8 Hs
δ is decreasing with s. Even more, for a δ-cover pUiq

8
i“1 of F , and t ą s,

8
ÿ

i“1
diampUiq

t
“

8
ÿ

i“1
diampUiq

t´s diampUiq
s

ď δt´s
8
ÿ

i“1
diampUiq

s,

and taking infima over all δ-covers, we have
Ht

δ ď δt´sHs
δ.

In the limit δ Ñ 8, we find that if Hs ă 8, then Ht “ 0 for t ą s. Thus, for a critical
value s “ dimH F , the function Hs jumps from 8 to 0:

Hs
“

#

8 if s ă dimH F,

0 if s ą dimH F.

Formally, we define the Hausdorff dimension in the following way:
Definition 5.7. let F Ă Rn, then

dimH F “ inf ts ě 0 | Hs
“ 0u “ sup ts ě 0 | Hs

“ 8u

is called the Hausdorff dimension of F .
Remark 5.11. At the critical value s “ dimH F , the function Hs may be 0, 8, or

0 ă Hs
ă 8.

Remark 5.12. The Hausdorff dimension can be defined without referring to the Hausdorff
measure. to this end, let

Hs
8pF q “ inf

#

ÿ

i“1
diampUiq

s

ˇ

ˇ

ˇ

ˇ

ˇ

pUiq
8
i“1 is a countable cover of F

+

Then
dimH F “ inf ts ě 0 | Hs

8 “ 0u .

Remark 5.13. The Hausdorff measure and the Hausdorff dimension do not change if we
restrict the covers to just open sets or just closed sets.

Similar to Theorem 5.5, one could also think of replacing the coverings involving
arbitrary sets of diameter δ by say δ-balls, and consider

Bs
δ “ inf

#

ÿ

i“1
diampUiq

s

ˇ

ˇ

ˇ

ˇ

ˇ

pUiq
8
i“1 is a cover of F by δ-balls

+

ě Hs
δ

Then Bs “ limδÑ0 Bs
δ leads to measure different from the Hausdorff measure, yet to the

same dimension.
Considering packings by balls (“dual”) to coverings by balls) leads to packing measures

and packing dimensions, both different from (yet considered to be closely related to)
Hausdorff measures and Hausdorff dimension.
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The Hausdorff dimension is always bounded from above by the lower box counting
dimension.

Proposition 5.12. Let F Ă Rn be bounded. Then

dimH F ď dimBF.

Proof. Follows from Hs
δ ď Nδδ

s, where Nδ is the least number of sets of diameter δ that
can cover F .

The behavior of the Hausdorff measure under Hölder and thus Lipschitz mappings
(Theorem 5.11), implies corresponding properties for the Hausdorff dimension.

Theorem 5.13.
(i) Let f : F Ñ Rm be a Hölder map, i.e., there exist α ą 0 and c ą 0 such that

|fpxq ´ fpyq| ď c |x ´ y|
α

for all x, y P F . Then
dimH fpF q ď

1
α

dimH F

(ii) Let f : F Ñ Rm be a Lipschitz map, i.e., there exist c ą 0 such that

|fpxq ´ fpyq| ď c |x ´ y|

for all x, y P F . Then
dimH fpF q ď dimH F

(iii) If f : F Ñ Rm is a bi-Lipschitz map, i.e., there exist constants 0 ă c1 ď c2 such
that

c1 |x ´ y| ď |fpxq ´ fpyq| ď c2 |x ´ y|

for all x, y P F . Then
dimH fpF q “ dimH F.

Proof.
(i) By Theorem 5.11, for s ą dimH F

H
s
α pfpF qq ď c

s
α Hs

pF q “ 0.

Thus, dimH fpF q ď s
α

for all s ą dimH F .

(ii) Follows from (i) with α “ 1.

(iii) Apply (ii) to f and f´1.

Remark 5.14. Similar to Remark 5.8, we obtain that the Hausdorff dimension can only
reduce under projection, and is invariant under affine transformations.
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Remark 5.15. One approach to fractal geometry is to regard two sets as equivalent if there
exists a bi-Lipschitz map between them. Since bi-Lipschitz maps are homeomorphisms,
topological invariants are bi-Lipschitz invariants, while Hausdorff dimension provides a
further invariant to distinguish equivalence classes.

Vice versa, the Hausdorff dimension provides little information about the topology of
a set. However, every set F Ă Rn with dimH F ă 1 is totally disconnected (no two points
lie in the same connected component).

Again we summarize properties of the Hausdorff dimension, most of which follow
directly from the properties of Hausdorff measures.

Theorem 5.14. The Hausdorff dimension has the following properties:

(i) Monotonicity. If E Ă F , then

dimHE ď dimHF.

(ii) Range of values.
0 ď dimHF ď n.

(iii) Finite stability. dimH is finitely stable, i.e.,

dimHpE Y F q “ maxtdimHE, dimHF u.

(iv) Countable stability. dimHp
Ť8

i“1 Fiq “ supi dimH Fi.

(v) Finite sets. dimH F “ 0 if F is a finite set.

(vi) Countable sets. dimH F “ 0 if F is countable.

(vii) Open sets. dimH F “ n if F is an open subset of Rn.

(viii) Smooth manifold. dimH F “ d if F is a smooth d-dimensional submanifold of Rn.

(ix) Geometric invariance. See Remark 5.14.

(x) Lipschitz invariance. See Theorem 5.13.

5.2.3 Similarity dimension

We had seen that for a self-similar set, applying a measure satisfying the scaling property,
leads to the following reasonable definition of dimension.

Definition 5.8. Let F Ă Rn be a self-similar sets, i.e., the attractor of an IFS tS1, . . . , Smu

of similarity transformations with scaling factors 0 ă ri ă 1, i “ 1, . . . , m. Then the
number

dimS F “ s

with
m
ÿ

i“1
rs

i “ 1

is called the similarity dimension of F .
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By the heuristic argument made earlier we have also seen that it should coincide with
the Hausdorff dimension if the union in

F “

m
ď

i“1
SipF q

is disjoint. It even holds if the sets SipF q do not overlap “too much”, which is described
by an “open set condition” as a condition on the similarity transformations Si. In this
case the similarity dimension also coincides with the box-counting dimension.

Theorem 5.15. Let tS1, . . . , Smu be an IFS of similarity transformations with scaling
factors 0 ă ri ă 1, i “ 1, . . . , m satisfying the open set condition, i.e., there exists a
non-empty bounded open set U such that

U Ą

m
ď

i“1
SipUq.

Then the attractor
F “

m
ď

i“1
SipF q

of the IFS satisfies
dimH F “ dimB F “ dimS F.

Moreover, for this value s “ dimS F the Hausdorff measure satisfies

0 ă Hs
ă 8.

Remark 5.16. In the special case r “ ri, i “ 1, . . . , m, on obtains

dimS F “
log m

´ log r
.

Remark 5.17. In particular, if S1pF q, . . . , SmpF q are disjoint, the open set condition holds.

Example 5.6. For the Sierpinski triangle, we have r “ 1
2 , m “ 3, and thus,

dimS F “
log 3
log 2 .

Remark 5.18. Not assuming the open set condition, it still holds that

dimH F “ dimB F ď dimS F.

5.3 Iteration of complex functions
5.3.1 Julia sets
JT: [ The theory for Julia sets is almost the same for rational functions, provided that 8 is included in
the natural way. The main difference is that Jpfq may not be bounded (still closed), and it may have
interior points (in which case J “ C Y t8u.
A motivation can be analysing the Newton method. ]
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For a complex function f : C Ñ C we investigate the behavior of the sequences

`

fk
pzq

˘8

k“0 “

¨

˝f ˝ ¨ ¨ ¨ ˝ f
loooomoooon

k times

pzq

˛

‚

8

k“0

for different z P C. The Julia set will be the curve that is the interface between different
qualitative behaviors of that sequence.

Example 5.7.
(i) Consider the function

fpzq “ z2,

so that fkpzq “ z2k . For a point z P C with |z| ă 1 the sequence fkpzq converges to
the origin

fk
pzq Ñ 0 pk Ñ 8q.

For a point z P C with |z| ą 1 the (absolute value of the) sequence fkpzq converges
to infinity

fk
pzq Ñ 8 pk Ñ 8q.

And for a point z P C with |p| zq “ 1 the sequence remains bounded, staying on the
unit circle. Thus, the unit circle S1 is interface between the two different behaviors
of converging to 8 and converging to 0, or more generally, staying bounded. The
unite circle is the Julia set of f in this example.

(ii) Consider the function
fpzq “ z2

` c.

for some c P C with small absolute value. Then for sufficiently small |z| the sequence
fkpzq converges to the fixed point of f close to 0, and for sufficiently large |z| the
sequence fkpzq converges to infinity. In between there is a curve that is the interface
between these two behaviors, which in this case will be a fractal.

We will restrict our following considerations to polynomial functions f .

Definition 5.9. Let f : C Ñ C be a polynomial function of degree n ě 2, i.e.,

fpzq “ anzn
` an´1z

n´1
` ¨ ¨ ¨ ` a0

with some complex numbers ak P C, k “ 0, . . . , n, an ‰ 0.

(i) The filled-in Julia set of f is given by

Kpfq “

!

z P C
ˇ

ˇ

ˇ
lim
kÑ8

fk
pz1q ‰ 8

)

.

(ii) The Julia set of f is given by the boundary of Kpfq

Jpfq “ BKpfq

i.e., z P Jpfq if in every neighborhood of z there are points z1 such that limkÑ8 fkpz1q “

8 and points z2 such that limkÑ8 fkpz2q ‰ 8.
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(iii) The Fatou set (or stable set) of f is the complement of the Julia set

F pfq “ CzJpfq.

Remark 5.19. The definition of the filled-in Julia K set suggests the following way of
visualization (we will encounter other methods later): Let r ą 0 be large, and N P N
large. For every point z P C (e.g. on some grid) compute successive terms of the sequence
`

fkpzq
˘8

k“0 until

§
ˇ

ˇfkpzq
ˇ

ˇ ě r, then we consider z to be not in K

§ or k “ N , in which case we consider z to be contained in K.

To only (or additionally) draw the Julia set J , for every point in your grid, check the
behavior of fkpzq with the method before. If all four corners show the same behavior
consider z to be not in J , and other wise consider z to be in J .

For a polynomial the sequence fkpzq converges to 8 if and only if it is unbounded as
the following lemma ensures. JT: [Follows directly from Liouville’s theorem.]

Lemma 5.16. Let f be a polynomial of degree n ě 2.

(i) There exists an r ą 0 such that if z P C with |z| ě r then

|fpzq| ě 2 |z| .

(ii) There exists an r ą 0 such that if z P C with |fmpzq| ě r for some m P N then

lim
kÑ8

fk
pzq “ 8 pk Ñ 8q

(iii) For any z P C, either pfkpzqq8
k“0 is bounded or limkÑ8 fkpzq “ 8.

Proof.
(i) For z P C we have

|fpzq| ě |an| |z|
n

´
`

|an´1| |z|
n´1

` ¨ ¨ ¨ ` |a0|
˘

.

Choose r ą 0 such that for z P C with |z| ą r we have

1
2 |an| |z|

n
ě |an´1| |z|

n´1
` ¨ ¨ ¨ ` |a0| and 1

2 |an| |z|
n

ě 2 |z| .

Then
|fpzq| ě

1
2 |an| |z|

n
ě 2 |z| .

(ii) If |fmpzq| ě r, then
ˇ

ˇfm`k
pzq

ˇ

ˇ ě 2k
|fm

pzq| ě 2kr Ñ 8 pk Ñ 8q.

(iii) If the sequence is unbounded, it will eventually satisfy the condition in (ii).
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Thus the Julia set is the interface between the points for which the sequence fkpzq

is unbounded and those for which it is bounded. The following proposition immediately
follows.
Proposition 5.17. Jpfpq “ Jpfq for every positive integer p.
Proof. The condition in Lemma 5.16 (ii) is satisfied for pfkpzqq8

k“0 if and only it is satisfied
for ppfpqkpzq “ pfpkpzqq8

k“0.

Furthermore, we can use Lemma 5.16 to infer some basic topological features of the
Julia set.
Proposition 5.18. The Julia set Jpfq and the filled-in Julia set Kpfq are both non-empty
and compact with Jpfq Ă Kpfq. Furthermore, Jpfq has an empty interior.
Proof. By Lemma 5.16, both Kpfq and its boundary Jpfq must be bounded.

We show that the complement of Kpfq is open. Let z R Kpfq. Then limkÑ8 fkpzq “ 8

and |fmpzq| ą r for some integer m. By continuity of fm this still holds for w in a small
neighborhood of z. By Lemma 5.16, limkÑ8 fkpwq “ 8, and thus w R Kpfq. Thus, Kpfq

is closed.
Jpfq is the boundary of Kpfq and thus closed. Since Kpfq is closed, we also have

Jpfq Ă Kpfq.
To see that Kpfq is not empty, let z0 be a solution to the equation fpzq “ z (there

exists at least one). Then fkpz0q “ z0 and thus z0 P Kpfq. On the other hand, by
Lemma 5.16, the complement CzKpfq is not empty. Thus, let z1 P CzKpfq. The line
segment connecting z0 and z1 must have at least one point on the boundary Jpfq. Thus,
Jpfq is not empty.

The boundary of any set has empty interior.

The Julia set is invariant under the map f .
Proposition 5.19. The Julian set J “ Jpfq is forward and backward invariant under
the map f , i.e.,

fpJq “ J “ f´1
pJq.

Proof. Let z P J Ă K. Then may find a sequence pznq8
n“0 Ă CzK with limnÑ8 zn “ z.

Thus, we have
lim

nÑ8
fk

pzq ‰ 8 and lim
kÑ8

fk
pznq “ 8.

and therfore
lim

nÑ8
fk

pfpzqq ‰ 8 and lim
kÑ8

fk
pfpznqq “ 8.

By continuity of f , we can choose fpznq arbitrarily close to fpzq, and thus fpzq P J . So,
we have

J Ă fpJq and therefore also J Ă f´1
pfpJqq Ă f´1

pJq.

With z and pznq8
n“0 as before, let w such that fpwq “ z. Then since f is a polynomial,

we may find pwnq8
n“0 with limnÑ8 wn “ w and fpwnq “ zn. Thus

lim
nÑ8

fk
pwq

loomoon

“fk´1pzq

‰ 8 and lim
kÑ8

fk
pwnq

loomoon

“fk´1pznq

“ 8,

and therefore w P J So, we have

f´1
pJq Ă J and therefore also J “ fpf´1

pJqq Ă fpJq.
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The following theorem is a consequence of Montel’s theorem on normal sequences of
holomorphic functions. JT: [What does (the existence of) the exceptional point say about f?]

Theorem 5.20. Let z P Jpfq and U a neighborhood of of z. Then the set
8
ď

k“l

fk
pUq, l “ 0, 1, . . .

is the whole of C, except for possibly one single point. Any such point is called an excep-
tional point, is not contained in Jpfq, and is independent of z and U .

Proof. By use of Montel’s theorem.

Remark 5.20. To use Montel’s theorem one may show that Julia sets may equivalently be
represented in the following way:

Jpfq “
␣

z P C
ˇ

ˇ pfk
q

8
k“1 is normal at z

(

.

As a consequence, we prove the following theorem, which may be used for visualization
of Julia sets.

Theorem 5.21.
(i) The following holds for all z P C except at most one exception: Let U be an open

set with
U X Jpfq ‰ H.

Then f´kpzq intersects U for infinitely many values of k. If there is an exceptional
value, it cannot be in Jpfq.

(ii) For any z P Jpfq

Jpfq “

8
ď

k“0
f´kpzq.

Proof.
(i) By Theorem 5.20, a non-exceptional point z P U satisfies z P fkpUq for some k, and

thus f´kpzq intersects U . Applying this repeatedly, we can generate arbitrary large
k for which this holds.

(ii) Let z P Jpfq.
By Proposition 5.19, this implies f´kpzq Ă Jpfq, and thus

8
ď

k“0
f´kpzq Ă Jpfq,

since Jpfq is closed.
Recall that a point z is in the closure of a set A if every neighborhood of z con-
tains points of A. By (i), for a neighborhood U that intersects Jpfq (which is a
neighborhood of a point in Jpfq) there exists a k such that f´kpzq intersects U .
Thus

Jpfq Ă

8
ď

k“0
f´kpzq.
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We may use this to show that the Julia set has no isolated points.

Proposition 5.22. Jpfq is a perfect set (closed and with no isolated points) and therefore
uncountable.

Proof. Let w P Jpfq and U a neighborhood of w. We have to show that U contains points
of Jpfq other than w. By Theorem 5.21, U contains a point of f´kpwq Ă Jpfq for some
k ě 1. If this point is different from w, we are done. However, this points might not be
different from w. It is equal to w if and only if

fk
pwq “ w.

Consider the case k “ 1 fist (w a fixed point of f). Thus, fpwq “ w. If there is
no other solution to the equation fpzq “ w P Jpfq, this would contradict Theorem 5.21
(ii). JT: [Unless J consists of exactly one point. Is that possible?] Thus, let v ‰ w be such that
fpvq “ w. Again, by Theorem 5.21, U contains a point of f´lpvq Ă f´l´1pwq Ă Jpfq for
some l ě 1. Any such point u is distinct from w, since f lpuq “ v ‰ w “ f lpwq.

Now assume k ą 1 (w is a periodic orbit of f). Thus, fkpwq “ w and w is a fixed
point of fk. By Theorem 5.17, Jpfkq “ Jpfq, and we may apply the previous argument
to fk. JT: [one could just earlier consider f̃ “ fk, so that the order of arguments doesn’t have to be
reversed.]

In the proof of the previous proposition, we have encountered fixed points and periodic
orbits of f , which may be used to characterize Julia sets.

Definition 5.10. Let f : C Ą U Ñ C be a holomorphic function, and w P U .

(i) If fpwq “ w, the point w is called a fixed point of f .
In this case w is called attractive if |f 1pwq| ă 1 and it is called a repelling if |f 1pwq| ą

1.

(ii) If fppwq “ w for some p ě 1, the point w is called periodic point of f .
The smallest such p is called the period of w, and w, fpwq, . . . , f ppwq a periodic orbit
of f . w is called attractive if |pfpq1pwq| ă 1 and it is called repelling if |pfpq1pwq| ą 1.

Remark 5.21. Close to a fixed point w the function f may be expressed as

fpzq “ fpwq ` f 1
pwqpz ´ wq ` opz ´ wq “ w ` f 1

pwqpz ´ wq ` opz ´ wq

It locally acts as a similarity transformation centered at w with scaling factor |f 1pwq|.
Thus, if |f 1pwq| ă 1, points close to w get closer to w after applying f and thus get
attracted in the sequence fkpwq. If |f 1pwq| ą 1, points close to w get repelled from w.

For a periodic point w of period p we consider the same expression for

fp
pwq “ w ` pfp

q
1
pwqpz ´ wq ` opz ´ wq

Thus, if |pfpq1pwq| ă 1, points close to w, get closer to w after further p applications of
f and thus get attracted to the periodic orbit. If |pfpq1pwq| ą 1, points close to w get
repelled from the periodic orbit.

Note that by successive application of the chain rule, the derivative pfpq1pwq may be
expressed as

pfp
q

1
pwq “ f 1

pfp´1
pwqq ¨ f 1

pfp´2
pwqq ¨ ¨ ¨ f 1

pwq.

Thus, its value does not depend on the point in the periodic orbit.
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For later reference, we state the following lemma on attractive periodic orbits.

Lemma 5.23. Let f be a polynomial of degree n ě 2, and wp‰ 8q be an attractive
periodic point. Then there exists a z P C with f 1pzq “ 0 such that the sequence

`

fkpzq
˘8

k“0
is attracted to the periodic orbit of w.

In particular this means, that there can be at most as many attractive periodic orbits
as there are critical points (f 1pzq “ 0), which in turn are at most n ´ 1.

On the other hand, f has a large number of repelling periodic points. In fact their
closure constitute the entire Julia set.

Theorem 5.24. Let f be a polynomial of degree n ě 2. Then Jpfq is the closure of the
repelling periodic points of f .

Proof. By use of Montel’s theorem once more.

Remark 5.22. Some additional properties of Jpfq related to the previous theorem are the
following.

§ Periodic orbits are dense in Jpfq. However, there are also points z P Jpfq such that
the sequence fkpzq is dense in Jpfq.

§ The dependence of f on initial conditions (starting value z P Jpfq) is sensitive on
Jpfq. Thus, distances

ˇ

ˇfkpzq ´ fkpwq
ˇ

ˇ can become large no matter how close z and w
are chosen.

§ This may be summarized as “f acts chaotically on Jpfq”.

Another way to characterize Julia sets, is as the boundary of the basin of attractive
fixed points.

Definition 5.11. Let w P C Y t8u be an attractive fixed point of f . Then

Apwq “

!

z P C
ˇ

ˇ

ˇ
lim
kÑ8

fk
pzq “ w

)

is called the basin of attraction of w.

Remark 5.23. Note that by Lemma 5.16, 8 is always an attractive fixed point of a poly-
nomial f .

Lemma 5.25. The basin of attraction Apwq is open.

Proof. Since w is attractive there is an open set w P U Ă Apwq. Thus, f´kpUq Ă Apwq

is open for all k ě 0. For z P Apwq, we have fkpzq P U for some k ě 0 and thus
z P f´kpUq.

Theorem 5.26. Let f be a polynomial of degree n ě 2, and w P C be an attractive fixed
point of f . Then

Jpfq “ BApwq.

Proof. Let z P Jpfq. Then fkpzq P Jpfq for all k, and thus z R Apwq. However, if U is
a neighborhood of z, by Theorem 5.20, the set fkpUq contains point of Apwq for some k.
Thus, there are points arbitrary close to z that iterate to w, and therefore z P Apwq. So,

Jpfq Ă BApwq.

The reverse inclusion may be shown by use of Montel’s theorem once more.
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5.3.2 Julia sets of quadratic polynomials (and the Mandelbrot set)

We now restrict to our study of Julia sets to quadratic polynomials.

Lemma 5.27. Let
fpzq “ a2z

2
` a1z ` a0

be a quadratic polynomial, a2 ‰ 0. Then there exists a complex linear function hpzq “

αz ` β, α ‰ 0 such that
fcpzq :“ h ˝ f ˝ h´1

pzq “ z2
` c

for some c P C.

Proof. We go the reverse direction and substitute

h´1
˝ fc ˝ hpzq “ αz2

` 2βz `
β2 ` c ´ β

α
.

From this arbitrary values for a2, a1, a0 may be obtained.

Geometrically, the linear function h is a similarity transformation. Thus, we may
restrict our study further to the functions

fcpzq “ z2
` c

with some c P C. The Julia sets will be similar to the corresponding ones obtained from
general quadratic polynomials.

We gather some facts that let us better understand how fc : C Ñ C acts as a holo-
morphic function.

§ fc is locally bijective away from every point except the critical point

z “ 0, f 1
cp0q “ 0.

In fact, it is bijective on every open half-plane, whose boundary contains 0, which is
mapped by fc to a slitted plane, where the slit is a ray starting from c.

§ The preimage of any point z ‰ 0 consists of two points, the two square roots

f´1
c pzq “ ˘pz ´ cq

1
2

The two branches of the square roots, may be considered as the two holomorphic
functions which are inverse to fc on two complementary half-planes.

§ We call a smooth, closed, simple (non-self-intersecting) curve in the complex plane a
loop. It is the boundary of a simply-connected set, which is the inside of the loop. A
loop winds around every point of its interior exactly once. Let L “ BU be a loop in
the complex plane, and U its simply-connected interior.
If 0 P U ,then fcpLq is a loop.
If 0 R U , then fcpLq is a curve that wraps around c twice.
The following lemma states what the preimages of loops look like.

Lemma 5.28. Let L “ BU Ă C be a loop in the complex plane and U its simply-connected
interior.
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(i) If c P U , then f´1pLq is a loop.
Moreover, fc maps the interior of f´1

c pLq onto the interior of L, and the exterior of
f´1

c pLq onto the exterior of L.

(ii) If c R U , then f´1pLq comprises of two disjoint loops, neither contained within the
other.
Moreover, fc maps the interior of each loop of f´1

c pLq onto the interior of L, and
the region outside both loops of f´1

c pLq onto the exterior of L.

Remark 5.24. If c P L, then f´1
c pLq is a “figure of eight” (a single point of self-intersection).

Consider a large loop L “ BU such that c P U . Then Theorem 5.21 suggests, that the
sequence

`

f´kpLq
˘8

k“0 should converge to the Julia set.
Then by Lemma 5.28, each curve in the sequence

`

f´kpLq
˘8

k“0 is a single loop as long
as c lies inside the previous loop, or equivalently, as long as

`

fkp0q
˘8

k“0 P U .
Thus, we may distinguish two cases. One in which the sequence

`

fkp0q
˘8

k“0 stays
bounded, and the sequence

`

f´kpLq
˘8

k“0 consists of single loops. In this case, the limit
set, which is the Julia set, is connected. And the other case, in which the sequence
`

fkp0q
˘8

k“0 goes to infinity, and the sequence
`

f´kpLq
˘8

k“0 at some point disconnects into
multiple components. In this case, the Julia set is disconnected, in fact even totally
disconnected.

Theorem 5.29. Let c P C. Then
`

fkp0q
˘8

k“0 is bounded if and only if Jpfcq is connected.
Furthermore, if Jpfcq is not connected, then it is totally disconnected.

Proof.
(ñ) Let

`

fk
c p0q

˘8

k“0 be bounded. Let L “ BU Ă C be a large circle with interior U , such
that

(i)
`

fk
c p0q

˘8

k“0 Ă U ,
(ii) f´1

c pLq Ă U ,
(iii) and all points outside L iterate to 8.

By (i) and Lemma 5.28, the sequence
`

f´k
c pLq

˘8

k“0 consists of single loops. By (ii)
f´2

c pUq Ă f´1
c pUq. Thus,

`

f´k
c pLq

˘8

k“0 is a sequence of loops, each in the interior (or
on) of the previous one.
Let K be the closed set points inside or on every of the loops f´k

c pLq:

K “

8
č

k“0
f´k

c pUq

For z P K all points fk
c pzq P U , and thus

`

fk
c pzq

˘8

k“0 is bounded. If z R K, then z
is outside one of the loops f´m

c pLq for some m, and therefore, fm
c pzq R U . By (iii),

limkÑ8 fk
c pzq. Thus, K is the filled-in Julia set of fc.

The sequence f´k
c pUq is a decreasing sequence of closed simply-connected sets. Thus,

K is simply-connected and therefore has connected boundary BK “ Jpfcq.

(ð) Let
`

fk
c p0q

˘8

k“0 be unbounded. Let L “ BU Ă C be a large circle with interior U , such
that
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(i)
`

fk
c p0q

˘8

k“0 Ć L,
(ii) f´1

c pLq Ă U ,
(iii) and all points outside L iterate to 8.

Let m be the smallest integer such that fm
c p0q lies outside L.

Then
`

f´k
c pLq

˘m´1
k“0 is a (finite) sequence of loops, each in the interior (or on) of the

previous one. However, c is outside of the loop f´m`1pLq. Thus, by Lemma 5.28,
f´mpLq consists of two loops inside f´m`1pLq, and fc maps the interior of those loops
onto the interior of f´m`1pLq.
The Julia set Jpfcq lies inside these two loops, since points outside iterate to infinity,
by (iii). Furthermore, since Jpfcq is invariant under f´1, both loops must contain part
of the Julia set, and thus, Jpfcq is not connected.
If we continuously apply Lemma 5.28 to the sequence

`

f´k
c pLq

˘m´1
k“0 , we see that the

Julia set lies within a “Cantor-like” hierarchy of disjoint pairs of loops, and therefore
must be totally disconnected.

We now define the Mandelbrot set as all the values c P C for which the Julia set Jpfcq

is connected, or equivalently, for which the sequence
`

fk
c p0q

˘8

k“0 is bounded.

Definition 5.12. The Mandelbrot set is defined by

M “ tc P C | Jpfcq is connectedu

“

!

c P C
ˇ

ˇ

ˇ

`

fk
c p0q

˘8

k“0 is bounded
)

“

!

c P C
ˇ

ˇ

ˇ
lim
kÑ8

fk
c p0q ‰ 8

)

Remark 5.25. The boundary of the Mandelbrot set has zero area, yet is a fractal of
Hausdorff dimension dimH M “ 2.
Remark 5.26. The first equality holds by Theorem 5.29 and the last by Lemma 5.16.

The characterization by Theorem 5.29 gives immediate rise to a way of visualizing
the Mandelbrot set, similar to the method discussed in Remark 5.19: Choose r ą 2 and
N P N large. For each c P C compute successive terms of the sequence

`

fk
c p0q

˘8

k“0 until

§
ˇ

ˇfk
c p0q

ˇ

ˇ ě r, then c R M ,

§ or k “ N , in which case we consider c to be contained in M .

One can additionally assign different colors to the complement of M , depending on the
first number k for which

ˇ

ˇfk
c p0q

ˇ

ˇ ě r.
Remark 5.27. The Mandelbrot set is bounded. At least the following bound may be given:
For

|c| ą
1
4p5 ` 2

?
6q « 2.475... ñ c R M,

and thus fc is totally disconnected.
In this case the Julia set Jpfcq is the attractor of the iterated function system (of

contractions) consisting of the two branches f´1
c pzq “ ˘pz ´ cq

1
2 of the square root for z

close to Jpfcq.
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Furthermore, for large |c|, its dimension behaves like

dimB Jpfcq “ dimH Jpfcq „
2 log 2

logp4 |c|q
.

A finer distinction of different qualitative behavior of the Julia sets Jpfcq than by
the Mandolbrot set (and its complement), may be obtained by considering the attractive
periodic orbits of fc.

Lemma 5.30.
(i) fc has at most one attractive periodic orbit.

(ii) If c R M then fc has no attractive periodic orbit

Proof.
(i) By Lemma 5.23, for every attractive periodic orbit, there exists a critical point of

fc that is attracted to it. The only critical point of fc is given by

f 1
cpzq “ 2z “ 0

is given by z “ 0. Thus, fc has at most one attractive periodic orbit (including an
attractive fixed point different from 8).

(ii) If c R M , then limkÑ8 fk
c p0q “ 8, and thus, by (i), fc has no attractive periodic

orbit.

The complement of the Mandelbrot set only contains c P M for which fc has no
attractive periodic points. It is conjectured that points c P M for which fc does have
attractive periodic points fill the interior of M .

Conjecture 5.31 (density of hyperbolicity). The interior of M consists of the points
c P C for which fc has an attractive periodic point.

By Lemma 5.30, we have

fc has attractive periodic point ñ c P M.

Now different arias inside the Mandelbrot set may be identified by the period p of the
attractive orbit.

p = 1 fc has an attractive fixed point, i.e,

fcpzq “ z and |fcpzq| ă 1.

It can be shown that this is the case if and only if c lies inside a cardioid, called the “main
cardioid” of the Mandelbrot set.

Theorem 5.32. fc has an attractive fixed point if and only if c lies inside the cardioid

zptq “
1
2eit

ˆ

1 ´
1
2eit

˙

, t P r0, 2πs.

This is the cardioid obtained by rolling a circle of radius 1
4 along another circle of radius

1
4 and center 0 following the initial point of contact 1

4 .
Furthermore, in this case, Jpfcq is a simple close loop.
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Remark 5.28. For small |c| the dimension of Jpfcq behaves like

dimB Jpfcq “ dimH Jpfcq “ 1 `
|c|

2

4 log 2 ` Op|c|
3
q

Moreover, 0 ă Hs ă 8.

p=2 fc has an attractive periodic orbit of period 2, i.e.

f 2
c pzq “ z and

ˇ

ˇpf 2
c q

1
pzq

ˇ

ˇ ă 1.

Lemma 5.33. fc has an attractive fixed point if and only if c lies in the disk

|c ` 1| ă
1
4

fc has two fixed points and two period 2 orbits (since f 2
c has degre 4), one of which is

attractive. Let w1 and w2 be the two points of the attractive period 2 orbit. Both points
are fixed points of f 2

c , thus by Theorem 5.26 and Proposition 5.17

Jpfcq “ Jpf 2
c q “ BApw1, f 2

c q “ BApw2, f 2
c q.

It turns out that the region of the basins of attraction containing w1 and w2 each are
bounded by a simple closed curve, which touch each other at a fixed point of fc. The
Julia set consists of all preimages of these two loops, enclosing all preimages of w1 and
w2, and always touching each other pairwise in “pinch points”.

p >2 The Julia set consists of all preimages of p loops, each enclosing one of the points
w1, . . . , wp of the attractive period p orbit. The preimages of these loops enclose all the
preimages of the points w1, . . . , wp and touch each other in tuples of p.

boundary There exist more intricate Julia sets Jpfcq for values on the boundary of M .

Figure 18. Different regions of the Mandolbrot set according to the period of attractive
periodic orbits and the corresponding Julia sets.
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6 Möbius geometry

6.1 The elementary model of Möbius geometry
Consider the n-dimensional Euclidean space Rn. The inversion in a hypersphere with
center c P Rn and radius r ą 0 can be described in the following way: The point x and its
image x1 lie on the same ray emanating from c and the distances to c satisfy the relation

} x ´ c } ¨ } x1
´ c } “ r2.

This gives rise to an involution on Rn, except that the center c has no image and no
preimage. To fix this, we add one extra point to Rn, called 8, and obtain the extended
Euclidean space

xRn :“ Rn
Y t8u.

Definition 6.1. The (sphere) inversion in the hypersphere with center c P Rn and radius
r ą 0 is the map defined by

xRn Ñ xRn, x ÞÝÑ x1
“ c `

r2

}x ´ c}2 px ´ cq for x ‰ c,

c ÞÝÑ 8

8 ÞÝÑ c

Sphere inversions preserve angles and map hyperspheres and hyperplanes to hyper-
spheres and hyperplanes. This statement becomes simpler and more specific at the same
time if we consider hyperplanes as special cases of hyperspheres through the point 8.
More precisly, let us adopt the following convention:

Definition 6.2. A sphere in xRn is either a sphere in Rn or the union of a plane in Rn

with t8u.

Then we can simply say:

Theorem 6.1. Sphere inversions preserve angles and map hyperspheres in xRn to hyper-
spheres in xRn.

Since circles and, more generally, k-dimensional spheres for 1 ď k ă n are intersections
of n ´ k hyperspheres, sphere inversions preserve spheres of any dimension:

Corollary 6.2. Sphere inversions map k-spheres in xRn to k-spheres in xRn.

Just as hyperplanes are limiting cases of hyperspheres, reflections in hyperplanes
are limiting cases of sphere inversions. The reflection in the hyperplane with equation
xx ´ a, vy “ 0 is the map

x ÞÝÑ x1
“ x ´ 2xx ´ a, vy

xv, vy
v,

which we extend from Rn to xRn by declaring that reflections in hyperplanes map 8 to 8.
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v

x

x1

Figure 19. Reflection in a hyperplane

Definition 6.3. A Möbius transformation of Rn Y t8u is a composition of sphere inver-
sions and reflections in hyperplanes. The Möbius transformations form a group called the
Möbius group and denoted by Möbpnq.

Remark 6.1. A Möbius transformation is orientation reversing or preserving depending
on whether it is the composition of an odd or even number of reflections. The subgroup
of orientation preserving Möbius transformations is called the special Möbius group and
denoted by SMöbpnq.

Because reflections preserve angles and map spheres to spheres, Theorem 6.1 extends
to Möbius transformations:

Theorem 6.3. Möbius transformations preserve angles and map spheres in xRn to spheres
in xRn.

Similarity transformations on Rn are the transformations of the form x ÞÑ λAx ` b
with λ ą 0, A P Opnq, and b P Rn. Reflections in hyperplanes are a special case, and
like reflections in hyperplanes we extend all similarity transformations from Rn to xRn by
declaring that 8 maps to 8.

Proposition 6.4. The Möbius group contains all similarity transformations.

Proof. The group of similarity transformations is generated by translations, orthogonal
transformations, and scalings.

§ A translation x ÞÑ x ` v is the composition of two reflections in parallel hyperplanes.

§ An orthogonal transformation x ÞÑ Ax with A P Opnq is the composition of at most n
reflections in hyperplanes through the origin.

§ A scaling transformation x ÞÑ λx with λ ą 0 is the composition of a reflection in the
unit sphere followed by a reflection in a sphere with center 0 and radius

?
λ.

Conversely, one only needs to add one sphere inversion to the group of similarity
transformations to generate the Möbius group:

Proposition 6.5. Every Möbius transformation is a composition of similarity transfor-
mations and inversions in the unit sphere.

By Theorem 6.3, Möbius transformations map hyperspheres to hypersphers. This
property already characterizes all Möbius transformations.

Theorem 6.6 (Fundamental theorem of Möbius geometry). Any bijective map f : xRn Ñ

xRn which maps hyperspheres in xRn to hyperspheres in xRn is a Möbius transformation.
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6.2 Two-dimensional Möbius geometry
This case is special because we can identify R2 with C and xR2 with the extended complex
plane pC “ C Y t8u, which is the same as CP1, the complex projective line.

§ The orientation preserving and reversing similarity transformations are z ÞÑ az ` b
and z ÞÑ az̄ ` b with a P Czt0u, respectively.

§ Complex conjugation z ÞÑ z̄ is the reflection in the real line,

§ and inversion in the unit circle |z| “ 1 is the map z ÞÑ z
|z|2

“ 1
z̄
.

Proposition 6.7. The orientation preserving and reversing Möbius transformations of
pC “ CP1 are precisely the maps of the forms

z ÞÝÑ
az ` b

cz ` d
or z ÞÝÑ

az̄ ` b

cz̄ ` d
with ad ´ bc ­“ 0.

Corollary 6.8. The group of orientation preserving Möbius transformations of pC is

SMöbp2q “ PGLp2,Cq “ PSLp2,Cq,

so oriented two-dimensional Möbius geometry is the same as one-dimensional complex
projective geometry.

Remark 6.2. For later reference, we state the form of two important subgroups. The
Möbius transformations mapping the upper half-plane to the upper half-plane are given
by

z ÞÝÑ
az ` b

cz ` d
or z ÞÝÑ

´az̄ ` b

´cz̄ ` d
with a, b, c, d P R, ad ´ bc “ 1.

The Möbius transformations mapping the upper half-plane to the upper half-plane are
given by

z ÞÝÑ
az ` b

b̄z ` ā
or z ÞÝÑ

az̄ ` b

b̄z̄ ` ā
with a, b P C, |a| ´ |b| “ 1.

The connection between two-dimensional Möbius geometry and one-dimensional com-
plex projective geometry has the following immediate consequences:

Corollary 6.9.
(i) Orientation preserving Möbius transformations of pC preserve the complex cross-ratio

of four points

crpfpz1q, fpz2q, fpz3q, fpz4qq “ crpz1, z2, z3, z4q “
pz1 ´ z2qpz3 ´ z4q

pz2 ´ z3qpz4 ´ z1q
,

while orientation reversing Möbius transformations of pC satisfy

crpfpz1q, fpz2q, fpz3q, fpz4qq “ crpz1, z2, z3, z4q.
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(ii) For any three points z1, z2, z3 P pC and any three points w1, w2, w3 P pC, there is a
unique orientation preserving Möbius transformation f with fpziq “ wi.
There is also a unique orientation reversing Möbius transformation g with gpziq “

wi, which is given by the composition of f followed by an inversion in the circle
through w1, w2, w3, or, which is the same, inversion in the circle through z1, z2, z3
followed by f .

Furthermore, the complex cross-ratio yields a convenient way to determine whether
four points in the plane lie on a circle.

Proposition 6.10. Four points z1, z2, z3, z4 lie on a circle in pC if and only if their
cross ratio is real. Moreover, they lie on a circle in that cyclic order if and only if
crpz1, z2, z3, z4q ă 0.

The fixed points of an orientation preserving Möbius transformation f are obtained
by solving

fpzq “
az ` b

cz ` d
“ z,

which (if c ‰ 0) is a quadratic equation in z given by

cz2
´ pa ´ dqz ´ b “ 0.

It has at least one and at most two (if f ‰ id), given by

z˘ “
pa ´ dq ˘

?
∆

2c

with discriminant

∆ “ pa ´ dq
2

` 4bc “ pa ` bq
2

´ 4pad ´ bcq “ ptr F q
2

´ 4 det F,

where
F “

ˆ

a b
c c

˙

P GLp2,Cq

is a matrix representation of f . If we choose a representation F P SLp2Cq, i.e., det F “ 1,
the trace of F is uniquely determined up to sign. We obtain

f parabolic :ô f has exactly one fixed point
ô ptr F q

2
“ 4,

and
f non-parabolic :ô f has two distinct fixed point

ô ptr F q
2

‰ 4.

In both cases, we may bring f to one of the following normal forms.

Proposition 6.11. Let f ‰ id be an orientation preserving Möbius transformation.

(i) If f is non-parabolic, then there exists a Möbius transformation g and k P Czt0, 1u

such that
`

g ˝ f ˝ g´1˘
pzq “ kz.
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(ii) If f is parabolic, then there exists a Möbius transformation g and β P Czt0u such
that

`

g ˝ f ˝ g´1˘
pzq “ z ` β.

Proof.
(i) Let γ1, γ2 P C be the fixed points of f . Choose

gpzq “
z ´ γ1

z ´ γ2
,

which satisfies gpγ1q “ 0 and gpγ2q “ 8.

(ii) Let γ P C be the fixed point of f . Choose

gpzq “
1

z ´ γ
,

which satisfies gpγq “ 8.

For non-parabolic Möbius transformation f the number k is called the multiplier of
γ1. An SLp2,Cq representative of the normal form is given by

F̃ “

ˆ

λ 0
0 1

λ

˙

, k “ λ2.

Thus, we obtain the following relation between the multiplier k and the trace

ptr F q
2

“

ˆ

λ `
1
λ

˙2

“

ˆ

?
k `

1
?

k

˙2

The multiplier is invariant under conjugation, and thus

f 1
pγ1q “ k.

Interchanging the two fixed points γ1 Ø γ2 leads to k Ø 1
k
, and thus

f 1
pγ2q “

1
k

.

In particular, if one fixed point is attractive, then the other fixed point is repelling. One
defines

f elliptic :ô |k| “ 1 ô ptr F q
2

P r0, 4q,

f loxodromic :ô |k| ‰ 1 ô ptr F q
2

R r0, 4s,

f hyperbolic :ô k P R ô ptr F q
2

P p4, 8q.

From this definition and Proposition 6.11, we can easily conclude the following decompo-
sition of orientation preserving Möbius transformations into inversions in circles.

Proposition 6.12.
(i) Every loxodromic Möbius transformation is the composition of an elliptic and a

hyperbolic Möbius transformation.
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(ii) Every parabolic, elliptic, and hyperbolic Möbius transformation is the composition
of two inversions (or reflections).

(iii) Every orientation preserving Möbius transformation is the composition of at most
four inversions (or reflections).

An non-parabolic Möbius transformation is uniquely determined by its two fixed points
γ1, γ2 and the multiplier k.

Proposition 6.13. Let f ‰ id be an orientation preserving Möbius transformation.

(i) If f is non-parabolic, and γ1, γ2 its two fixed points, and k the multiplier (of γ1),
then

F pk; γ1, γ2q “

ˆ

γ1 ´ kγ2 pk ´ 1qγ1γ2
1 ´ k kγ1 ´ γ2

˙

P SLp2,Cq.

In the case γ2 “ 8

F pk; γ1, 8q “

ˆ

k p1 ´ kqγ1
0 1

˙

P SLp2,Cq.

(ii) If f is parabolic, and γ P C its fixed point, and β the translation length, then

F pβ; γq “

ˆ

1 ` γβ ´βγ2

β 1 ´ γβ

˙

P SLp2,Cq.

In the case γ “ 8

F pβ; 8q “

ˆ

1 β
0 1

˙

P SLp2,Cq.

Proof.
(i) Using the function g from the proof of Proposition 6.11, we have

g ˝ fpzq “ kgpzq ô
fpzq ´ γ1

fpzq ´ γ2
“ k

z ´ γ1

z ´ γ2

Solving for fpzq yields the result.

(ii) Similarly,
g ˝ fpzq “ gpzq ` β ô

1
fpzq ´ γ

“
1

z ´ γ
` β.

For a non-parabolic Möbius transformation f with fixed points γ1, γ2 P C, let us note
the elliptic pencil of circles through γ1 and γ2 by

Cepγ1, γ2q :“ tcircles containing γ1 and γ2u ,

and the hyperbolic pencil of orthogonal circles by

Chpγ1, γ2q :“ tcircles orthogonal to all circles of Chpγ1, γ2qu .

Then
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§ An elliptic transformation will map each circle from Ce to another circle from Ce, while
preserving each circle in Ch. JT: [how does the angle relate to k?]

§ A hyperbolic transformation will map each circle from Ch to another circle from Ch,
while preserving each circle in Ce. JT: [relation inversive distance and k]

§ A loxodromic transformation will map each circle from Ch to another circle from Ch, but
not preserve the circles in Ce. Instead it preserves loxodromic curves connecting γ1, and
γ2. These are curves of constant angle with the circles from Ch, or equivalently, Möbius
images of logarithmic spirals. JT: [should say much more about these curves...] JT: [what is this
angle, should be again be related to k]

We may say a little more about this pairing of circles in Chpγ1, γ2q by a loxodromic
transformations. To this end, let us distinguish the inside and outside of the circles
(Euclidean distinction). The family Chpγ1, γ2q may be separated into two components by
the perpendicular bisector of γ1 and γ2.

§ If f maps a circle C1 of one component to a circle C2 of the same component, it maps
the inside of C1 to the inside of C2.

§ If f maps a circle C1 of one component to a circle C2 of the other component, it maps
the inside of C1 to the outside of C2.

In the second case the two circles C1 and C2 are called paired by f .

Definition 6.4. Two circles C1, C2 Ă C non contained inside the other are called (Schottky-
)paired by the orientation preserving Möbius transformation f if f maps the inside of C1
to the outside of C2 (and thus C1 to C2 and the outside of C1 to the inside of C2).

Remark 6.3. If we cut out the inside of C1 and C2 and identify points of C1 and C2 that
are mapped to each other by f , the resulting surface is a topological torus.

Using the formula for a Möbius transformation from fixed points and multiplier (Propo-
sition 6.13), which circle in Chpγ1, γ2q is mapped to which is determined by the absolute
value |k| of the multiplier. JT: [however, this still doesn’t give the general pairing.]

However, given two circles C1 and C2 non contained inside the other, how can we
Schottky-pair them by a Möbius transformation? We can first translate and scale C1 to
the unit circle, then invert in the unit circle, and then scale and translate the unit circle
to C2. By inserting a general Möbius transformation in between, that maps the unit disk
to itself, we obtain the most general form of such a transformation.

Proposition 6.14. Let C1, C2 Ă C be two circles with centers, c1, c2 P C and radii
r1, r2 ą 0. Then a general orientation preserving Möbius transforations, that maps C1 to
C2 is given by

z ÞÑ r2
b̄pz ´ c1q ` r1ā

apz ´ c1q ` r1b
` c2 with a, b P C, |a| ´ |b| “ 1.

JT: [what does all of this look like in the projective model?]
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6.3 Schottky groups and limit sets
Definition 6.5. A discrete subgroup (no limit points) of PSLp2,Cq is called a Kleinian
group.

Remark 6.4. A discrete subgroup of PSLp2,Rq is called a Fuchsian group. Thus, every
Kleinian group that preserves the real line is a Fuchsian group, and every Kleinian group
that preserves a circle is conjugate to a Fuchsian group.

Definition 6.6. Let C1, C̃1, . . . , Cg, C̃g Ă C be 2g circles with disjoint interiors. and
f1, . . . , fg P PSLp2,Cq Möbius transformations such that Ci and C̃i are (Schottky-)paired
by fi for i “ 1, . . . , g, then the Kleinian group generated by f1, . . . , fg is called a (classical)
Schottky group.

Remark 6.5. A fundamental domain F for the action of a Schottky group G on Ĉ is
given by the common exterior of all the circles C1, C̃1, . . . , Cg, C̃g. The quotient F {G is a
compact Riemann surface of genus g.

For simplicity, from now on we consider Schottky groups generated by two loxodromic
Möbius transformations. We introduce the following notations, and make some observa-
tions, following [Indra’s pearls - David Mumford, Caroline Series, David Wright]:

§ We denote the two generators of the group by

a, b,

and its inverse transformations by

A :“ a´1, B :“ b´1.

§ We denote the circles paired by a by CA and Ca, and their interior disks by DA and
Da. Thus, a maps

apCAq “ Ca, apĈzDAq “ Da, apDAq “ ĈzDa,

ApCaq “ CA, ApĈzDaq “ DA, ApDaq “ ĈzDA.

Successive application of a or A leads to nested disks, which we call

Da ¨ ¨ ¨ a
loomoon

k`1

:“ a ¨ ¨ ¨ a
loomoon

k

pDaq Ă Da ¨ ¨ ¨ a
loomoon

k

Ă ¨ ¨ ¨ Ă Daa Ă Da,

DA ¨ ¨ ¨ A
loomoon

k`1

:“ A ¨ ¨ ¨ A
loomoon

k

pDAq Ă DA ¨ ¨ ¨ A
loomoon

k

Ă ¨ ¨ ¨ Ă DAA Ă DA.

These two sequences converge to the attractive fixed point of a and A respectively.
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Similarly, for b, B, CB, Cb, DB, Db.

§ Every element of the Schottky group is represented by a sequence

σ1 ¨ ¨ ¨ σk

sometimes called a word consisting of the letters σi given by

a, A, b, B.

The only relations in the group satisfied are

aA “ Aa “ bB “ Bb “ 1,

which lead to non-unique representations and possible cancellations of letters in a
word. If all possible cancellations are applied (no adjacent a, A and no adjecent b, B),
the word is called reduced.

All reduced words are represented by this word tree.

§ We now apply all elements of the Schottky group to the initial disks Da, DA, Db, DB,
and denote the images by

Dσ1¨¨¨σk`1 :“ σ1 ¨ ¨ ¨ σkpDσk`1q Ă Dσ1¨¨¨σk
Ă ¨ ¨ ¨ Ă Dσ1σ2 Ă Dσ1 .

For example applying the transformation a to the disks Da, Db, DB leads to 3 new
disks

Daa, Dab, DaB Ă Da
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all contained in Da. Similarly,

DAA, DAb, DAB ĂDA,

Dba, DbA, Dbb ĂDb,

DBa, DBA, DBB ĂDB,

which brings us to 12 disks on the second level.
9 of these 12 disks lie outside DA, thus applying a to those disks, yields 9 disks
contained in Da, 3 contained in Daa, 3 in contained in Dab, and 3 contained in DaB.
In total, we obtain 36 disks on the third level.

§ The collection of all disks obtained in that way

tDσ1¨¨¨σk
| σ1 ¨ ¨ ¨ σk wordu

is a “pattern” or “tiling” called Schottky array. JT: [instead of using words, here we can just
say its obtained by applying any element of the group to an initial disk] It is invariant under
applying the Schottky group.
In particular, we call the collection of disks of the k-th level

Dk :“
ď

σ1¨¨¨σk reduced word
Dσ1¨¨¨σk

the level-k Schottky array.

§ The set of points belonging to a disk of every level of the Schottky array

F “

8
č

k“1
Dk

is called them limit set of the Schottky group. It is again invariant under the Schottky
group.

§ The level-k Schottky arrays are a decreasing sequence of sets, leading to a Cantor
set-like construction. In fact the radii are decreasing exponentially fast, approaching
points. As long as the initial disks do not touch, this leads to a totally disconnected
set, which has Hausdorff dimension 0 ă dimH F ă 1.
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§ Each such limit point corresponds to an infinite (reduced) word, coming from a nested
sequence of disks

Dσ1σ2σ3¨¨¨ Ă ¨ ¨ ¨ Ă Dσ1σ2σ3 Ă Dσ1σ2 Ă Dσ1

In particular, every periodic word

w “ www ¨ ¨ ¨ , w “ σ1 ¨ ¨ ¨ σp

corresponds to a nested sequence

Dw Ă ¨ ¨ ¨ Ă Dwww Ă Dww Ă Dw,

which converges to the attractive fixed point of w. Thus, the limit set contains all
attractive fixed points of elements of the Schottky group.
Furthermore it contains all images of attractive fixed points under elements of the
Schottky group, in particular all images of the four attractive fixed points of a, A, b, B.
Those correspond to words of the form wa etc.

§ This leads to the following ways of visualizing the limit set of a Schottky group: Let
N P N large.

‚ Plot the disks Dw for all reduced words w of length N .
‚ For some point z0 P C plot wpz0q for all reduced words w of length N .
‚ Plot all fixed points of words of length at most N .
‚ Plot all points wpγiq for all reduced words w of length at most N , where γi are the

attractive fixed points of i “ a, A, b, B. (Alternatively choose another finite set of
attractive fixed points of elements of the Schottky group.)

§ Special case: All initial disks orthogonal to a common circle.
In this case all disks of the Schottky array are orthogonal to this circle, and thus the
limit set is contained in the circle.
The Schottky group is (conjugate to) a Fuchsian group in this case.

§ Special case: The initial disks Da, Db, DA, DB touch cyclically, and the generators
match the touching points
In this case each level-k Schottky array is a chain of touching disks, and the limit set
becomes a (fractal) curve.
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