Chapter 1

Curves and surfaces in projective
geometry

1.1 Curves in projective geometry

First, we introduce the notions of regularity, tangent lines, and osculating plane for curves
in the Euclidean space R". Then we consider their lift and corresponding definitions in the
projective space RP™, and check in which sense these notions are projectively well-defined

and invariant.
We start by recalling the definition of a curve in R".

Definition 1.1.1. Let / — R be an interval. Then a smooth map
~v:I—>R"

is called a (smooth parametrized) curve in R".

We usually denote the curve parameter by ¢ and the derivatives with respect to ¢ by

(1), 4(1),5(1), ...

We will mostly deal with regular curves, for which the first derivative does not van-
ish.

Definition 1.1.2. A curve v : [ — R" is called regular if

(t) #0  forallte I.

For a regular curve the tangent line is well-defined at every point of the curve.
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Definition 1.1.3. Let v : [/ — R" be a regular curve. Then the line
T(@t) = {y(t) + ay(t) |« e R}

is called the rangent line of vy att € I.

The tangent line is the line that best approximates the curve at some point up to first order.
Similarly, the osculating plane is the plane that best approximates the curve at some point
up to second order.

Definition 1.1.4. Let v : [ — R" be a regular curve. If additionally +(¢) and 7(¢) are
linearly independent, then the plane

{7(t) + ay(t) + B7(t) | o, B € R}

is called the osculating plane of vy att € I.

We can lift a curve v : I — R” to the projective space RP" by

[4] : T — RP", 4(t) = (7(175))

- (79)

describes a point at infinity on the lift of the tangent line

If ~y is regular, then

T(t) = {[ai(t) + (O] | a1, 00 € R} = [0 v [3(0)]

What happens if we choose different representative vectors for the lift of the curve? Are the

point [¥()] and the tangent line well-defined by the curve?
Generally, we define a projective curve in the following way.

Definition 1.1.5. Let / R be an interval and 4 : I — R™"! a smooth map. Then
[9]: I —>RP",  t—[§(t)]

is called a (smooth parametrized) curve in RP".

Consider a curve [¥] : I — RP"™ and a smooth function

AT — R\{0}.
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Then 4 and ¥ := A9 define the same curve in RP",

()] =[3(t)] foralltel

But, the first derivative changes in the following way
(t) = ABAE) + MDA (D).

Thus, in general, [3(t)] # [4(t)]. However, the point [7(t)] still lies on the span [%(¢)] v
[7(t)], and we have _

YOI v 3] = [¥#®] v [7(?)]
In particular, [§(¢)] = [4(¢)] if and only if [5(¢)] = [7(£)]. Thus, the following definition
of regularity is independent of the choice of representative vectors. Furthermore, in affine
coordinates, it coincides with the corresponding definition for curves in R".

Definition 1.1.6. A curve [¥] : [ — RP™ is called regular if

[4(1)] # [A(¢)]  forallte .

For a regular curve the span [§(¢)] v [§(¢)] is a line, which again is independent of the
choice of representative vectors. Indeed, in this case, by choice of the function A, the point
[(t)] can become any point on this line except [4(¢)] = [5(¢)]. In affine coordinates, it
coincides with the tangent line as defined for curves in R".

Definition 1.1.7. Let [§] : [ — RP" be a regular curve. Then the line

T(t) = B®)] v B(®)]
is called the rangent line of [Y] att € I.

Similarly, for higher derivatives, in general, [§(t)] # [5(t)], but

61 v @] v BO] = [16] v O] v (o),

and thus, this plane is independent of the choice of representative vectors. In affine
coordinates, it coincides with the osculating plane as defined for curves in R".

Definition 1.1.8. Let [] : I — RP" be a regular curve. If additionally, [%(¢)] ¢
[(t)] v [#(t)] Then the plane

(V6] v V(0] v [1(1)]

is called the osculating plane of [Y] att € I.
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Thus, we have found that regularity, tangent line, and osculating plane are well-defined for a
curve in RP™ in the sense that their definition is independent of the choice of representative
vectors.

Proposition 1.1.9. For a curve [7] : I — RP", regularity, tangent line, and osculating
plane are independent of the choice of representative vectors

A(t) = A@)5(0)

with a smooth function non-vanishing function \.

Next, we investigate how these properties of a curve depend on the parametrization. Thus,
let I, I < R be two intervals, [¥] : I — RP™ a curve, and
p: I 1
a smooth bijective map. Then, 7 := 7 o ¢ defines a reparametrization
[7]: I >RP", s [fou(s)]:

Its derivative
defines the same point

Thus, regularity, the tangent line

[()] v [7(s)] = [(s)] v [3 0 (s)],

and similarly the osculating plane are invariant under reparametrization.

Proposition 1.1.10. Fora curve [Y] : I — RP™, regularity, tangent line, and osculating
plane are invariant under reparametrization
Y(E) = Yo p(s)

with a smooth bijective function .

Finally, how do these properties change under projective transformations? Let [§] : I —
RP™ be a curve, and
F e GL(n + 1,R),

i.e.,

f:=[F] e PGL(n + 1,R)
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is a projective transformation. Then 7 := F'Y defines the transformed curve
[(Y]: 1 —>RP", ¢t f([A(1)]) = [F4(t)]
Its derivative _ _
7(t) = FA(t)
defines a point, which is transformed by the same projective transformation

[V ()] = [F ()] = F([HE)])

Thus, regularity, the tangent line

FO] v 3] = £ (1501 v Be)).
and similarly the osculating plane are invariant under reparametrization.

Proposition 1.1.11. Fora curve [Y] : I — RP™, regularity, tangent line, and osculating
plane are invariant under projective transformations

A(t) — F5()

with F' € GL(n + 1, R).

1.2 Surfaces in projective geometry

Definition 1.2.1. Let U < R" be a open set. Then a smooth map
f:U—R", (u,v) — f(u,v)

is called a (smooth parametrized) surface (patch) in R".
The curves
u— f(u,v), v f(u,v)

are called parameter lines of f.

We usually denote the two parameters by « and v. and the partial derivatives with respect
to u and v by
_of of

fu: A fv ==

- ou’ ov
Regularity is defined for surface patches by the linear independence of the first partial
derivatives.
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Definition 1.2.2. A surface f : U — R" is called regular if f,(u,v) and f,(u,v) are
linearly independent at every point (u,v) € U.

For a regular surface the parameter lines are regular curves, and the tangent plane is well-
defined at every point. It is the plane that best approximates the surface patch at some point
up to first order.

Definition 1.2.3. Let f : U — R" be a regular surface. Then the plane
Tf(u,v) = {f(u,v) + afulu,v) + Bfo(u,v) | o, 5 € R}

is called the tangent plane of f at (u,v) € U.

Similar to curves, we can lift a surfaces f : U — R" to the projective space RP" by

[f]:U—RP",  f(u,v) = (f <“17”>) |

If f is regular, the partial derivatives

Fwo) = () e = (M),

describe points at infinity on the lift of the tangent plane

Tf(u,v) = {alf(u,v) + g fu(u,v) + s folu, v) ’ aq, g, Qg € R}
= [f(w,0)] v [fulu, 0)] v [fuo(u, v)].

Generally, we define projective surfaces in the following way.

Definition 1.2.4. Let U — R? be a open set and f : U — R™"! a smooth map Then

A ~

[f1:U—=>RP",  (u,0) = [f(u,v)]

is called a (smooth parametrized) surface (patch) in RP™.
The curves

u— f(u,v), v— f(u,v)

are called parameter lines of | f].

A

Consider a surface [f] : U — RP™ and a smooth function

AU — R\{0}.
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Then f and f = A f define the same surface in RP",

~ ~

[f (u,v)] = [f(u,v)] for all (u,v) € U.

Similar to the considerations for curves, the points described by the first partial derivatives
may change, but the span

[f(w,0)] v [fulu,0)] v [folw,0)] = [Fw,0)] v [fulu,0)] v [fo(u,0)]

remains the same. Thus, the following definition of regularity for surfaces in RP" is
independent of the choice of representative vectors. Furthermore, in affine coordinates, it
coincides with the corresponding definition for surfaces in R".

Definition 1.2.5. A surface [f] : U — RP" is called regular if [ f(u,v)], [fu(u, v)],
[fo(u,v)] span a plane, or equivalently, if f(u,v), f.(u,v), f,(u,v) are linearly inde-
pendent.

The same holds for the following definition of the tangent planes for surfaces in RP".

A

Definition 1.2.6. Let [f] : U — RP” be a regular surface. Then the plane

T[A1(w,0) = [f(w,0)] v [fulw,0)] v [fo(u,0)]

A

is called the rangent plane of [ f] at (u,v) € U.

Similar to the considerations for curves, one finds that the introduced notions are also
invariant under reparametrization and under projective transformations. We summarize in
the following proposition.

A

Proposition 1.2.7. For a surface [f] : U — RP", regularity, and the tangent plane
are invariant under

(i) a change of representative vectors
fu,v) = Mu, v) f(u, v)
with a smooth non-vanishing function \.

(ii) reparametrization R X
f(u,v) = fop(u,0)

with a smooth bijective map .
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(iii) projective transformations

fu,0) = Ff(u,v)
with F € GL(n + 1,R).

1.3 Ruled surfaces and developable surfaces

A ruled surface is a surface traced out by the movement of a straight line through space.

~ ~ . ~

Definition 1.3.1. Let [a], [b] : I — RP™ be two curves such that [a], [b], [a], [6] do not
lie on a line. Then the surfaces

[f] : I x RP! — RP™, (u,v) — [a(u) + vb(u)]

is a ruled surfaces in RP™. The lines [a(u)] v [b(u)] on the resulting surface are called
rulings.

Example 1.3.2. A one-sheeted hyperboloid is a doubly ruled surface.

A developable surface is the envelope of a one-parameter family of planes.
In RP? a one-parameter family of planes may be described by a regular curve in the
dual space
[] : 1 — (RP®)",

or a one-parameter family of linear equations
T(u) = {[z] e RP? | A(u) - & = 0}.
Then the envelope is the solution of the two equations
n-x =0,
noz=0.

For each u these are two independent linear equations, and thus the solution is a line. Thus,
in RP3, every developable surface is a ruled surface.

Vice versa, for a ruled surface in RP? to be developable its tangent planes must be
constant along the rulings, i.e.,

~

(v [f] v [A] = [a+ ] v [a+ vb] v [B]
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must be independent of v, which is the case, if and and only if

det(a, b, a,b) = 0,
or equivalently, if [a], [b], [a], [b] lie in a plane.
This last condition characterizes surfaces which are the envelope of a one-parameter
family of planes in any dimension, and thus may define developable ruled surface in the
following way.

Definition 1.3.3. Let

[f]:[d]\/[i)]:]x]Rpl_)RPn

A ~ . ~

be a ruled surface. Then [f] is developable if [a], [b], [a], [b] lie in a plane for every
uwel.

Infinitesimally, this condition means that close rulings intersect, and thus, if they don’t
all go through one point, they envelope a curve in space.

Proposition 1.3.4. A ruled surface is developable if it is a cone (over an arbitrary
curve) or the trace of tangent lines of a regular curve.
More specifically, let

[f] = [a] v [b] : I x RP! — RP"
be a ruled surface, which is not a cone. Then there exists a unique curve
[€]: 1 > RP",  [&(u)] € [a(u)] v [b(u)]

such that X '
[a(w)] v [b(u)] = [é(w)] v [ (]

forallw e I. The curve |¢] is called the line of striction (or edge of regression) of [ f].

Proof. For a cone or the trace of tangent lines of a regular curve, one easily checks that
they constitute developable surfaces.

A ~

Let [f] = [a] v [b] be a developable surface, and let
é(u) = Aw)a(u) + p(u)b(u)

for some functions A, y. Then

E(u) = Aa + Aé + jib + b,
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~

and [s] € [a] v [b] if and only if
A + b € span{a, b}.

Such A, pu exists, since a, Z;, &, b lie in a 3-dimensional subspace. This choice is unique
since they do not lie in a 2-dimensional subspace (regularity for ruled surfaces). [

1.4 Dual representation of surfaces
Instead of describing a surface as a two-parameter family of points, we can equivalently
describe it as the envelope of its two-parameter family of tangent planes. In particular, for

a surface in R3, the tangent planes can be described in terms of a normal field.

Definition 1.4.1. Let f : U — R? be a regular surface. Then a smooth map

n: U — R*{0}
is called a normal field of f if
n- fu = 07
n-f,=0.

The tangent plane of a surface f in R? can be described in terms of a normal field
Tf(u,v) = {z e R*| n(u,v) - (z — f(u,v)) = n(u,v) - (z + h(u,v) = 0}

and some function h(u,v) = —n(u,v)- f(u,v). Thus, the tangent planes of f are described
by the tuple (n, h), which is unique up to a common scalar multiple, and determined by the
equations

nfu:O,
n-f,=0, (1.1)
n-f+h=0.

Differentiating the last equation with respect to v and v, respectively, we find that (1.1) is
equivalent to

fny+h,=0,
f-ny,+h, =0, (1.2)
f-n+h=0.
Note that if we consider the lifts R
f = (f> 1)7
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to homogeneous coordinates of RP? and (RP?3)*, respectively, then equations (1.1) and
(1.2) become the duality relations for tangent planes of the respective surfaces [f] and

[7].

Definition 1.4.2. Let [f] : U — RP? be a regular surface. Then

A ~ ~

(2] = ([f] v [£] v [£.])" - U — (RP?)

is called the dual surface of f.

In homogeneous coordinates the dual surface is determined by the three linearly independent
equations

- fu=0,
n-f,=0, (1.3)
i-f=0,

and satisfies )
[ =0,
£, =0, (1.4)
f-n=0.

These equations are completely symmetric in f and n.

Proposition 1.4.3. If the dual surface of a regular surface [ f] in RP3 is itself regular,
then the dual surface of a the dual surface is [ f].

Remark 1.4.4. The primal surface is regular if it is locally not a curve. The dual surface
is regular if the primal surface is locally not developable.

1.5 Conjugate line parametrizations

We now study special parametrizations, in the sense that the parameter lines satisfy some
geometric condition. We start with conjugate line parametrizations, which we first introduce
for surfaces in R3. Conjugate line paramtrizations are geometrically characterized by the
following condition: Along each parameter line of the surface, the tangent planes rotate
around the tangent line in the other coordinate direction. Put differently: The tangent planes
along one parameter line envelop a surface that is ruled by the tangent lines in the other
coordinate direction.
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Definition (and Proposition) 1.5.1. Let f : U — R3 be a regular surface, and n :
U — R? a normal field of f. Then f is a called a conjugate line parameterization if
one and hence all of the following equivalent conditions hold:

(1) Ny - f u = 0
(i) n - fuy =0

(iv) fuo € span(fu, fv)

V) fuw = afy+ Bf, forsmooth functions o, 5 : U — R

Proof. Taking the v-derivative of n - f, = 0 and the u-derivative of n - f, = 0, we
obtain

nv'fu:n'fuv

nu'fv:n'fvu

and since f,, = f,, by the symmetry of second derivatives, conditions (i), (ii), and
(ii1) are equivalent.

Condition (iii) implies (iv) because ( f,, f,) is a basis for the orthogonal subspace
to n. This also means that the equation of condition (v) determines the functions o and
[ uniquely. In fact, by Cramer’s rule,

_ det(n’«f’lw fU) det(”v fu fuv)
- det(n7 fu fv) ’ det(”, fu fu) 7

which also shows that « and [ are smooth because f is. Finally, condition (v) clearly
implies (iii) and (iv). [

g = (1.5)

Conditions (iv) and (v) of Definition 1.5.1 do not mention the normal field n. We may use
them to define conjugate line parametrizations in R"™:

Definition 1.5.2. A regular surface f : U — R” is called a conjugate line param-
eterization if it satisfies one and hence both equivalent conditions (iv) and (v) of
Definition 1.5.1.

Of course we cannot use equations (1.5) to see that o and 3 are smooth if n > 3, because
the normal field is not defined. But instead we may use

fuvfu fvfu fufu fuvfu
det (fuv‘fv fv'fv) det (fufv fuv'fv)

o = b = )

fufu fvfu 7
det (fufv fv'fv) fufv fv‘fv

(1.6)
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The definition for conjugate line parametrizations translates as follows to surfaces in
RP™:

Proposition 1.5.3. Let f : U — R" be a regular surface. Let
f=X(f1):U—-R""

be an arbitrary lift to homogeneous coordinates with a smooth function A : U — R\{0}.
Then f is a conjugate line parametrization if and only if f satisfies

fuw = afu + Bfs +f (1.7)

with some smooth functions «, 3, 7.

Proof. [

Equation (1.7) states the linear dependence of four representative vectors, or equivalently
that four points lie in a plane. While the four points are not projectively well-defined
(the points defined by the derivatives are not invariant under scaling f) this property
is.

A

Definition 1.5.4. Let [f] : U — RP” be a regular surface. Then [f] is called a
conjugate line parametrization if the four points [f], [f.], [f.], [fuv] lie in a plane for
every (u,v) € U.

We have seen that this property is projectively well-defined. Furthermore, it is a property
of the coordinate lines. Thus, it is invariant under reparametrization of the surface along
the coordinate lines. Finally, it is also invariant under applying a projective transformation
to the surface. We summarize these properties in the following proposition.

A

Proposition 1.5.5. A regular surface [ f| : U — RP™ being a conjugate line parametriza-
tion is invariant under

(i) a change of representative vectors
fu,v) = Mu, v) f(u, v)
with a smooth non-vanishing function \.

(ii) reparametrization along the coordinate lines

fu,0) = flp(@), (7))
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with two smooth bijective functions o, .

(iii) projective transformations

with F € GL(n + 1, R).

f

~

(u,v) = Ff(u,)

For surfaces in RP? the property of being a conjugate line parametrization is also invariant

under dualization.

Proposition 1.5.6. A regular surface [f] : R2 > U — RP? is a conjugate line
parametrization if and only if its dual surface [n] : U — (RP®)* is a conjugate line
parametrization.

Proof. | f] is a conjugate line parametrization if f satisfies an equation of the form
(1.7), which is equivalent to R

f uv n = 0.
From equations (1.3), or equivalently, equations (1.4), we find that this is equivalent to
either of the three equations

fu . AU = 07
fo -y =0, (1.8)
f’ Auv = O)

and thus in turn to .
ﬂuv = dﬁu + 6TALU + 5/7%

Remark 1.5.7. The first two equations of (1.8) state, respectively, that
[f1v [f] = (13 v [A])",
L1V [fo] = ([2] v [2])"

which capture the geometric description of conjugate line parametrizations given in the
beginning of the section.
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1.6 Asymptotic line parametrizations

Asymptotic line parametrizations are geometrically characterized by the following condi-
tion: Along each parameter line of the surface patch, the tangent planes rotate around the
tangent line of that parameter line. Put differently: The tangent planes along each param-
eter line envelop a surface that is ruled by the tangent lines of that same parameter line.
This leads to a description of asymptotic line parametrizations analogous to conjugate line
parametrizations.

Definition (and Proposition) 1.6.1. Let f : U — R? be a regular surface, and n :
U — R? anormal field of f. Then f is a called an asymptotic line parameterization if
one and hence all of the following equivalent conditions hold:

(1) nu'fu:nv'fvzo

(11) n'fuu:n'fvv =0
i) fs foo € sDEAN(fos o)

(V) fuw = af, + Bf, for smooth functions «, 5 : U — R, and

foo = @fu+ Bf, for smooth functions &, 3 : U — R

Same as for conjugate line parametrizations, conditions (iv) and (v) of Definition 1.6.1 do not
mention the normal field n, and we may use them to define asymptotic line parametrizations
in R™:

Definition 1.6.2. A regular surface f : U — R” is called an asymptotic line pa-
rameterization if it satisfies one and hence both equivalent conditions (iv) and (v) of
Definition 1.6.1.

The definition for asymptotic line parametrizations translates as follows to surfaces in
RP™:

Proposition 1.6.3. Let f : U — R" be a regular surface. Let
f=X(f1):U—R""

be an arbitrary lift to homogeneous coordinates with a smooth function \ : U — R\{0}.
Then f is an asymptotic line parametrization if and only if f satisfies

fuu = afu + /ﬁfv + Vf

e e (1.9)
fvv:afu+ﬁfv+7f

with some smooth functions «, (3,7, &, B ) Y-

And thus, it generalizes to the following definition.
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A

Definition 1.6.4. Let [f] : U — RP" be a regular surface. Then [ f] is called an
asymptotic line parametrization if the points [f,,] and [f,,] both lie in the tangent
plane [f] v [f.] v [f.] for every (u,v) € U.

Note that the condition [ fu.] € [f] v [fu] v [f.] is equivalent to

1V v ad = TV [l v (£

This means that the osculating plane of the u-parameter line coincides with the tangent
plane. And similarly for the v-parameter line.

A A

Proposition 1.6.5. Let [f]| : U — RP" be a regular surface. Then [ f] is an asymptotic
line parametrization if and only if the two osculating planes for the two parameter lines
coincide at every point:

1V [fd v Ul = [TV ]V [Ful.

In particular they both coincide with the tangent plane at that point.

The statements from Proposition 1.5.5 and Proposition 1.5.6 similarly hold for asymp-
totic line parametrizations.

Remark 1.6.6. The invariance of asymptotic line parametrizations under dualization
can equivalently be stated as

[f]v [f] = ([A] v []),
[f1v [f] = (1A] v [2])".

which capture the geometric description of asymptotic line parametrizations given in
the beginning of the section.

1.7 Discrete nets

We study discrete nets as discrete analogues of parametrizations. Discrete nets are maps
defined on a subset of Z™. For simplicity (to avoid special treatment of the boundary) we
mostly consider maps defined on the entire Z™.

Definition 1.7.1. Let m,n € N. A map

f:.7Z™ — RP"
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is called a (discrete m-dimensional) net in RP".

In particular, 1-dimensional discrete nets may be considered as discrete analogues of
parametrized curves, and 2-dimensional discrete nets as discrete analogues of parametrized
surfaces.

In the case of a discrete curve v : Z — RP", and k € Z we introduce the following

notation
e = (k) fork e Z

for the point assigned to the vertex k.

Definition 1.7.2. Let v : Z — RP" be a discrete curve.
» v is called regular if any two successive points i, k1 are distinct.
» The line
Ty =Yk V Vkt1
is called the (edge) tangent line at the edge (k, k + 1).
» The plane
Ve—1V Ve vV Vek+1

is called the (vertex) osculating plane at k.

Note how the regularity, tangent line, and osculating plane are immediately soon to be
projectively invariant.
In the case of a discrete surface f : Z? — RP", we use subscripts to denote shifts

N 9) = [+ 1,39), fi(i,5) = fi = 1,7),
foli,3) = f(, 5+ 1), f2(6,5) = (6,5 —1).
The discrete curves
i f0,5), G fl7)
may be thought of as discrete parameter lines, which come with conditions of discrete

regularity, as well as tangent lines and osculating planes.

Definition 1.7.3. A discrete surfaces f : Z? — RP" is called regular if any three points
of each face span a plane.

The plane spanned by three such points, e.g.,

FO5) v fli+1,5) v fli,5+1)

may be thought of as a discrete tangent plane, which is assigned to the corresponding corner
of the face.
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1.8 Discrete conjugate nets

For a discrete surface f : Z? — R consider the following discretization of condition v in
Definition 1.5.1
AAof =alAf + BAsf

= fio=f+(a+DALf+(B+1)Asf.

This motivates the following definition.

Definition 1.8.1. A regular discrete net f : Z?> — RP" is called a discrete conjugate
net (or Q-net) if the four points of every face f, f1, fi2, fo lie in a plane.

Again, this condition is immediately seen to be projectively invariant. Furthermore, in the
case of a discrete conjugate net, we have a unique choice for a tangent plane for every face
of Z?. For two adjacent faces the intersection of two such tangent planes is the tangent line
of the common edge.

For a discrete conjugate net in RP? this gives rise to a dual net defined on the faces of
7?2 into (RP?). It turns out that the dual net is again a discrete conjugate net, since the dual
configuration of four planes intersecting in a point is given by four points lying in a plane.
More generally, we can obtain a discrete version of Proposition 1.5.6

Proposition 1.8.2. Let f : Z?> — RP3 be a regular discrete surface such that its dual
discrete surface

n = (f Vv f1 \ fQ)* o Z2 - (RP3)*
is regular. Then, f is a discrete conjugate net if and only if n is a discrete conjugate
net.

Proof. Exercise. 0

1.9 Discrete asymptotic nets

To obtain a discretization of asymptotic line parametrizations consider the characerization
in Proposition 1.6.5. At every vertex of a discrete surface, we have two osculating planes
of the two discrete parameter lines that contain this vertex. These two osculating planes
coincide if and only if all five points of the vertex star are coplanar.

Definition 1.9.1. A regular discrete net f : Z?> — RP" is called a discrete asymptotic
net (or A-net) if the five points of every vertex star f, fi, f1, f3, f2 lie in a plane.
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Again, this condition is immediately seen to be projectively invariant. Furthermore, in the
case of a discrete asymptotic net, we have a unique choice for a tangent plane for every
vertex of Z2. For two adjacent vertices the intersection of two such tangent planes is the
tangent line of the common edge.

For a discrete asymptotic net in RP? this gives rise to a dual net defined on the vertices
of Z? into (RP?)*. It turns out that the dual net is again a discrete asymptotic net.
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Chapter 2

Curves and surfaces in Mobius geometry

2.1 Arc-length, curvature, and osculating circles
To introduce the curvature of a curve, we first consider a special parametrization.

Definition 2.1.1. Lety: R > [ — R" be a curve

(1) The function

v(t) = 7]
is called the speed of .
(i) If v(t) # 0, the vector
1)
t) = 7

is called the unit tangent vector of .

(iii)) The function

s(t) = f Co(t)dt

t1

is called the arc-length of -y, here I = [t, 5]

(iv) If v(t) = 1 for all ¢t € I, then ~ is called arc-length parametrized.

Note that the derivative of the arc-length is the speed
s(t) = v(t).

For a regular curve 7 the arc-length s(-) is strictly monotonically increasing, and thus
invertible. We call its inverse function ¢(-) = s~!(-) and thus write

(.
v(s) = (yot)(s).

23
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For the derivative w.r.t. arc-length we write

, 4 dtd 1,

PTG T asa T o
In particular, the parametrization of v w.r.t. arc-length has unit speed
IVl = 1.

Thus, the unit tangent vector is equivalently given by the derivative w.r.t. arc-length

T=9.

Furthermore, the second derivative w.r.t. arc-length defines a unique normal vector in the
osculating plane

d 12 d I "ol
= —_— = —_— :2 .
0=2II"=3 ) =200

Definition 2.1.2. Let v : R > I — R" be a regular curve

(i) Any vector n(t) orthogonal to §(t), i.e.,

(n(t),7(t)) =0,
is called a normal vector of yatt e |

(i) The hyperplane
1) + {n(@) | {n(t), ¥(t)) = 0}

is called the normal plane.

(i1ii)) The normal vector

_ () _ ()
[ () ()]

is called the principal unit normal vector.

n(s)

(iv) Let n(s) be the principal unit normal vector. Then the line
N(s) = {y(s) + an(s) | a € R}.

is called the principal normal line.

The principal normal line is the intersection of the normal plane and the osculating
plane.
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Definition 2.1.3. Let y be a regular curve. Then

r(s) = [7(s)] = 17" ()]

is called the curvature of v at s.

By definition of the principal unit normal vector, the curvature can also be expressed as
K(s) = (y"(s),n(s))
This leads to the following description in terms of an arbitrary parametrization.

Proposition 2.1.4. Let v be a regular curve, and n the principal unit normal vector.
Then the curvature of v is given by

WRGIORION

(@)

Proof. With & = 14 we find

Using (¥,n) = 0 leads to the result. O

It is also useful to have a formula for the curvature in terms of an arbitrary parametrization
that does not depend on the principal unit normal vector.

Proposition 2.1.5. Let v be a regular curve. Then its curvature is given by

VHPBE = G

13
[iedl

K(t)

12 N,
Wil =il AERE - G
N 3 N v N 3

(0)

where we used

U:m: <’7a7> :<7a’7>
’ v
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]

Example 2.1.6. Consider a parametrized circle of radius r > 0

v#) =1 (2?28))) C tefo2n]
then (s .. feos(t)
10 =r (D), 50 = (God).
and

Y@ = 1@®) =7, 3(),5() = 0.

Thus, the curvature of v is given by

(t) =~

We can now assign to every point of a curve a circle which lies in the osculating plane
and has the same curvature as the curve

Definition 2.1.7. Let v : [ — R” be a regular curve, and let n be the principal unit
normal vector of . If k(t) # 0, then the osculating circle at t € I is the circle in the
osculating plane of ~ at ¢ with center

and radius
If x(t) = 0, then we consider the tangent line at ¢ € [ to be the osculating circle.

The osculating circle touches the curve in the corresponding point, and has the same
curvature. Even more, if the curve and its osculating circle are parametrized by arc-length
such that the first derivative 7/(s) of both curves coincide, then their second derivative v ()
also coincide.

It can also be shown that it is the best approximating circle in the following sense.
Consider the circle through three points of the curve v(¢), v(¢ — €), and v(¢ + €). Then in
the limit ¢ — 0, this circle converges to the osculating circle.
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2.2 Osculating circles in Mobius geometry

We first consider the case of a regular plane curve
v: 1 —R%
By inverse stereographic projection, we can map it to the sphere (Mobius lift)
[3]: 1= S?<RP?, A1) = (1) + [1(B)] e + co.
The osculating circle of v at ¢ € [ is the circle with center and radius
oft) = A(0) + —nlt), (1) =
k(L) k(1)

where n is the principal unit normal vector field of v and

NPSRGIORID)

=D
lefeal

is the curvature of . Its inverse stereographic projection (Mobius lift) to the sphere is given

by

2.1

[e(O)]" 5%, ét) = et) + (e —r(t))ew + e

Proposition 2.2.1. Let v : I — R? be a regular plane curve, and [¥] : [ — S* < RP?
be its Mobius lift. Then the Mobius lift of the osculating circle of y is the intersection
of the osculating plane of [¥] with S*:

[ 0 8% = (0] v 0] v B®]) n $°

Proof. With
E=7v+~in+e+ (H’yH2 + 2 {y,n)) ex

we obtain

R 2 2

G851 =+ i) — 5 =2y — 5 h° = 0.
Now with ‘

¥=9+2,7)ew
we obtain .
<fAy’ é>5 . = <777 + %n> - <777> = 0.
Finally, with )
F =4+ 2 + %) ew
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we obtain
XA . 2 .
<% C>3 = Gy + iny — 3] = (v, 4) = 0.

O

Thus, the Mobius lift of the osculating circle of a curve is the intersection of osculating
plane with the Mobius lift of the curve. In particular, this implies that the osculating plane
of the Mobius lift of the curve always intersects the Mobius quadric in a circle, i.e., is of
signature (++-).

Figure 2.1. Osculating circles of a cardoid and the lift to Mobius geometry.

The same holds true for curves in arbitrary dimension n > 2:

Proposition 2.2.2. Lety : [ — R"™ be a regular curve, and [y] : [ — S™ < RP" be its
Mobius lift
A(t) =) + @)1 ew + eo.

Then the stereographic projection of the intersection of the osculating plane of [Y] with
the Mobius quadric

o (1 v B v Gol) ns7)

is the osculating circle of .

Proof. The osculating circle of v is the intersection of osculating plane of v and the
sphere with center and radius given by (2.1). The central projections of three points
spanning the osculating plane of [¥] are

oD = ). 1], oW = [3(1),01, (3] = [5(¢),0],

which span the osculating plane of . Thus the image of the stereographic projection

of
(BO1v Bl v ) o s
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lies in the osculating plane of ~.
The remaining part of the proof is analogous to Proposition 2.2.1. [

Since in the projective model of Mobius geometry, Mobius transformations are the
projective transformations that preserve the Mobius quadric, this means that the osculating
circles of a curve are mapped to the osculating circles of the image curve under a Mobius
transformation.

Corollary 2.2.3. The osculating circles of a regular curve are Mobius invariant.

Proof. By Proposition 1.1.11, osculating planes are mapped to osculating planes under
projective transformations. [

Example 2.2.4. Recall that the evolute of a plane curve consists of the centers of the
osculating circles. As an exercise, let we use the Mobius lift to determine the evolute

of a parabola
t

. t
A(t) = (tQ) + (1 + tYew + eo,

Its Mobius lift is given by

and its first two derivatives by

A(t) = (;t) + 2t +2t%ew,  At) = <(2)> 2(1 + 6t%)esp.

We determine the polar point

é(t) = (222) + oo (t)ew + €,
From )
0= <ny> — 2y — 1 — 612
we obtain !
ert) = 5(1+ 6t%).
and from

0=<é,5y>=c1+t+6t3—t—2t3
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we obtain
ci(t) = —4t?

Thus, the evolute of v is given by

_fa®)) _ —4¢3
elt) = (CQ(t)) - (%(1 +612),
which coincides with the solution from Example ??. Note, that we don’t have to
compute ¢, if we are only interested in the evolute of 7, and not the osculating circles.

2.3 Discrete curves in Mobius geometry

For a discrete curve we can easily introduce a Mdbius invariant osculating circle as the
circle through three consecutive vertices.

Definition 2.3.1. Let v : [ — R? be a regular discrete curve. Then the circle Cj,

through three successive points vx_1, V&, Vk+1 18 called the (vertex) osculating circle at
kel.
Let r, be the radius of C. Then the discrete (vertex) curvature at k € I is given by

1
R = —
Tk

Vi

Ve—1
VE+1

Figure 2.2. Vertex osculating circle.

The osculating circle defined in this way lies in the osculating plane of the corresponding
vertex. In this plane, one can introduce the perpendicular bisectors as normal lines on each
edge. Then the two normal lines intersect in the center of the osculating circle.

We introduce the turning angle at a vertex k € I by

Pk = {<A’7k’7 A,}/k’—l) € [_W7 7T].
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AV

Figure 2.3. Turning angle at a vertex of a discrete curve.

With this the discrete curvature can be expressed in the following way.

Proposition 2.3.2. Let v : Z — R" be a regular discrete curve. Then its vertex
curvature is given by

2 sin @y,
Kp = ——" .
1Vh1 — Ye-1]
Proof. The radius ry, of the osculating circle is given by |[Vii1 — Ye—1| = 27 sin @y.

O

Remark 2.3.3.
» The vertex osculating circle inherits an orientation from the order of the three points
on it. This can be used to also associate a sign to the discrete curvature, which
corresponds to the sign in the formula above.

» The vertex osculating circle can also be used to define vertex tangent lines as the
line tangent to C}, in the point ;.

2.4 Curvature line parametrizations
Definition 2.4.1. Let
f:R2>U—-R"
be a regular surface.

(1) f is called orthogonal if
<fu7 fv> = O

(ii) f is called curvature line parametrization if it is orthogonal and conjugate, i.e.,

<fmfv>:O7 and fuv :Oéfu"f'ﬁfv-
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Proposition 2.4.2. The property of a parametrization to be orthogonal is Mobius
invariant.

Proof. Mobius transformations are conformal, i.e., preserve angles. 0

Conjugate parametrizations, on the other hand, are not Mdbius invariant. Are curvature
line parametrizations?

Proposition 2.4.3. Ler f : R2 > U — R™ be a regular surface and [f] : U — S™
RP™*! be its Mébius lift

f=F+eot |fI* e

Then f is a curvature line parametrization if and only if [f| is a conjugate line
parametrization.

Proof. For the derivatives of the lift we obtain

~

fu = fu +2<f7fu>eoo>

A~

fv = fv +2<f7fv>6007

A

fuv = fuv + 2 (<fa fuv> + <fuafv>) Cop-

Let f be a curvature line parametrization. Then

fuv = fuv + 2<f7f1w>eoo = afu +ﬁfv + 2<a<fa fu>+6<f7fv>) € = O‘fu +5fv‘

The reverse direction is shown similarly. 0

Corollary 2.4.4. Curvature line parametrizations are Mobius invariant.

2.5 Circular nets

In the smooth case we have seen that curvature line parametrizations are conjugate line
parametrizations in the Mobius quadric. Consider a discrete conjugate net f : Z? — S™ <
RP"™*! in the Mobius quadric. Then the stereographic projection of the four points of every
face lie on a circle.

Definition 2.5.1. A regular discrete net f : Z? — R" is called a circular net if the four
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points of every face f, f1, fi2, f2 lie on a circle.

The definition immediately implies that circular nets are Mobius invariant.

Remark 2.5.2. The axes of the circles can be interpreted as discrete normals (per face).

Adjacent discrete normal lines intersect, and in this sense they form discrete developable
surfaces.

Proposition 2.5.3. Let f : Z> — R" be a regular discrete net, and [f] : 7> — S™
RP™*! be its Mébius lift

f=f+eo+|f]?ew.

A

Then f is a circular net if and only if | f] is a discrete conjugate net.

Thus, circular nets maybe viewed as a discretization of curvature line parametrizations.
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Chapter 3

Curves and surfaces in Laguerre
geometry

3.1 Planar curves in Laguerre geometry
Let
7 : [a,b] — R?

be a smooth regular curve in the Euclidean plane. Its unit tangent and normal vector are
given by

T(t) == ﬁ, N(t) == JT(t), whereJ:=({').

Then the tangent line at the point () is given by
Pivney = {x € R* [ N(t) - + h(t) = 0}, h(t) == =N(t) - ~(t).

The oriented tangent lines ]_5( N(t),h(1)) Yield a curve on the Blaschke cylinder. We have seen
this in the example of circles which correspond to curves on the Blaschke cylinder given
by planar sections. On the other hand, the curve v can be uniquely reconstructed from its
tangent lines as the envelope.

Proposition 3.1.1. Let y be a smooth regular curve in R%. Then
A(t) == (N(t), 1, h(t), h(t) :=—=N(t) ()

defines a curve on the Blaschke cylinder. The corresponding oriented lines are the
oriented tangent lines of 7, i.e.,

N-vy+h=0,
N.-y=0.

35
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Furthermore, the curve vy is the envelope of those lines, i.e.,

N-v+h=0,

. . 3.1
N.-~v+h=0. ot

Vice versa, given a smooth regular curve t — (N(n), 1, h(t)) on the Blaschke cylinder
not tangent to a generator, equations (3.1) determine a unique curve as the envelope of
the corresponding oriented lines in the plane.

3.2 Osculating circle of planar curves

The osculating circle of the planar curve v at the point (¢) is the circle §(C(t),r(t)) with

center

and radius

where k(t) is the curvature at y(t).

Proposition 3.2.1. Let v a smooth regular curve in R?. Let
Y(t) = (N(2), 1, h(2))

be its lift to the Blaschke cylinder, and let

&(t) = (), —r(1), 1)

be the lift of its osculating circle to the cyclographic model. Then

[e(®)]" = P (span{7,4,4}) .

Proof. Show that . )

Ty =¢c"y=¢c"y=0
where one uses N - N = —N - N and N = —KY. 0

To apply a Laguerre transformation to a curve it is applied to its oriented tangent lines. Then
the image curve is reconstructed as the envelope of the image tangent lines.
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Corollary 3.2.2. The osculating circle of a planar curve is Laguerre invariant.

3.3 Conics and hypercycles

We will now study which curves on the Blaschke cylinder correspond to conics (more
precisely ellipses and hyperbolas).

By means of a rotation and a translation (which constitute special Laguerre transforma-
tions) an ellipse or a hyperbola may be brought into the form

2
@ Y 1} 32)

o~ en|2 8

with some a, b # 0. The case a > 0,b > 0 corresponds to an ellipse and the case ab < 0 to
a hyperbola.

Proposition 3.3.1. The curve on the Blaschke cylinder Z corresponding to the tangent
lines (with both orientations) of the conic C' is given by the intersection of Z with the
cone

C = {[z1, x2, x5, 74] € RP? | az} + bxj — z] = 0} . (3.3)

Proof. The tangent line to C' at a point (g, yo) € C is given by

RPN

and its two lifts to the Blaschke cylinder by

To Yo Yo zoh Yyoh
Y LR T R O TR
[a’b‘ 2 e ] [a’b”]e

where

In particular, we found that the curve on the Blaschke cylinder corresponding to an
ellipse or hyperbola is given by the intersection with a quadric.
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Figure 3.1. Hypercycle base curves corresponding to an ellipse and hyperbola respectively.

Definition 3.3.2. The intersection curve of the Blaschke cylinder Z with another quadric

Q is called a hypercycle base curve. The envelope of the corresponding lines in the
plane is called a hypercycle.

Corollary 3.3.3. Conics (considered with both orientations) are hypercycles.

The hypercycle base curve is the base curve of the pencil of quadrics spanned by Z and

Q. The intersection of any quadric from this pencil with the Blaschke cylinder yields the
same curve Z n Q.

NGRS

Figure 3.2. A conic under Laguerre transformations.

3.4 Discrete curves in Laguerre geometry
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Definition 3.4.1. Let v : I — R? be a regular discrete curve. Then the circle C), that
touches three consecutive edge tangent lines 71, T}, T} 1 1s called the edge osculating
circle at (k,k + 1) € I.

Figure 3.3. Edge osculating circle.

» For three (non-concurrent) lines in R there are four circles touching them. By endowing
the tangent lines with the orientation coming from the order of the points of the curve
on them, this choice can be made unique.

Figure 3.4. Edge osculating circle from oriented tangent lines.

» Note that the (correctly chosen) angle bisectors of successive edge tangent lines contain
the center of the edge osculating circle. Thus, the edge osculating circle can be used to
define edge normal lines.

» The (oriented) edge osculating circle can be used to define a (signed) discrete curvature
at the edge (k, k + 1). The radius is given by |Av,| = Ry(tan 2= + tan 5= ). This
leads to the curvature

Pr+1

©p
B tanT’“—l—tan 5

R =
1Al

3.5 Surfaces in Laguerre geometry

Let
fREP>U R}
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be a smooth regular parametrized surface patch. Let
n:U —R?
be an arbitrary smooth normal field of f such that at every point (u,v) € U
n=Afux fo)
with some positive scalar A > 0, and let
o= |n| >0
denote the norm of n. Furthermore, let / be such that
n-f+h=0.
Then the lift of f to the Blaschke cylinder is given by

f=(n,0,h).

Recall that f is a curvature line parametrization if and only if f is orthogonal and
conjugate. In Section 1.4 we have established that f is conjugate if and only if its dual
surface [n, h] is conjugate. Thus, to describe curvature line parametrizations in Laguerre
geometry we should determine how to express the orthogonality in the homogeneous
coordinates (n, o, h).

Lemma 3.5.1. For a parametrized surface f the lift to the Blaschke cylinder (n,o,h)
satisfies
o’ =n-n,
OT, =N+ Ny,
(3.4)

00y =N - Ny,

OO0y T+ Ou0y = N+ Ny + Ny * Ny

Lemma 3.5.2. Let f be a conjugate line parametrized surface. Then f is orthogonal if and
only if its lift to the Blaschke cylinder (n, o, h) satisfies

O0up = N+ Ny

Proof. Since f is conjugate, we have
fu "Ny = 07

and thus f, is proportional to n, x n. Similarly, f, is proportional to n x n,, the
orthogonality condition

fu'fv:()
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is equivalent to
(ny xn)-(nxmn,) =0

S 00y = Ny * Ny
S 00y = T Ny,

where we used Lemma 3.5.1. ]

Theorem 3.5.3. Let f : R? > U — R? be a parametrized surface and

A

f=n,o,h)

a lift to the Blaschke cylinder. Then f is a curvature line parametrization if and only if

A

[f] is a conjugate parametrization.

Proof. f is a conjugate line parametrization if and only if [n, ] is a conjugate line
parametrization, i.e., if

Nyy = ATy, + 5”1} +n,

hyw = ahy + Bhy, + vh

with some functions o, 5,7 : U — R.
Now if f is orthogonal, then by Lemma 3.5.1 and Lemma 3.5.2
OOuy = Ny M = Ny - N+ By -0+ Y0 -1 = oo, + oo, + yo?

and thus
Ow = Qo + Bo, + o.

Vice versa, if o satisfies the previous equation, the argument may be reversed. [

Corollary 3.5.4. Curvature line parametrizations are Laguerre invariant.

3.6 Conical nets

In the smooth case we have seen that curvature line parametrizations can be represented
by conjugate line parametrizations in the Blaschke cylinder. Consider a discrete conjugate
net Z> — Z < RP* in the Blaschke cylinder Then for every face the four oriented planes
corresponding to its four vertices are in oriented contact with an oriented cone.
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Definition 3.6.1. A regular discrete conjugate net f : Z? — R" is called a conical net
if the planes on the faces can be oriented such that for each vertex the four incident
oriented planes are in oriented contact with an oriented cone.

Thus, we obtain an another discretization of curvature line parametrizations. The definition
immediately implies that conical nets are Laguerre invariant.

Remark 3.6.2. The axes of the cones can be interpreted as discrete normals (per face).
Adjacent discrete normal lines intersect, and in this sense they form discrete developable
surfaces.

There is a well-known reflection construction to obtain a circular net from a conical net
and vice-versa

(i) A conical net is obtained from a circular net by reflecting an initial plane through
the point of a vertex about the planes that are spanned by adjacent circle-axes. The
composition of the four reflections incident to a vertex is the identity, and thus this
construction yields a well-defined plane per face. The four planes corresponding to
four faces incident to a vertex intersect in a common point on the circle-axis. These
points constitute a conical net.

(i1) A circular net is obtained from a conical net by reflecting an initial point in the plane
of a vertex about the planes that are spanned by adjacent cone-axes. The composition
of the four reflections incident to a vertex is the identity, and thus this construction
yields a well-defined point per vertex. These points constitute a circular net.

The two constructions are symmetric in the following sense: A conical net A can be
obtained from a circular net g by construction (i) if and only if g can be obtained from A by
construction (ii). Indeed, this holds since the net of the reflection planes coincide.
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Curves and surfaces in Lie geometry

4.1 Planar curves in Lie geometry

Let
7 [a,0] - R?

be a regular planar curve. Its unit tangent and normal vector are given by
(t) = %” n(t) = Jr(t), where J = (0<1).
We can lift the points of the curve as well as the oriented tangent lines to the Lie quadric.
sp(t)
Sq(1) -

Neither a point nor an oriented line are Lie invariant objects. But if the point lies on the
line, together they span a contact element, which corresponds to an isotropic line in the Lie
quadric. Thus, we can lift the curve v to a one-parameter family of lines (a ruled surface)

in the Lie quadric:
(1) = [sp(t)] v [54(2)]

The condition for the oriented lines to be the tangent lines of the curve becomes

(1) + eo + ()] e,
n(t) — 2h(t)eq + €.

(ip 8> =4 =0, (4.1)

or equivalently _
(Spy$q) =7 -n+h=0.

Lemma 4.1.1. Let
((t) = [s1(t)] v [s2(t)] € £ = RP*

be a smooth regular one-parameter family of lines in the Lie quadric. Then the following
are equivalent:

43



44 CURVES AND SURFACES IN LIE GEOMETRY

(l) <$1, 52> = 0.
(ii) {(s1,52) = 0.
(iii) [$1], [s2] € ([s1] v [s2])*

(iv) {is a developable surface, i.e., [s1],[sz2], [$1], [$2] lie in a plane.

Proof. (i) and (ii) are equivalent since

<81, 52> = 0

implies
<51, 82> + <81, 82> = 0.

Thus, both are equivalent to (iii). ([s1]V [s2])* is a plane, which also contains [s;], [s2].
Vice versa, if [s1], [s2], [$1], [$2] lie in a plane, then

sy +582 +’}/<§1 +552 =0

where neither y nor § can be zero. Taking the scalar product with s, yields (i). [

Proposition 4.1.2. Let
£(t) = [s1(1)] v [s2(t)] = £ = RP*

be a developable surface in the Lie quadric. Then its sections with the point complex
and plane (line) complex

[sp(8)] = £(t) N p,
[sq(8)] = £(t) n g™

define a planar curve in the Euclidean plane together with its oriented tangent lines.

Proof. By Lemma 4.1.1, ¢ is developable if and only if

<51, 82> =0

Furthermore, the equivalence in this lemma, implies that this condition is invariant
under a change of choice of points spanning the lines ¢, which is easily checked
independently. Indeed, for

§1 = /\181 + /\282,

S9 = {151 + 22
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with smooth Ay, Ao, j11, 1o, we find

<§1, §2> = <)‘\181 + S+ >‘\282 + )\232,,&151 + [L282> = 0.

Thus, in particular
<ép7 SQ> =0

which by (4.1) is equivalent to the claimed tangency condition. [

Each contact element along the curve contains the osculating circle of the curve. We show
that the corresponding points on the isotropic lines in the Lie quadric constitute the line of
striction of the developable surface.

Theorem 4.1.3. Let v a regular curve in R?. Let

U(t) = [sp(O)] v [s4(1)]

with
sp(t) = (1) + o + V()] ey
sq(t) == n(t) — 2h(t)es + es.

be its lift to the Lie quadric L = RP*, and let
s(t) == c(t) + eq + ([c@®)]* = r()})ew + r(t)es

be the lift of its osculating circles. Then [s(t)] is the edge of regression of the developable
surface ((t), i.e.
[s] v [$] =¢.

Proof. We first check that
5 =5, + 15

and thus [s] € /.
As a linear combination of s, and s, the curve s satsifies

(8, 8p) = ($,84) =0,
and thus [s] € £*. We check that furthermore, [$] € £, and thus [s] € £. Indeed, with

s=c+2(¢-c—rr)eq +Tes
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we find
(3,8 = e = (1) = |4 + in + ra* — (7)® = 0,

where we used |n|* = 1 and 4 = —rn. O

Corollary 4.1.4. The osculating circles of a planar curve are Lie invariant.

4.2 Surfaces in Lie geometry

Let
f:RP>U —R?

be a smooth regular parametrized surface patch. Let
n:U — S

be the unit normal field of f such that at every point (u,v) € U

b
Ifu % fo
Furthermore, let i be such that
n-f+h=0.

At each point of the surface this point together with the oriented tangent plane defines a
contact element. The lift of f to the Lie quadric is given by the two-parameter family of
isotropic lines representing these contact elements:

f(u,y) = [Sp(u7 U)] vV [SQ<U7U>]

where ,
sp(u, U) = f(u? U) + €0+ ”f(ua U)H €0,
Sq(u,v) == n(u,v) — 2h(u,v)ey, + eg.

The conditions for oriented planes to be tangent planes of the surface becomes

<au5pa 3q> = fu n = O,
<avsp7 Sq> = fU = Oa

or equivalently,
(Sps Ousq) = (Sp; OuSq) = 0.

The following lemma may be proven in a similar way to Lemma 4.1.1.
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Lemma 4.2.1. Let
((t) = [s1(1)] v [s2(t)] = L = RP?

be a smooth regular two-parameter family of lines in the Lie quadric. Then the following
are equivalent:

(i) {Ous1,52) = {0y51,52) =0,
(ii) <317 au$2> = <81, av52> =0,
(iii) [aﬂsl]u [au82]7 [aﬂsl]v [avSQ] € ([Sl] 4 [SQDJ_'

Note that here ([s;] v [s2])* is a 3-dimensional subspace. Similar to Lemma 4.1.1,
the conditions in Lemma 4.2.1 mean that the tangent planes of the surfaces [s;] and [s;]
are contained in the 3-dimensional polar subspace of the line [s;] v [s2]. We find that
surfaces in Lie geometry are characterized by this condition. The proof is analogous to that
of Proposition 4.1.2.

Proposition 4.2.2. Let
O(u,v) = [s1(u,v)] v [s2(u,v)] = £ = RP?

be a line congruence in the Lie quadric. Then its sections with the point complex and
plane complex

[Sp(u7 U)] = E(u7 U) N pl7

[SQ(U’a ’U)] = E(U’a ’U) N ql
define a smooth regular surface in Euclidean space R? together with its oriented tangent
planes.

Definition 4.2.3. Let
U(u,v) = [s1(u,v)] v [s2(u,v)] = RP"

be a smooth regular two-parameter family of lines in a projective space RP™. Then ¢
is called a (torsal) line congruence if the two ruled surfaces given by u — ¢(u,v) and
v — {(u,v) are developable, i.e.,

[s1], [s2], [Ous1], [Ous2] span a plane, and
[s1], [s2], [Ouvs1], [Ovs2] span a plane.

Lemma 4.2.4. Let
0(u,0) = [s1(u, 0)] v [s2(u,v)] = RP"
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be a (torsal) line congruence. Then

[s1], [52], [Qus1], [Ous2], [Ovs1], [Ovs2], [Oulus1], [Oulys2]

lie in a 3-dimensional subspace.

Proof. By the condition for a (torsal) line congruence, the points

[s1], [s2], [Ous1]; [Ousa], [Ous1], [Onsa]

82] e II.

lie in a 3-dimensional subspace II. Thus, we need to show [0,,0,51 [(?u(%
, 7 such that

I,
Again, since / is a (torsal) line congruence, there exist o, 3, v, &

I

auSQ = sy + 582 + ’Yausl’
OpS2 = S1 + 382 + Y0,81.

Cross-differentiation leads to

OuOypSo = Opaisy + 0pfSo + a0yS1 + P0OyS2 + 0y Y0uS1 + Y0u0yS1,
OulnSy = Ou@S1 + Oufiss + @us1 + BOuss + 0uT0ps1 + F0uOys1,

which shows that [0, 0,s1] € II. Similarly, [0,0,s2] € II. O

With this we can show the following characterization for the Lie lift of curvature line
parametrizations.

Theorem 4.2.5. Let f : R? > U — R? be a parametrized surface and

U(u,v) = [5p(u, )] v [54(u, V)]

be its lift to the Lie quadric £ < RP®, where

Sp(uv 1}) = f(ua U) + e+ ”f(ua U>H2 €0,
Sq(u,v) = n(u,v) — 2h(u,v)ey, + es.

If f is a curvature line parametrization then ( is a (torsal) line congruence.
Vice versa, let

0(u,v) = [s1(u,v)] v [s2(u,v)] = £ = RP?
be a (torsal) line congruence in the Lie quadric. Then its section with the point complex

[sp(u, 0)] i= £(u,v) N p
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is a curvature line parametrization.

Proof. Let f be a parametrized surface. Then

ausp = fu + Q(fu ’ f)eom

OuSq = Ny — 2hyer = My + 2(f - 1y ) o

Thus,
0-5,4+0:5;+ K105y — OuSq = 0,

where we used n,, = k1 f, for some k1, since f is a curvature line parametrization.
Similarly, for the v direction.

Now let ¢ be a (torsal) line congruence. We first check that conditions (i) of
Lemma 4.2.1 are satisfied, so that ¢ actually defines a surface. Indeed, since ¢ is a
(torsal) line congruence there exist «, 3,y such that

OuS2 = 81 + BSg + Y0y S1.

Thus,

<81, 6u82> = O
Similarly,

<81, (91,82> = 0.
By Lemma 4.2.4 the points

[Sl]v [52]7 [au31]7 [au52]a [8v31]7 [51)52]7 [auavle [auavSQ]

lie the 3-dimensional subspace, which here is given by

IT:= ([s1] v [s2])*

Thus, the four points
[s], [Qus], [Ovs], [0u0ys] € 11

lie in II for any linear combination s = A;s1 4+ A2s3 such as s,. On the other hand [s,)]
lies in the hyperplane p*. The intersection II N p* is 2-dimensional. Thus, the four
points

[sp], [Cusp], [Ovsp], [udusp] € TN P

liein aplane, i.e., the parametrization [s, ] is conjugate. But a conjugate parametrization
in the Mobius quadric represents a curvature line parametrization in R3. U
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Corollary 4.2.6. Curvature line parametrizations are Lie invariant.

4.3 Discrete contact element nets

Considering discrete line congruences in the Lie quadric leads to discrete contact element
nets. Their intersections with the point complex and the plane complex yield circular nets
and conical nets, respectively, which are related by the reflection construction.



