
Chapter 1

Curves and surfaces in projective
geometry

1.1 Curves in projective geometry
First, we introduce the notions of regularity, tangent lines, and osculating plane for curves
in the Euclidean space Rn. Then we consider their lift and corresponding definitions in the
projective space RPn, and check in which sense these notions are projectively well-defined
and invariant.

We start by recalling the definition of a curve in Rn.

Definition 1.1.1. Let I Ă R be an interval. Then a smooth map

γ : I Ñ Rn

is called a (smooth parametrized) curve in Rn.

We usually denote the curve parameter by t and the derivatives with respect to t by

γptq, 9γptq, :γptq, . . .

We will mostly deal with regular curves, for which the first derivative does not van-
ish.

Definition 1.1.2. A curve γ : I Ñ Rn is called regular if

9γptq ‰ 0 for all t P I.

For a regular curve the tangent line is well-defined at every point of the curve.
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4 Curves and surfaces in projective geometry

Definition 1.1.3. Let γ : I Ñ Rn be a regular curve. Then the line

T ptq :“ tγptq ` α 9γptq | α P Ru

is called the tangent line of γ at t P I .

The tangent line is the line that best approximates the curve at some point up to first order.
Similarly, the osculating plane is the plane that best approximates the curve at some point
up to second order.

Definition 1.1.4. Let γ : I Ñ Rn be a regular curve. If additionally 9γptq and :γptq are
linearly independent, then the plane

tγptq ` α 9γptq ` β:γptq | α, β P Ru

is called the osculating plane of γ at t P I .

We can lift a curve γ : I Ñ Rn to the projective space RPn by

rγ̂s : I Ñ RPn, γ̂ptq :“

ˆ

γptq
1

˙

If γ is regular, then
9̂γptq “

ˆ

9γptq
0

˙

describes a point at infinity on the lift of the tangent line

T ptq “

!

rα1γ̂ptq ` α2
9̂γptqs

ˇ

ˇ

ˇ
α1, α2 P R

)

“ rγ̂ptqs _ r 9̂γptqs.

What happens if we choose different representative vectors for the lift of the curve? Are the
point r 9̂γptqs and the tangent line well-defined by the curve?

Generally, we define a projective curve in the following way.

Definition 1.1.5. Let I Ă R be an interval and γ̂ : I Ñ Rn`1 a smooth map. Then

rγ̂s : I Ñ RPn, t ÞÑ rγ̂ptqs

is called a (smooth parametrized) curve in RPn.

Consider a curve rγ̂s : I Ñ RPn and a smooth function

λ : I Ñ Rzt0u.



1.1 Curves in projective geometry 5

Then γ̂ and γ̃ :“ λγ̂ define the same curve in RPn,

rγ̂ptqs “ rγ̃ptqs for all t P I.

But, the first derivative changes in the following way

9̃γptq “ 9λptqγ̂ptq ` λptq 9̂γptq.

Thus, in general, r 9̃γptqs ‰ r 9̂γptqs. However, the point r 9̃γptqs still lies on the span rγ̂ptqs _

r 9̂γptqs, and we have
rγ̂ptqs _ r 9̂γptqs “ rγ̃ptqs _ r 9̃γptqs

In particular, rγ̂ptqs “ r 9̂γptqs if and only if rγ̃ptqs “ r 9̃γptqs. Thus, the following definition
of regularity is independent of the choice of representative vectors. Furthermore, in affine
coordinates, it coincides with the corresponding definition for curves in Rn.

Definition 1.1.6. A curve rγ̂s : I Ñ RPn is called regular if

rγ̂ptqs ‰ r 9̂γptqs for all t P I.

For a regular curve the span rγ̂ptqs _ r 9̂γptqs is a line, which again is independent of the
choice of representative vectors. Indeed, in this case, by choice of the function λ, the point
r 9̃γptqs can become any point on this line except rγ̂ptqs “ rγ̃ptqs. In affine coordinates, it
coincides with the tangent line as defined for curves in Rn.

Definition 1.1.7. Let rγ̂s : I Ñ RPn be a regular curve. Then the line

T ptq :“ rγ̂ptqs _ r 9̂γptqs

is called the tangent line of rγ̂s at t P I .

Similarly, for higher derivatives, in general, r:̃γptqs ‰ r:̂γptqs, but

rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs “ rγ̃ptqs _ r 9̃γptqs _ r:̃γptqs,

and thus, this plane is independent of the choice of representative vectors. In affine
coordinates, it coincides with the osculating plane as defined for curves in Rn.

Definition 1.1.8. Let rγ̂s : I Ñ RPn be a regular curve. If additionally, r:̂γptqs R

rγ̂ptqs _ r 9̂γptqs Then the plane

rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs

is called the osculating plane of rγ̂s at t P I .
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Thus, we have found that regularity, tangent line, and osculating plane are well-defined for a
curve in RPn in the sense that their definition is independent of the choice of representative
vectors.

Proposition 1.1.9. For a curve rγ̂s : I Ñ RPn, regularity, tangent line, and osculating
plane are independent of the choice of representative vectors

γ̂ptq Ñ λptqγ̂ptq

with a smooth function non-vanishing function λ.

Next, we investigate how these properties of a curve depend on the parametrization. Thus,
let I, Ĩ Ă R be two intervals, rγ̂s : I Ñ RPn a curve, and

φ : Ĩ Ñ I

a smooth bĳective map. Then, γ̃ :“ γ̂ ˝ φ defines a reparametrization

rγ̃s : Ĩ Ñ RPn, s ÞÑ rγ̂ ˝ φpsqs.

Its derivative
9̃γpsq “ p 9̂γ ˝ φqpsqφ1

psq

defines the same point
r 9̃γpsqs “ r 9̂γ ˝ φpsqs.

Thus, regularity, the tangent line

rγ̃psqs _ r 9̃γpsqs “ rγ̂psqs _ r 9̂γ ˝ φpsqs,

and similarly the osculating plane are invariant under reparametrization.

Proposition 1.1.10. For a curve rγ̂s : I Ñ RPn, regularity, tangent line, and osculating
plane are invariant under reparametrization

γ̂ptq Ñ γ̂ ˝ φpsq

with a smooth bĳective function φ.

Finally, how do these properties change under projective transformations? Let rγ̂s : I Ñ

RPn be a curve, and
F P GLpn ` 1,Rq,

i.e.,
f :“ rF s P PGLpn ` 1,Rq
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is a projective transformation. Then γ̃ :“ F γ̂ defines the transformed curve

rγ̃s : I Ñ RPn, t ÞÑ fprγ̂ptqsq “ rF γ̂ptqs

Its derivative
9̃γptq “ F 9̂γptq

defines a point, which is transformed by the same projective transformation

r 9̃γptqs “ rF 9̂γptqs “ fpr 9̂γptqsq

Thus, regularity, the tangent line

rγ̃ptqs _ r 9̃γptqs “ f
´

rγ̂ptqs _ r 9̂γptqs

¯

,

and similarly the osculating plane are invariant under reparametrization.

Proposition 1.1.11. For a curve rγ̂s : I Ñ RPn, regularity, tangent line, and osculating
plane are invariant under projective transformations

γ̂ptq Ñ F γ̂ptq

with F P GLpn ` 1,Rq.

1.2 Surfaces in projective geometry

Definition 1.2.1. Let U Ă Rn be a open set. Then a smooth map

f : U Ñ Rn, pu, vq ÞÑ fpu, vq

is called a (smooth parametrized) surface (patch) in Rn.
The curves

u ÞÑ fpu, vq, v ÞÑ fpu, vq

are called parameter lines of f .

We usually denote the two parameters by u and v. and the partial derivatives with respect
to u and v by

fu :“
Bf

Bu
, fv :“

Bf

Bv
.

Regularity is defined for surface patches by the linear independence of the first partial
derivatives.
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Definition 1.2.2. A surface f : U Ñ Rn is called regular if fupu, vq and fvpu, vq are
linearly independent at every point pu, vq P U .

For a regular surface the parameter lines are regular curves, and the tangent plane is well-
defined at every point. It is the plane that best approximates the surface patch at some point
up to first order.

Definition 1.2.3. Let f : U Ñ Rn be a regular surface. Then the plane

Tfpu, vq :“ tfpu, vq ` αfupu, vq ` βfvpu, vq | α, β P Ru

is called the tangent plane of f at pu, vq P U .

Similar to curves, we can lift a surfaces f : U Ñ Rn to the projective space RPn by

rf̂ s : U Ñ RPn, f̂pu, vq :“

ˆ

fpu, vq

1

˙

.

If f is regular, the partial derivatives

f̂upu, vq “

ˆ

fupu, vq

0

˙

, f̂vpu, vq “

ˆ

fvpu, vq

0

˙

,

describe points at infinity on the lift of the tangent plane

Tfpu, vq “

!

α1f̂pu, vq ` α2f̂upu, vq ` α3fvpu, vq

ˇ

ˇ

ˇ
α1, α2, α3 P R

)

“ rfpu, vqs _ rfupu, vqs _ rfvpu, vqs.

Generally, we define projective surfaces in the following way.

Definition 1.2.4. Let U Ă R2 be a open set and f̂ : U Ñ Rn`1 a smooth map Then

rf̂ s : U Ñ RPn, pu, vq ÞÑ rf̂pu, vqs

is called a (smooth parametrized) surface (patch) in RPn.
The curves

u ÞÑ fpu, vq, v ÞÑ fpu, vq

are called parameter lines of rf̂ s.

Consider a surface rf̂ s : U Ñ RPn and a smooth function

λ : U Ñ Rzt0u.
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Then f̂ and f̃ :“ λf̂ define the same surface in RPn,

rf̂pu, vqs “ rf̃pu, vqs for all pu, vq P U.

Similar to the considerations for curves, the points described by the first partial derivatives
may change, but the span

rf̂pu, vqs _ rf̂upu, vqs _ rf̂vpu, vqs “ rf̃pu, vqs _ rf̃upu, vqs _ rf̃vpu, vqs

remains the same. Thus, the following definition of regularity for surfaces in RPn is
independent of the choice of representative vectors. Furthermore, in affine coordinates, it
coincides with the corresponding definition for surfaces in Rn.

Definition 1.2.5. A surface rf̂ s : U Ñ RPn is called regular if rf̂pu, vqs, rf̂upu, vqs,
rf̂vpu, vqs span a plane, or equivalently, if f̂pu, vq, f̂upu, vq, f̂vpu, vq are linearly inde-
pendent.

The same holds for the following definition of the tangent planes for surfaces in RPn.

Definition 1.2.6. Let rf̂ s : U Ñ RPn be a regular surface. Then the plane

T rf̂ spu, vq :“ rf̂pu, vqs _ rf̂upu, vqs _ rf̂vpu, vqs

is called the tangent plane of rf̂ s at pu, vq P U .

Similar to the considerations for curves, one finds that the introduced notions are also
invariant under reparametrization and under projective transformations. We summarize in
the following proposition.

Proposition 1.2.7. For a surface rf̂ s : U Ñ RPn, regularity, and the tangent plane
are invariant under

(i) a change of representative vectors

f̂pu, vq Ñ λpu, vqf̂pu, vq

with a smooth non-vanishing function λ.

(ii) reparametrization
f̂pu, vq Ñ f̂ ˝ φpũ, ṽq

with a smooth bĳective map φ.
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(iii) projective transformations

f̂pu, vq Ñ F f̂pu, vq

with F P GLpn ` 1,Rq.

1.3 Ruled surfaces and developable surfaces
A ruled surface is a surface traced out by the movement of a straight line through space.

Definition 1.3.1. Let râs, rb̂s : I Ñ RPn be two curves such that râs, rb̂s, r 9̂as, r
9̂
bs do not

lie on a line. Then the surfaces

rf̂ s : I ˆ RP1
Ñ RPn, pu, vq ÞÑ rapuq ` vbpuqs

is a ruled surfaces in RPn. The lines rapuqs _ rbpuqs on the resulting surface are called
rulings.

Example 1.3.2. A one-sheeted hyperboloid is a doubly ruled surface.

A developable surface is the envelope of a one-parameter family of planes.
In RP3 a one-parameter family of planes may be described by a regular curve in the

dual space
rn̂s : I Ñ pRP3

q
˚,

or a one-parameter family of linear equations

T puq “
␣

rxs P RP3
ˇ

ˇ n̂puq ¨ x “ 0
(

.

Then the envelope is the solution of the two equations

n̂ ¨ x “ 0,

9̂n ¨ x “ 0.

For each u these are two independent linear equations, and thus the solution is a line. Thus,
in RP3, every developable surface is a ruled surface.

Vice versa, for a ruled surface in RP3 to be developable its tangent planes must be
constant along the rulings, i.e.,

rf̂ s _ rf̂us _ rf̂vs “ râ ` vb̂s _ r 9̂a ` v
9̂
bs _ rb̂s
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must be independent of v, which is the case, if and and only if

detpâ, b̂, 9̂a,
9̂
bq “ 0,

or equivalently, if râs, rb̂s, r 9̂as, r
9̂
bs lie in a plane.

This last condition characterizes surfaces which are the envelope of a one-parameter
family of planes in any dimension, and thus may define developable ruled surface in the
following way.

Definition 1.3.3. Let

rf̂ s “ râs _ rb̂s : I ˆ RP1
Ñ RPn

be a ruled surface. Then rf̂ s is developable if râs, rb̂s, r 9̂as, r
9̂
bs lie in a plane for every

u P I .

Infinitesimally, this condition means that close rulings intersect, and thus, if they don’t
all go through one point, they envelope a curve in space.

Proposition 1.3.4. A ruled surface is developable if it is a cone (over an arbitrary
curve) or the trace of tangent lines of a regular curve.

More specifically, let

rf̂ s “ râs _ rb̂s : I ˆ RP1
Ñ RPn

be a ruled surface, which is not a cone. Then there exists a unique curve

rĉs : I Ñ RPn, rĉpuqs P râpuqs _ rb̂puqs

such that
râpuqs _ rb̂puqs “ rĉpuqs _ r 9ˆpuqcs

for all u P I . The curve rĉs is called the line of striction (or edge of regression) of rf̂ s.

Proof. For a cone or the trace of tangent lines of a regular curve, one easily checks that
they constitute developable surfaces.

Let rf̂ s “ râs _ rb̂s be a developable surface, and let

ĉpuq “ λpuqâpuq ` µpuqb̂puq

for some functions λ, µ. Then

9̂cpuq “ 9λâ ` λ 9̂a ` 9µb̂ ` µ
9̂
b,
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and r 9ss P râs _ rb̂s if and only if

λ 9̂a ` µ
9̂
b P spantâ, b̂u.

Such λ, µ exists, since â, b̂, 9̂a,
9̂
b lie in a 3-dimensional subspace. This choice is unique

since they do not lie in a 2-dimensional subspace (regularity for ruled surfaces).

1.4 Dual representation of surfaces
Instead of describing a surface as a two-parameter family of points, we can equivalently
describe it as the envelope of its two-parameter family of tangent planes. In particular, for
a surface in R3, the tangent planes can be described in terms of a normal field.

Definition 1.4.1. Let f : U Ñ R3 be a regular surface. Then a smooth map

n : U Ñ R3
zt0u

is called a normal field of f if
n ¨ fu “ 0,

n ¨ fv “ 0.

The tangent plane of a surface f in R3 can be described in terms of a normal field

Tfpu, vq “
␣

x P R3
ˇ

ˇ npu, vq ¨ px ´ fpu, vqq “ npu, vq ¨ px ` hpu, vq “ 0
(

and some function hpu, vq “ ´npu, vq ¨fpu, vq. Thus, the tangent planes of f are described
by the tuple pn, hq, which is unique up to a common scalar multiple, and determined by the
equations

n ¨ fu “ 0,

n ¨ fv “ 0,

n ¨ f ` h “ 0.

(1.1)

Differentiating the last equation with respect to u and v, respectively, we find that (1.1) is
equivalent to

f ¨ nu ` hu “ 0,

f ¨ nv ` hv “ 0,

f ¨ n ` h “ 0.

(1.2)

Note that if we consider the lifts
f̂ :“ pf, 1q,

n̂ :“ pn, hq
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to homogeneous coordinates of RP3 and pRP3q˚, respectively, then equations (1.1) and
(1.2) become the duality relations for tangent planes of the respective surfaces rf̂ s and
rn̂s.

Definition 1.4.2. Let rf̂ s : U Ñ RP3 be a regular surface. Then

rn̂s :“ prf̂ s _ rf̂us _ rf̂vsq
‹ : U Ñ pRP3

q
˚

is called the dual surface of f .

In homogeneous coordinates the dual surface is determined by the three linearly independent
equations

n̂ ¨ f̂u “ 0,

n̂ ¨ f̂v “ 0,

n̂ ¨ f̂ “ 0,

(1.3)

and satisfies
f̂ ¨ n̂u “ 0,

f̂ ¨ n̂v “ 0,

f̂ ¨ n̂ “ 0.

(1.4)

These equations are completely symmetric in f̂ and n̂.

Proposition 1.4.3. If the dual surface of a regular surface rf̂ s in RP3 is itself regular,
then the dual surface of a the dual surface is rf̂ s.

Remark 1.4.4. The primal surface is regular if it is locally not a curve. The dual surface
is regular if the primal surface is locally not developable.

1.5 Conjugate line parametrizations
We now study special parametrizations, in the sense that the parameter lines satisfy some
geometric condition. We start with conjugate line parametrizations, which we first introduce
for surfaces in R3. Conjugate line paramtrizations are geometrically characterized by the
following condition: Along each parameter line of the surface, the tangent planes rotate
around the tangent line in the other coordinate direction. Put differently: The tangent planes
along one parameter line envelop a surface that is ruled by the tangent lines in the other
coordinate direction.
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Definition (and Proposition) 1.5.1. Let f : U Ñ R3 be a regular surface, and n :
U Ñ R3 a normal field of f . Then f is a called a conjugate line parameterization if
one and hence all of the following equivalent conditions hold:

(i) nv ¨ fu “ 0
(ii) nu ¨ fv “ 0
(iii) n ¨ fuv “ 0
(iv) fuv P spanpfu, fvq

(v) fuv “ αfu ` βfv for smooth functions α, β : U Ñ R

Proof. Taking the v-derivative of n ¨ fu “ 0 and the u-derivative of n ¨ fv “ 0, we
obtain

nv ¨ fu “ n ¨ fuv

nu ¨ fv “ n ¨ fvu

and since fuv “ fvu by the symmetry of second derivatives, conditions (i), (ii), and
(iii) are equivalent.

Condition (iii) implies (iv) because pfu, fvq is a basis for the orthogonal subspace
to n. This also means that the equation of condition (v) determines the functions α and
β uniquely. In fact, by Cramer’s rule,

α “
detpn, fuv fvq

detpn, fu fvq
, β “

detpn, fu fuvq

detpn, fu fvq
, (1.5)

which also shows that α and β are smooth because f is. Finally, condition (v) clearly
implies (iii) and (iv).

Conditions (iv) and (v) of Definition 1.5.1 do not mention the normal field n. We may use
them to define conjugate line parametrizations in Rn:

Definition 1.5.2. A regular surface f : U Ñ Rn is called a conjugate line param-
eterization if it satisfies one and hence both equivalent conditions (iv) and (v) of
Definition 1.5.1.

Of course we cannot use equations (1.5) to see that α and β are smooth if n ą 3, because
the normal field is not defined. But instead we may use

α “

det

ˆ

fuv ¨ fu fv ¨ fu
fuv ¨ fv fv ¨ fv

˙

det

ˆ

fu ¨ fu fv ¨ fu
fu ¨ fv fv ¨ fv

˙ , β “

det

ˆ

fu ¨ fu fuv ¨ fu
fu ¨ fv fuv ¨ fv

˙

det

ˆ

fu ¨ fu fv ¨ fu
fu ¨ fv fv ¨ fv

˙ . (1.6)
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The definition for conjugate line parametrizations translates as follows to surfaces in
RPn:

Proposition 1.5.3. Let f : U Ñ Rn be a regular surface. Let

f̂ :“ λ ¨ pf, 1q : U Ñ Rn`1

be an arbitrary lift to homogeneous coordinates with a smooth function λ : U Ñ Rzt0u.
Then f is a conjugate line parametrization if and only if f̂ satisfies

f̂uv “ αf̂u ` βf̂v ` γf̂ (1.7)

with some smooth functions α, β, γ.

Proof.

Equation (1.7) states the linear dependence of four representative vectors, or equivalently
that four points lie in a plane. While the four points are not projectively well-defined
(the points defined by the derivatives are not invariant under scaling f̂ ) this property
is.

Definition 1.5.4. Let rf̂ s : U Ñ RPn be a regular surface. Then rf̂ s is called a
conjugate line parametrization if the four points rf s, rfus, rfvs, rfuvs lie in a plane for
every pu, vq P U .

We have seen that this property is projectively well-defined. Furthermore, it is a property
of the coordinate lines. Thus, it is invariant under reparametrization of the surface along
the coordinate lines. Finally, it is also invariant under applying a projective transformation
to the surface. We summarize these properties in the following proposition.

Proposition 1.5.5. A regular surface rf̂ s : U Ñ RPn being a conjugate line parametriza-
tion is invariant under

(i) a change of representative vectors

f̂pu, vq Ñ λpu, vqf̂pu, vq

with a smooth non-vanishing function λ.

(ii) reparametrization along the coordinate lines

f̂pu, vq Ñ f̂pφpũq, χpṽqq
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with two smooth bĳective functions φ, χ.

(iii) projective transformations

f̂pu, vq Ñ F f̂pu, vq

with F P GLpn ` 1,Rq.

For surfaces in RP3 the property of being a conjugate line parametrization is also invariant
under dualization.

Proposition 1.5.6. A regular surface rf̂ s : R2 Ą U Ñ RP3 is a conjugate line
parametrization if and only if its dual surface rn̂s : U Ñ pRP3q˚ is a conjugate line
parametrization.

Proof. rf̂ s is a conjugate line parametrization if f̂ satisfies an equation of the form
(1.7), which is equivalent to

f̂uv ¨ n̂ “ 0.

From equations (1.3), or equivalently, equations (1.4), we find that this is equivalent to
either of the three equations

f̂u ¨ n̂v “ 0,

f̂v ¨ n̂u “ 0,

f̂ ¨ n̂uv “ 0,

(1.8)

and thus in turn to
n̂uv “ α̃n̂u ` β̃n̂v ` γ̃n̂,

Remark 1.5.7. The first two equations of (1.8) state, respectively, that

rf̂ s _ rf̂us “ prn̂s _ rn̂vsq
‹,

rf̂ s _ rf̂vs “ prn̂s _ rn̂usq
‹.

which capture the geometric description of conjugate line parametrizations given in the
beginning of the section.
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1.6 Asymptotic line parametrizations
Asymptotic line parametrizations are geometrically characterized by the following condi-
tion: Along each parameter line of the surface patch, the tangent planes rotate around the
tangent line of that parameter line. Put differently: The tangent planes along each param-
eter line envelop a surface that is ruled by the tangent lines of that same parameter line.
This leads to a description of asymptotic line parametrizations analogous to conjugate line
parametrizations.

Definition (and Proposition) 1.6.1. Let f : U Ñ R3 be a regular surface, and n :
U Ñ R3 a normal field of f . Then f is a called an asymptotic line parameterization if
one and hence all of the following equivalent conditions hold:

(i) nu ¨ fu “ nv ¨ fv “ 0
(ii) n ¨ fuu “ n ¨ fvv “ 0
(iii) fuu, fvv P spanpfu, fvq

(iv) fuu “ αfu ` βfv for smooth functions α, β : U Ñ R, and
fvv “ α̃fu ` β̃fv for smooth functions α̃, β̃ : U Ñ R

Same as for conjugate line parametrizations, conditions (iv) and (v) of Definition 1.6.1 do not
mention the normal field n, and we may use them to define asymptotic line parametrizations
in Rn:

Definition 1.6.2. A regular surface f : U Ñ Rn is called an asymptotic line pa-
rameterization if it satisfies one and hence both equivalent conditions (iv) and (v) of
Definition 1.6.1.

The definition for asymptotic line parametrizations translates as follows to surfaces in
RPn:

Proposition 1.6.3. Let f : U Ñ Rn be a regular surface. Let

f̂ :“ λ ¨ pf, 1q : U Ñ Rn`1

be an arbitrary lift to homogeneous coordinates with a smooth function λ : U Ñ Rzt0u.
Then f is an asymptotic line parametrization if and only if f̂ satisfies

f̂uu “ αf̂u ` βf̂v ` γf̂

f̂vv “ α̃f̂u ` β̃f̂v ` γ̃f̂
(1.9)

with some smooth functions α, β, γ, α̃, β̃, γ̃.

And thus, it generalizes to the following definition.
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Definition 1.6.4. Let rf̂ s : U Ñ RPn be a regular surface. Then rf̂ s is called an
asymptotic line parametrization if the points rf̂uus and rf̂vvs both lie in the tangent
plane rf̂ s _ rf̂us _ rf̂vs for every pu, vq P U .

Note that the condition rf̂uus P rf̂ s _ rf̂us _ rf̂vs is equivalent to

rf̂ s _ rf̂us _ rf̂uus “ rf̂ s _ rf̂us _ rf̂vs.

This means that the osculating plane of the u-parameter line coincides with the tangent
plane. And similarly for the v-parameter line.

Proposition 1.6.5. Let rf̂ s : U Ñ RPn be a regular surface. Then rf̂ s is an asymptotic
line parametrization if and only if the two osculating planes for the two parameter lines
coincide at every point:

rf̂ s _ rf̂us _ rf̂uus “ rf̂ s _ rf̂vs _ rf̂vvs.

In particular they both coincide with the tangent plane at that point.

The statements from Proposition 1.5.5 and Proposition 1.5.6 similarly hold for asymp-
totic line parametrizations.

Remark 1.6.6. The invariance of asymptotic line parametrizations under dualization
can equivalently be stated as

rf̂ s _ rf̂us “ prn̂s _ rn̂usq
‹,

rf̂ s _ rf̂vs “ prn̂s _ rn̂vsq
‹.

which capture the geometric description of asymptotic line parametrizations given in
the beginning of the section.

1.7 Discrete nets
We study discrete nets as discrete analogues of parametrizations. Discrete nets are maps
defined on a subset of Zm. For simplicity (to avoid special treatment of the boundary) we
mostly consider maps defined on the entire Zm.

Definition 1.7.1. Let m,n P N. A map

f : Zm
Ñ RPn



1.7 Discrete nets 19

is called a (discrete m-dimensional) net in RPn.

In particular, 1-dimensional discrete nets may be considered as discrete analogues of
parametrized curves, and 2-dimensional discrete nets as discrete analogues of parametrized
surfaces.

In the case of a discrete curve γ : Z Ñ RPn, and k P Z we introduce the following
notation

γk :“ γpkq for k P Z
for the point assigned to the vertex k.

Definition 1.7.2. Let γ : Z Ñ RPn be a discrete curve.

§ γ is called regular if any two successive points γk, γk`1 are distinct.

§ The line
Tk :“ γk _ γk`1

is called the (edge) tangent line at the edge pk, k ` 1q.

§ The plane
γk´1 _ γk _ γk`1

is called the (vertex) osculating plane at k.

Note how the regularity, tangent line, and osculating plane are immediately soon to be
projectively invariant.

In the case of a discrete surface f : Z2 Ñ RPn, we use subscripts to denote shifts

f1pi, jq “ fpi ` 1, jq, f1̄pi, jq “ fpi ´ 1, jq,

f2pi, jq “ fpi, j ` 1q, f2̄pi, jq “ fpi, j ´ 1q.

The discrete curves
i ÞÑ fpi, jq, j ÞÑ fpi, jq

may be thought of as discrete parameter lines, which come with conditions of discrete
regularity, as well as tangent lines and osculating planes.

Definition 1.7.3. A discrete surfaces f : Z2 Ñ RPn is called regular if any three points
of each face span a plane.

The plane spanned by three such points, e.g.,

fpi, jq _ fpi ` 1, jq _ fpi, j ` 1q

may be thought of as a discrete tangent plane, which is assigned to the corresponding corner
of the face.
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1.8 Discrete conjugate nets
For a discrete surface f : Z2 Ñ Rn consider the following discretization of condition v in
Definition 1.5.1

∆1∆2f “ α∆1f ` β∆2f

ô f12 “ f ` pα ` 1q∆1f ` pβ ` 1q∆2f.

This motivates the following definition.

Definition 1.8.1. A regular discrete net f : Z2 Ñ RPn is called a discrete conjugate
net (or Q-net) if the four points of every face f, f1, f12, f2 lie in a plane.

Again, this condition is immediately seen to be projectively invariant. Furthermore, in the
case of a discrete conjugate net, we have a unique choice for a tangent plane for every face
of Z2. For two adjacent faces the intersection of two such tangent planes is the tangent line
of the common edge.

For a discrete conjugate net in RP3 this gives rise to a dual net defined on the faces of
Z2 into pRP3q. It turns out that the dual net is again a discrete conjugate net, since the dual
configuration of four planes intersecting in a point is given by four points lying in a plane.
More generally, we can obtain a discrete version of Proposition 1.5.6

Proposition 1.8.2. Let f : Z2 Ñ RP3 be a regular discrete surface such that its dual
discrete surface

n :“ pf _ f1 _ f2q
‹ : Z2

Ñ pRP3
q

˚

is regular. Then, f is a discrete conjugate net if and only if n is a discrete conjugate
net.

Proof. Exercise.

1.9 Discrete asymptotic nets
To obtain a discretization of asymptotic line parametrizations consider the characerization
in Proposition 1.6.5. At every vertex of a discrete surface, we have two osculating planes
of the two discrete parameter lines that contain this vertex. These two osculating planes
coincide if and only if all five points of the vertex star are coplanar.

Definition 1.9.1. A regular discrete net f : Z2 Ñ RPn is called a discrete asymptotic
net (or A-net) if the five points of every vertex star f, f1̄, f1, f2̄, f2 lie in a plane.
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Again, this condition is immediately seen to be projectively invariant. Furthermore, in the
case of a discrete asymptotic net, we have a unique choice for a tangent plane for every
vertex of Z2. For two adjacent vertices the intersection of two such tangent planes is the
tangent line of the common edge.

For a discrete asymptotic net in RP3 this gives rise to a dual net defined on the vertices
of Z2 into pRP3q˚. It turns out that the dual net is again a discrete asymptotic net.
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Chapter 2

Curves and surfaces in Möbius geometry

2.1 Arc-length, curvature, and osculating circles
To introduce the curvature of a curve, we first consider a special parametrization.

Definition 2.1.1. Let γ : R Ą I Ñ Rn be a curve

(i) The function
vptq :“ } 9γptq}

is called the speed of γ.

(ii) If vptq ‰ 0, the vector

τptq :“
9γptq

vptq

is called the unit tangent vector of γ.

(iii) The function

sptq :“

ż t

t1

vptqdt

is called the arc-length of γ, here I “ rt1, t2s.

(iv) If vptq “ 1 for all t P I , then γ is called arc-length parametrized.

Note that the derivative of the arc-length is the speed

9sptq “ vptq.

For a regular curve γ the arc-length sp¨q is strictly monotonically increasing, and thus
invertible. We call its inverse function tp¨q “ s´1p¨q and thus write

γpsq “ pγ ˝ tqpsq.

23
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For the derivative w.r.t. arc-length we write

γ1
“

d

ds
γ “

dt

ds

d

dt
γ “

1

v
9γ.

In particular, the parametrization of γ w.r.t. arc-length has unit speed

}γ1
} “ 1.

Thus, the unit tangent vector is equivalently given by the derivative w.r.t. arc-length

τ “ γ1.

Furthermore, the second derivative w.r.t. arc-length defines a unique normal vector in the
osculating plane

0 “
d

ds
}γ1

}
2

“
d

ds
xγ1, γ1

y “ 2 xγ2, γ1
y .

Definition 2.1.2. Let γ : R Ą I Ñ Rn be a regular curve

(i) Any vector nptq orthogonal to 9γptq, i.e.,

xnptq, 9γptqy “ 0,

is called a normal vector of γ at t P I

(ii) The hyperplane
γptq ` tnptq | xnptq, 9γptqy “ 0u

is called the normal plane.

(iii) The normal vector

npsq “
τ 1psq

}τ 1psq}
“

γ2psq

}γ2psq}

is called the principal unit normal vector.

(iv) Let npsq be the principal unit normal vector. Then the line

Npsq “ tγpsq ` αnpsq | α P Ru .

is called the principal normal line.

The principal normal line is the intersection of the normal plane and the osculating
plane.
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Definition 2.1.3. Let γ be a regular curve. Then

κpsq “ }τ 1
psq} “ }γ2

psq}

is called the curvature of γ at s.

By definition of the principal unit normal vector, the curvature can also be expressed as

κpsq “ xγ2
psq, npsqy

This leads to the following description in terms of an arbitrary parametrization.

Proposition 2.1.4. Let γ be a regular curve, and n the principal unit normal vector.
Then the curvature of γ is given by

κptq “
x:γptq, nptqy

} 9γptq2}
.

Proof. With d
ds

“ 1
v

d
dt

we find

γ2
“

1

v

ˆ

9γ

v

˙‚

“
v:γ ´ 9v 9γ

v3
.

Using x 9γ, ny “ 0 leads to the result.

It is also useful to have a formula for the curvature in terms of an arbitrary parametrization
that does not depend on the principal unit normal vector.

Proposition 2.1.5. Let γ be a regular curve. Then its curvature is given by

κptq “

b

} 9γ}
2

}:γ}
2

´ x 9γ, :γy
2

} 9γ}
3 .

Proof.

κ “ }γ2
} “

›

›

›

›

1

v

ˆ

9γ

v

˙‚›
›

›

›

“
}v:γ ´ 9v 9γ}

v3
“

}v2:γ ´ x 9γ, :γy 9γ}

v4
“

b

v2 }:γ}
2

´ x 9γ, :γy
2

v3

where we used
9v “

a

x 9γ, 9γy “
x 9γ, :γy
a

x 9γ, 9γy
“

x 9γ, :γy

v
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Example 2.1.6. Consider a parametrized circle of radius r ą 0

γptq “ r

ˆ

cosptq
sinptq

˙

, t P r0, 2πs.

Then
9γptq “ r

ˆ

´ sinptq
cosptq

˙

, :γptq “ ´r

ˆ

cosptq
sinptq

˙

,

and
} 9γptq} “ }:γptq} “ r, x 9γptq, :γptqy “ 0.

Thus, the curvature of γ is given by

κptq “
1

r
.

We can now assign to every point of a curve a circle which lies in the osculating plane
and has the same curvature as the curve

Definition 2.1.7. Let γ : I Ñ Rn be a regular curve, and let n be the principal unit
normal vector of γ. If κptq ‰ 0, then the osculating circle at t P I is the circle in the
osculating plane of γ at t with center

cptq “ γptq `
1

κptq
nptq

and radius
rptq “

1

κptq
.

If κptq “ 0, then we consider the tangent line at t P I to be the osculating circle.

The osculating circle touches the curve in the corresponding point, and has the same
curvature. Even more, if the curve and its osculating circle are parametrized by arc-length
such that the first derivative γ1psq of both curves coincide, then their second derivative γ2psq

also coincide.
It can also be shown that it is the best approximating circle in the following sense.

Consider the circle through three points of the curve γptq, γpt ´ ϵq, and γpt ` ϵq. Then in
the limit ϵ Ñ 0, this circle converges to the osculating circle.
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2.2 Osculating circles in Möbius geometry
We first consider the case of a regular plane curve

γ : I Ñ R2.

By inverse stereographic projection, we can map it to the sphere (Möbius lift)

rγ̂s : I Ñ S2
Ă RP3, γ̂ptq :“ γptq ` }γptq}

2 e8 ` e0.

The osculating circle of γ at t P I is the circle with center and radius

cptq :“ γptq `
1

κptq
nptq, rptq :“

1

κptq
, (2.1)

where n is the principal unit normal vector field of γ and

κptq “
x:γptq, nptqy

} 9γptq}
2

is the curvature of γ. Its inverse stereographic projection (Möbius lift) to the sphere is given
by

rĉptqs
K

X S2, ĉptq :“ cptq ` p}cptq}
2

´ rptq2qe8 ` e0

Proposition 2.2.1. Let γ : I Ñ R2 be a regular plane curve, and rγ̂s : I Ñ S2 Ă RP3

be its Möbius lift. Then the Möbius lift of the osculating circle of γ is the intersection
of the osculating plane of rγ̂s with S2:

rĉsK
X S2

“

´

rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs

¯

X S2

Proof. With
ĉ “ γ ` 1

κ
n ` e0 `

`

}γ}
2

` 2
κ

xγ, ny
˘

e8

we obtain

xγ̂, ĉy3,1 “
@

γ, γ ` 1
κ
n
D

´ 1
2

}γ}
2

´ 1
κ

xγ, ny ´ 1
2

}γ}
2

“ 0.

Now with
9̂γ “ 9γ ` 2 xγ, 9γy e8

we obtain
A

9̂γ, ĉ
E

3,1
“
@

9γ, γ ` 1
κ
n
D

´ xγ, 9γy “ 0.

Finally, with
:̂γ “ :γ ` 2

`

} 9γ}
2

` x 9γ, :γy
˘

e8
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we obtain
A

:̂γ, ĉ
E

3,1
“
@

:γ, γ ` 1
κ
n
D

´ } 9γ}
2

´ xγ, :γy “ 0.

Thus, the Möbius lift of the osculating circle of a curve is the intersection of osculating
plane with the Möbius lift of the curve. In particular, this implies that the osculating plane
of the Möbius lift of the curve always intersects the Möbius quadric in a circle, i.e., is of
signature p++-q.

Figure 2.1. Osculating circles of a cardoid and the lift to Möbius geometry.

The same holds true for curves in arbitrary dimension n ě 2:

Proposition 2.2.2. Let γ : I Ñ Rn be a regular curve, and rγ̂s : I Ñ Sn Ă RPn be its
Möbius lift

γ̂ptq :“ γptq ` }γptq}
2 e8 ` e0.

Then the stereographic projection of the intersection of the osculating plane of rγ̂s with
the Möbius quadric

σ
´´

rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs

¯

X Sn
¯

is the osculating circle of γ.

Proof. The osculating circle of γ is the intersection of osculating plane of γ and the
sphere with center and radius given by (2.1). The central projections of three points
spanning the osculating plane of rγ̂s are

σprγ̂ptqsq “ rγptq, 1s, σpr 9̂γptqsq “ r 9γptq, 0s, σpr:̂γptqsq “ r:γptq, 0s,

which span the osculating plane of γ. Thus the image of the stereographic projection
of

´

rγ̂ptqs _ r 9̂γptqs _ r:̂γptqs

¯

X Sn
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lies in the osculating plane of γ.
The remaining part of the proof is analogous to Proposition 2.2.1.

Since in the projective model of Möbius geometry, Möbius transformations are the
projective transformations that preserve the Möbius quadric, this means that the osculating
circles of a curve are mapped to the osculating circles of the image curve under a Möbius
transformation.

Corollary 2.2.3. The osculating circles of a regular curve are Möbius invariant.

Proof. By Proposition 1.1.11, osculating planes are mapped to osculating planes under
projective transformations.

Example 2.2.4. Recall that the evolute of a plane curve consists of the centers of the
osculating circles. As an exercise, let we use the Möbius lift to determine the evolute
of a parabola

γptq :“

ˆ

t
t2

˙

Its Möbius lift is given by

γ̂ptq “

ˆ

t
t2

˙

` pt2 ` t4qe8 ` e0,

and its first two derivatives by

9̂γptq “

ˆ

1
2t

˙

` 2pt ` 2t3qe8, :̂γptq “

ˆ

0
2

˙

` 2p1 ` 6t2qe8.

We determine the polar point

ĉptq “

ˆ

c1ptq
c2ptq

˙

` c8ptqe8 ` e0,

From
0 “

A

ĉ, :̂γ
E

“ 2c2 ´ 1 ´ 6t2

we obtain
c2ptq “

1

2
p1 ` 6t2q.

and from
0 “

A

ĉ, 9̂γ
E

“ c1 ` t ` 6t3 ´ t ´ 2t3
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we obtain
c1ptq “ ´4t3

Thus, the evolute of γ is given by

eptq “

ˆ

c1ptq
c2ptq

˙

“

ˆ

´4t3
1
2
p1 ` 6t2q,

˙

which coincides with the solution from Example ??. Note, that we don’t have to
compute c8, if we are only interested in the evolute of γ, and not the osculating circles.

2.3 Discrete curves in Möbius geometry

For a discrete curve we can easily introduce a Möbius invariant osculating circle as the
circle through three consecutive vertices.

Definition 2.3.1. Let γ : I Ñ R2 be a regular discrete curve. Then the circle Ck

through three successive points γk´1, γk, γk`1 is called the (vertex) osculating circle at
k P I .

Let rk be the radius of Ck. Then the discrete (vertex) curvature at k P I is given by

κk “
1

rk

γk

γk`1

γk´1

Figure 2.2. Vertex osculating circle.

The osculating circle defined in this way lies in the osculating plane of the corresponding
vertex. In this plane, one can introduce the perpendicular bisectors as normal lines on each
edge. Then the two normal lines intersect in the center of the osculating circle.

We introduce the turning angle at a vertex k P I by

φk – ?p∆γk,∆γk´1q P r´π, πs.
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Δγk-1

Δγk

φk

Figure 2.3. Turning angle at a vertex of a discrete curve.

With this the discrete curvature can be expressed in the following way.

Proposition 2.3.2. Let γ : Z Ñ Rn be a regular discrete curve. Then its vertex
curvature is given by

κk “
2 sinφk

}γk`1 ´ γk´1}
.

Proof. The radius rk of the osculating circle is given by }γk`1 ´ γk´1} “ 2rk sinφk.

Remark 2.3.3.
§ The vertex osculating circle inherits an orientation from the order of the three points

on it. This can be used to also associate a sign to the discrete curvature, which
corresponds to the sign in the formula above.

§ The vertex osculating circle can also be used to define vertex tangent lines as the
line tangent to Ck in the point γk.

2.4 Curvature line parametrizations

Definition 2.4.1. Let
f : R2

Ą U Ñ Rn

be a regular surface.

(i) f is called orthogonal if
xfu, fvy “ 0

(ii) f is called curvature line parametrization if it is orthogonal and conjugate, i.e.,

xfu, fvy “ 0, and fuv “ αfu ` βfv.
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Proposition 2.4.2. The property of a parametrization to be orthogonal is Möbius
invariant.

Proof. Möbius transformations are conformal, i.e., preserve angles.

Conjugate parametrizations, on the other hand, are not Möbius invariant. Are curvature
line parametrizations?

Proposition 2.4.3. Let f : R2 Ą U Ñ Rn be a regular surface and rf̂ s : U Ñ Sn Ă

RPn`1 be its Möbius lift
f̂ :“ f ` e0 ` }f}

2 e8.

Then f is a curvature line parametrization if and only if rf̂ s is a conjugate line
parametrization.

Proof. For the derivatives of the lift we obtain

f̂u “ fu ` 2 xf, fuy e8,

f̂v “ fv ` 2 xf, fvy e8,

f̂uv “ fuv ` 2 pxf, fuvy ` xfu, fvyq e8.

Let f̂ be a curvature line parametrization. Then

f̂uv “ fuv ` 2 xf, fuvy e8 “ αfu ` βfv ` 2 pα xf, fuy ` β xf, fvyq e8 “ αf̂u ` βf̂v.

The reverse direction is shown similarly.

Corollary 2.4.4. Curvature line parametrizations are Möbius invariant.

2.5 Circular nets
In the smooth case we have seen that curvature line parametrizations are conjugate line
parametrizations in the Möbius quadric. Consider a discrete conjugate net f : Z2 Ñ Sn Ă

RPn`1 in the Möbius quadric. Then the stereographic projection of the four points of every
face lie on a circle.

Definition 2.5.1. A regular discrete net f : Z2 Ñ Rn is called a circular net if the four
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points of every face f, f1, f12, f2 lie on a circle.

The definition immediately implies that circular nets are Möbius invariant.

Remark 2.5.2. The axes of the circles can be interpreted as discrete normals (per face).
Adjacent discrete normal lines intersect, and in this sense they form discrete developable
surfaces.

Proposition 2.5.3. Let f : Z2 Ñ Rn be a regular discrete net, and rf̂ s : Z2 Ñ Sn Ă

RPn`1 be its Möbius lift
f̂ :“ f ` e0 ` }f}

2 e8.

Then f is a circular net if and only if rf̂ s is a discrete conjugate net.

Thus, circular nets maybe viewed as a discretization of curvature line parametrizations.
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Chapter 3

Curves and surfaces in Laguerre
geometry

3.1 Planar curves in Laguerre geometry
Let

γ : ra, bs Ñ R2

be a smooth regular curve in the Euclidean plane. Its unit tangent and normal vector are
given by

T ptq :“
9γ

}γ}
, Nptq :“ JT ptq, where J :“ p 0 ´1

1 0 q .

Then the tangent line at the point γptq is given by

PpNptq,hptqq “
␣

x P R2
ˇ

ˇ Nptq ¨ x ` hptq “ 0
(

, hptq :“ ´Nptq ¨ γptq.

The oriented tangent lines tPpNptq,hptqq yield a curve on the Blaschke cylinder. We have seen
this in the example of circles which correspond to curves on the Blaschke cylinder given
by planar sections. On the other hand, the curve γ can be uniquely reconstructed from its
tangent lines as the envelope.

Proposition 3.1.1. Let γ be a smooth regular curve in R2. Then

γ̂ptq :“ pNptq, 1, hptqq, hptq :“ ´Nptq ¨ γptq

defines a curve on the Blaschke cylinder. The corresponding oriented lines are the
oriented tangent lines of γ, i.e.,

N ¨ γ ` h “ 0,

N ¨ 9γ “ 0.

35
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Furthermore, the curve γ is the envelope of those lines, i.e.,

N ¨ γ ` h “ 0,

9N ¨ γ ` 9h “ 0.
(3.1)

Vice versa, given a smooth regular curve t ÞÑ pNpnq, 1, hptqq on the Blaschke cylinder
not tangent to a generator, equations (3.1) determine a unique curve as the envelope of
the corresponding oriented lines in the plane.

3.2 Osculating circle of planar curves
The osculating circle of the planar curve γ at the point γptq is the circle tSpcptq,rptqq with
center

cptq :“ γptq `
1

κptq
Nptq

and radius
rptq :“

1

κptq

where κptq is the curvature at γptq.

Proposition 3.2.1. Let γ a smooth regular curve in R2. Let

γ̂ptq “ pNptq, 1, hptqq

be its lift to the Blaschke cylinder, and let

ĉptq :“ pcptq,´rptq, 1q

be the lift of its osculating circle to the cyclographic model. Then

rĉptqs
‹

“ P
´

spantγ̂, 9̂γ, :̂γu

¯

.

Proof. Show that
ĉ⊺γ̂ “ ĉ⊺ 9̂γ “ ĉ⊺:̂γ “ 0

where one uses :N ¨ N “ ´ 9N ¨ 9N and 9N “ ´κ 9γ.

To apply a Laguerre transformation to a curve it is applied to its oriented tangent lines. Then
the image curve is reconstructed as the envelope of the image tangent lines.
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Corollary 3.2.2. The osculating circle of a planar curve is Laguerre invariant.

3.3 Conics and hypercycles

We will now study which curves on the Blaschke cylinder correspond to conics (more
precisely ellipses and hyperbolas).

By means of a rotation and a translation (which constitute special Laguerre transforma-
tions) an ellipse or a hyperbola may be brought into the form

C “

"

px, yq P R2

ˇ

ˇ

ˇ

ˇ

x2

a
`

y2

b
“ 1

*

(3.2)

with some a, b ‰ 0. The case a ą 0, b ą 0 corresponds to an ellipse and the case ab ă 0 to
a hyperbola.

Proposition 3.3.1. The curve on the Blaschke cylinder Z corresponding to the tangent
lines (with both orientations) of the conic C is given by the intersection of Z with the
cone

C “
␣

rx1, x2, x3, x4s P RP3
ˇ

ˇ ax2
1 ` bx2

2 ´ x2
4 “ 0

(

. (3.3)

Proof. The tangent line to C at a point px0, y0q P C is given by
!

px, yq P R2
ˇ

ˇ

ˇ

xx0

a
`

yy0
b

“ 1
)

,

and its two lifts to the Blaschke cylinder by
«

x0

a
,
y0
b
,˘

c

x2
0

a2
`

y20
b2
,´1

ff

“

„

x0h

a
,
y0h

b
,˘1, h

ȷ

P Z

where
h :“

1
b

x2
0

a2
`

y20
b2

.

In particular, we found that the curve on the Blaschke cylinder corresponding to an
ellipse or hyperbola is given by the intersection with a quadric.
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Figure 3.1. Hypercycle base curves corresponding to an ellipse and hyperbola respectively.

Definition 3.3.2. The intersection curve of the Blaschke cylinderZ with another quadric
Q is called a hypercycle base curve. The envelope of the corresponding lines in the
plane is called a hypercycle.

Corollary 3.3.3. Conics (considered with both orientations) are hypercycles.

The hypercycle base curve is the base curve of the pencil of quadrics spanned by Z and
Q. The intersection of any quadric from this pencil with the Blaschke cylinder yields the
same curve Z X Q.

Figure 3.2. A conic under Laguerre transformations.

3.4 Discrete curves in Laguerre geometry
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Definition 3.4.1. Let γ : I Ñ R2 be a regular discrete curve. Then the circle Ck that
touches three consecutive edge tangent lines Tk´1, Tk, Tk`1 is called the edge osculating
circle at pk, k ` 1q P I .

R

γk ||∆γ||

γk`1

ϕk

2 ϕk`1

2

Figure 3.3. Edge osculating circle.

§ For three (non-concurrent) lines inR3 there are four circles touching them. By endowing
the tangent lines with the orientation coming from the order of the points of the curve
on them, this choice can be made unique.

⇝

Figure 3.4. Edge osculating circle from oriented tangent lines.

§ Note that the (correctly chosen) angle bisectors of successive edge tangent lines contain
the center of the edge osculating circle. Thus, the edge osculating circle can be used to
define edge normal lines.

§ The (oriented) edge osculating circle can be used to define a (signed) discrete curvature
at the edge pk, k ` 1q. The radius is given by }∆γk} “ Rkptan φk

2
` tan φk`1

2
q. This

leads to the curvature
κk “

tan φk

2
` tan φk`1

2

}∆γk}
.

3.5 Surfaces in Laguerre geometry
Let

f : R2
Ą U Ñ R3



40 Curves and surfaces in Laguerre geometry

be a smooth regular parametrized surface patch. Let

n : U Ñ R3

be an arbitrary smooth normal field of f such that at every point pu, vq P U

n “ λpfu ˆ fvq

with some positive scalar λ ą 0, and let

σ :“ }n} ą 0

denote the norm of n. Furthermore, let h be such that

n ¨ f ` h “ 0.

Then the lift of f to the Blaschke cylinder is given by

f̂ :“ pn, σ, hq.

Recall that f is a curvature line parametrization if and only if f is orthogonal and
conjugate. In Section 1.4 we have established that f is conjugate if and only if its dual
surface rn, hs is conjugate. Thus, to describe curvature line parametrizations in Laguerre
geometry we should determine how to express the orthogonality in the homogeneous
coordinates pn, σ, hq.

Lemma 3.5.1. For a parametrized surface f the lift to the Blaschke cylinder pn, σ, hq

satisfies
σ2

“ n ¨ n,

σσu “ n ¨ nu,

σσv “ n ¨ nv,

σσuv ` σuσv “ n ¨ nuv ` nu ¨ nv.

(3.4)

Lemma 3.5.2. Let f be a conjugate line parametrized surface. Then f is orthogonal if and
only if its lift to the Blaschke cylinder pn, σ, hq satisfies

σσuv “ n ¨ nuv.

Proof. Since f is conjugate, we have

fu ¨ nv “ 0,

and thus fu is proportional to nv ˆ n. Similarly, fv is proportional to n ˆ nu, the
orthogonality condition

fu ¨ fv “ 0
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is equivalent to
pnv ˆ nq ¨ pn ˆ nuq “ 0

ô pn ¨ nuqpn ¨ nvq “ pn ¨ nqpnu ¨ nvq

ô σuσv “ nu ¨ nv

ô σσuv “ n ¨ nuv,

where we used Lemma 3.5.1.

Theorem 3.5.3. Let f : R2 Ą U Ñ R3 be a parametrized surface and

f̂ :“ pn, σ, hq

a lift to the Blaschke cylinder. Then f is a curvature line parametrization if and only if
rf̂ s is a conjugate parametrization.

Proof. f is a conjugate line parametrization if and only if rn, hs is a conjugate line
parametrization, i.e., if

nuv “ αnu ` βnv ` γn,

huv “ αhu ` βhv ` γh

.

with some functions α, β, γ : U Ñ R.
Now if f is orthogonal, then by Lemma 3.5.1 and Lemma 3.5.2

σσuv “ nuv ¨ n “ αnu ¨ n ` βnv ¨ n ` γn ¨ n “ ασσu ` βσσv ` γσ2

and thus
σuv “ ασu ` βσv ` γσ.

Vice versa, if σ satisfies the previous equation, the argument may be reversed.

Corollary 3.5.4. Curvature line parametrizations are Laguerre invariant.

3.6 Conical nets
In the smooth case we have seen that curvature line parametrizations can be represented
by conjugate line parametrizations in the Blaschke cylinder. Consider a discrete conjugate
net Z2 Ñ Z Ă RP4 in the Blaschke cylinder Then for every face the four oriented planes
corresponding to its four vertices are in oriented contact with an oriented cone.
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Definition 3.6.1. A regular discrete conjugate net f : Z2 Ñ Rn is called a conical net
if the planes on the faces can be oriented such that for each vertex the four incident
oriented planes are in oriented contact with an oriented cone.

Thus, we obtain an another discretization of curvature line parametrizations. The definition
immediately implies that conical nets are Laguerre invariant.

Remark 3.6.2. The axes of the cones can be interpreted as discrete normals (per face).
Adjacent discrete normal lines intersect, and in this sense they form discrete developable
surfaces.

There is a well-known reflection construction to obtain a circular net from a conical net
and vice-versa

(i) A conical net is obtained from a circular net by reflecting an initial plane through
the point of a vertex about the planes that are spanned by adjacent circle-axes. The
composition of the four reflections incident to a vertex is the identity, and thus this
construction yields a well-defined plane per face. The four planes corresponding to
four faces incident to a vertex intersect in a common point on the circle-axis. These
points constitute a conical net.

(ii) A circular net is obtained from a conical net by reflecting an initial point in the plane
of a vertex about the planes that are spanned by adjacent cone-axes. The composition
of the four reflections incident to a vertex is the identity, and thus this construction
yields a well-defined point per vertex. These points constitute a circular net.

The two constructions are symmetric in the following sense: A conical net h can be
obtained from a circular net g by construction (i) if and only if g can be obtained from h by
construction (ii). Indeed, this holds since the net of the reflection planes coincide.



Chapter 4

Curves and surfaces in Lie geometry

4.1 Planar curves in Lie geometry
Let

γ : ra, bs Ñ R2

be a regular planar curve. Its unit tangent and normal vector are given by

τptq :“
9γ

}γ}
, nptq :“ Jτptq, where J :“ p 0 ´1

1 0 q .

We can lift the points of the curve as well as the oriented tangent lines to the Lie quadric.

spptq :“ γptq ` e0 ` }γptq}
2 e8,

sqptq :“ nptq ´ 2hptqe8 ` e5.

Neither a point nor an oriented line are Lie invariant objects. But if the point lies on the
line, together they span a contact element, which corresponds to an isotropic line in the Lie
quadric. Thus, we can lift the curve γ to a one-parameter family of lines (a ruled surface)
in the Lie quadric:

ℓptq :“ rspptqs _ rsqptqs

The condition for the oriented lines to be the tangent lines of the curve becomes

x 9sp, sqy “ 9γ ¨ n “ 0, (4.1)

or equivalently
xsp, 9sqy “ γ ¨ 9n ` 9h “ 0.

Lemma 4.1.1. Let
ℓptq :“ rs1ptqs _ rs2ptqs Ă L Ă RP4

be a smooth regular one-parameter family of lines in the Lie quadric. Then the following
are equivalent:

43
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(i) x 9s1, s2y “ 0.

(ii) xs1, 9s2y “ 0.

(iii) r 9s1s, r 9s2s P prs1s _ rs2sq
K

(iv) ℓ is a developable surface, i.e., rs1s, rs2s, r 9s1s, r 9s2s lie in a plane.

Proof. (i) and (ii) are equivalent since

xs1, s2y “ 0

implies
x 9s1, s2y ` xs1, 9s2y “ 0.

Thus, both are equivalent to (iii). prs1s_rs2sq
K is a plane, which also contains rs1s, rs2s.

Vice versa, if rs1s, rs2s, r 9s1s, r 9s2s lie in a plane, then

αs1 ` βs2 ` γ 9s1 ` δ 9s2 “ 0

where neither γ nor δ can be zero. Taking the scalar product with s2 yields (i).

Proposition 4.1.2. Let

ℓptq :“ rs1ptqs _ rs2ptqs Ă L Ă RP4

be a developable surface in the Lie quadric. Then its sections with the point complex
and plane (line) complex

rspptqs :“ ℓptq X pK,

rsqptqs :“ ℓptq X qK

define a planar curve in the Euclidean plane together with its oriented tangent lines.

Proof. By Lemma 4.1.1, ℓ is developable if and only if

x 9s1, s2y “ 0

Furthermore, the equivalence in this lemma, implies that this condition is invariant
under a change of choice of points spanning the lines ℓ, which is easily checked
independently. Indeed, for

s̃1 :“ λ1s1 ` λ2s2,

s̃2 :“ µ1s1 ` µ2s2
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with smooth λ1, λ2, µ1, µ2, we find
A

9̃s1, s̃2

E

“

A

9λ1s1 ` λ1 9s1 ` 9λ2s2 ` λ2 9s2, µ1s1 ` µ2s2

E

“ 0.

Thus, in particular
x 9sp, sqy “ 0

which by (4.1) is equivalent to the claimed tangency condition.

Each contact element along the curve contains the osculating circle of the curve. We show
that the corresponding points on the isotropic lines in the Lie quadric constitute the line of
striction of the developable surface.

Theorem 4.1.3. Let γ a regular curve in R2. Let

ℓptq :“ rspptqs _ rsqptqs

with
spptq :“ γptq ` e0 ` }γptq}

2 e8,

sqptq :“ nptq ´ 2hptqe8 ` e5.

be its lift to the Lie quadric L Ă RP4, and let

sptq :“ cptq ` e0 ` p}cptq}
2

´ rptq2qe8 ` rptqe5

be the lift of its osculating circles. Then rsptqs is the edge of regression of the developable
surface ℓptq, i.e.

rss _ r 9ss “ ℓ.

Proof. We first check that
s “ sp ` rsq

and thus rss P ℓ.
As a linear combination of sp and sq the curve s satsifies

x 9s, spy “ x 9s, sqy “ 0,

and thus r 9ss P ℓK. We check that furthermore, r 9ss P L, and thus r 9ss P ℓ. Indeed, with

9s “ 9c ` 2p 9c ¨ c ´ 9rrqe8 ` 9re5
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we find
x 9s, 9sy “ } 9c}2 ´ p 9rq

2
“ } 9γ ` 9rn ` r 9n}

2
´ p 9rq

2
“ 0,

where we used }n}
2

“ 1 and 9γ “ ´r 9n.

Corollary 4.1.4. The osculating circles of a planar curve are Lie invariant.

4.2 Surfaces in Lie geometry
Let

f : R2
Ą U Ñ R3

be a smooth regular parametrized surface patch. Let

n : U Ñ S2

be the unit normal field of f such that at every point pu, vq P U

n “
fu ˆ fv

}fu ˆ fv}
.

Furthermore, let h be such that
n ¨ f ` h “ 0.

At each point of the surface this point together with the oriented tangent plane defines a
contact element. The lift of f to the Lie quadric is given by the two-parameter family of
isotropic lines representing these contact elements:

ℓpu, vq :“ rsppu, vqs _ rsqpu, vqs

where
sppu, vq :“ fpu, vq ` e0 ` }fpu, vq}

2 e8,

sqpu, vq :“ npu, vq ´ 2hpu, vqe8 ` e6.

The conditions for oriented planes to be tangent planes of the surface becomes

xBusp, sqy “ fu ¨ n “ 0,

xBvsp, sqy “ fv ¨ n “ 0,

or equivalently,
xsp, Busqy “ xsp, Bvsqy “ 0.

The following lemma may be proven in a similar way to Lemma 4.1.1.



4.2 Surfaces in Lie geometry 47

Lemma 4.2.1. Let
ℓptq :“ rs1ptqs _ rs2ptqs Ă L Ă RP5

be a smooth regular two-parameter family of lines in the Lie quadric. Then the following
are equivalent:

(i) xBus1, s2y “ xBvs1, s2y “ 0,

(ii) xs1, Bus2y “ xs1, Bvs2y “ 0,

(iii) rBus1s, rBus2s, rBvs1s, rBvs2s P prs1s _ rs2sq
K.

Note that here prs1s _ rs2sq
K is a 3-dimensional subspace. Similar to Lemma 4.1.1,

the conditions in Lemma 4.2.1 mean that the tangent planes of the surfaces rs1s and rs2s

are contained in the 3-dimensional polar subspace of the line rs1s _ rs2s. We find that
surfaces in Lie geometry are characterized by this condition. The proof is analogous to that
of Proposition 4.1.2.

Proposition 4.2.2. Let

ℓpu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă L Ă RP5

be a line congruence in the Lie quadric. Then its sections with the point complex and
plane complex

rsppu, vqs :“ ℓpu, vq X pK,

rsqpu, vqs :“ ℓpu, vq X qK

define a smooth regular surface in Euclidean spaceR3 together with its oriented tangent
planes.

Definition 4.2.3. Let

ℓpu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă RPn

be a smooth regular two-parameter family of lines in a projective space RPn. Then ℓ
is called a (torsal) line congruence if the two ruled surfaces given by u ÞÑ ℓpu, vq and
v ÞÑ ℓpu, vq are developable, i.e.,

rs1s, rs2s, rBus1s, rBus2s span a plane, and
rs1s, rs2s, rBvs1s, rBvs2s span a plane.

Lemma 4.2.4. Let
ℓpu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă RPn
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be a (torsal) line congruence. Then

rs1s, rs2s, rBus1s, rBus2s, rBvs1s, rBvs2s, rBuBvs1s, rBuBvs2s

lie in a 3-dimensional subspace.

Proof. By the condition for a (torsal) line congruence, the points

rs1s, rs2s, rBus1s, rBus2s, rBvs1s, rBvs2s

lie in a 3-dimensional subspace Π. Thus, we need to show rBuBvs1s, rBuBvs2s P Π.
Again, since ℓ is a (torsal) line congruence, there exist α, β, γ, α̃, β̃, γ̃ such that

Bus2 “ αs1 ` βs2 ` γBus1,

Bvs2 “ α̃s1 ` β̃s2 ` γ̃Bvs1.

Cross-differentiation leads to

BuBvs2 “ Bvαs1 ` Bvβs2 ` αBvs1 ` βBvs2 ` BvγBus1 ` γBuBvs1,

BuBvs2 “ Buα̃s1 ` Buβ̃s2 ` α̃Bus1 ` β̃Bus2 ` Buγ̃Bvs1 ` γ̃BuBvs1,

which shows that rBuBvs1s P Π. Similarly, rBuBvs2s P Π.

With this we can show the following characterization for the Lie lift of curvature line
parametrizations.

Theorem 4.2.5. Let f : R2 Ą U Ñ R3 be a parametrized surface and

ℓpu, vq :“ rsppu, vqs _ rsqpu, vqs

be its lift to the Lie quadric L Ă RP5, where

sppu, vq :“ fpu, vq ` e0 ` }fpu, vq}
2 e8,

sqpu, vq :“ npu, vq ´ 2hpu, vqe8 ` e6.

If f is a curvature line parametrization then ℓ is a (torsal) line congruence.
Vice versa, let

ℓpu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă L Ă RP5

be a (torsal) line congruence in the Lie quadric. Then its section with the point complex

rsppu, vqs :“ ℓpu, vq X pK
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is a curvature line parametrization.

Proof. Let f be a parametrized surface. Then

Busp “ fu ` 2pfu ¨ fqe8,

Busq “ nu ´ 2hue8 “ nu ` 2pf ¨ nuqe8.

Thus,
0 ¨ sp ` 0 ¨ sq ` κ1Busp ´ Busq “ 0,

where we used nu “ κ1fu for some κ1, since f is a curvature line parametrization.
Similarly, for the v direction.

Now let ℓ be a (torsal) line congruence. We first check that conditions (i) of
Lemma 4.2.1 are satisfied, so that ℓ actually defines a surface. Indeed, since ℓ is a
(torsal) line congruence there exist α, β, γ such that

Bus2 “ αs1 ` βs2 ` γBus1.

Thus,
xs1, Bus2y “ 0.

Similarly,
xs1, Bvs2y “ 0.

By Lemma 4.2.4 the points

rs1s, rs2s, rBus1s, rBus2s, rBvs1s, rBvs2s, rBuBvs1s, rBuBvs2s

lie the 3-dimensional subspace, which here is given by

Π :“ prs1s _ rs2sq
K.

Thus, the four points
rss, rBuss, rBvss, rBuBvss P Π

lie in Π for any linear combination s “ λ1s1 ` λ2s2 such as sp. On the other hand rsps

lies in the hyperplane pK. The intersection Π X pK is 2-dimensional. Thus, the four
points

rsps, rBusps, rBvsps, rBuBvsps P Π X pK

lie in a plane, i.e., the parametrization rsps is conjugate. But a conjugate parametrization
in the Möbius quadric represents a curvature line parametrization in R3.
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Corollary 4.2.6. Curvature line parametrizations are Lie invariant.

4.3 Discrete contact element nets
Considering discrete line congruences in the Lie quadric leads to discrete contact element
nets. Their intersections with the point complex and the plane complex yield circular nets
and conical nets, respectively, which are related by the reflection construction.


