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Week 1: Mobius geometry, projective model



Chapter 10

Mobius geometry

10.1 Elementary model

Figure 10.1. Left: Inversion in a hypersphere. Right: Reflection in a hyperplane.

Consider R" with the standard Euclidean scalar product (z,y) = > 2;y;.

Definition 10.1.1. Inversion in a hypersphere with center c and radius 7 is the map

R" U {wo} > R*{w}, z—a'=c+——=(xr—¢), ce .

Note that 2’ lies on the same ray emanating from c and |z — ¢| - |2’ — ¢| = r%. Inversion
in a sphere is an involution on R"”, except that the center ¢ has no image and no preimage in
R"™. We fix this by adding one extra point, co, to R™ and we declare it to be the image and
preimage of c.

Theorem 10.1.2. Inversions in spheres are conformal and map hyperspheres (or hy-
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198 Mbobius geometry

perplanes) to hyperspheres (or hyperplanes).

Proof 1. Let us first give an elementary geometric proof. Since the geometry is
rotationally symmetric to prove the claim about the hyperspheres it is enough to prove
it for circles in a plane. The case of straight lines is limiting and the proof is analogous.
Let ¢ be the line through the inversion circle Sy and a circle S, and A and B be the
intersection points of S and /. the cirlce S can be characterized as the set of vertices C'
of all right angle triangles AABC, see Fig. 10.2 (left). Let A’, B’, C’ be the images of
A, B, C under the reflection in the sphere S, with the center O. We have

[OA[|OA"] = [OB||OB'| = |0C||0C",

which implies the similarity of the triangles AOCB ~ AOB'C’ and AOCA ~
AOA'C’. The corresponding angles are equal LZABC = /B'C'O, LOAC =
ZLA'C'O. Thus we obtain

LAC'B' = /A C'O - £B'C'O=/0AC — LABC = /BCA = g

We see that the point C” lies on the circles with the diameter A’ B’.

To prove the conformality consider two intersecting lines ¢; and /5. Their images
under inversion ¢ in a hypersphere are two circles (¢;) and i(¢5) passing through the
center O of the inversion sphere, see Fig. 10.2 (right). For the symmetry reasons the
tangent lines ¢}, to the circles i(¢) at O are parallel to the corresponding lines /. Thus
the circles i(¢},) intersect at the same angle as the lines ¢j. O

Figure 10.2. Left: Inversion in a circle. Circles are mapped to circles. Right: To the proof of
the conformality.
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Proof 2. We give a second algebraic/analytic proof for both statements in the case of
inversions in the unit sphere:

We show that the inversion in the unit sphere maps spheres and planes to spheres
and planes. One could consider hyperspheres and hyperplanes separately but we will
treat both cases simultaneously. Any hypersphere or hyperplane is determined by an
equation of the form

pla|? =2, 2) +¢=0  with  |v]* —pg > 0.

If p = 0, the inequality implies v % 0 so the equation describes a hyperplane. If p & 0,
it describes a hypersphere. Indeed, divide through by p to obtain

0 = ol — 2kv,2) + 2 = o = boll* = ol + £

This is a sphere with center ]l)v and radius , /#Hv”2 — 1. (The assumed inequality

ensures that the expression under the square root is positive.) Now for =’ = W x one
obtains

ple'|* = 2v,a) +q=0 = glz* -2, 2) +p=0.

So 2’ is contained in a particular hyperplane or hypersphere if and only if z is contained
in some other hyperplane or hypersphere.

We show that inversion in the unit sphere is conformal. Let ¢ — ~(t), t — n(t)
be two parameterized curves intersecting in (o) = 7(¢y). The intersection angle « is

determined b
’ Hto). (1))
Iy (o) [ (o) |-

Lety = <7—17> v, 1 = ﬁ 7, be the image curves after inversion in the unit sphere. One
finds that

cosa =

§ = ﬁ (1 — X A')),

and similarly for 7)". From this one obtains (¥/,4) = ~25:(v',7"), s0 |¥/] = 7= [l
and in the same way || = WHn’H Using y(t9) = n(to) =: p one finds that

1
|pl*

' (to), 1 (t0)) (' (to), 7 (t0))

and hence

O (to), ' (ko)) _ {3'(t), 7 (to))
I o)l (o)l 113" (ko) Y (20) |

t



200 Mobius geometry

Reflection in a hyperplane {x : (x — a,v) = 0} is the map

{(x — a,v) ;
(v, v)

We also declare that reflections in hyperplanes map oo to co and thus are involutions on
R™ u {o0}. We consider them to be special cases of inversions in a hypersphere when
the hypersphere becomes a hyperplane. And same as inversions in hyperspheres, they are
conformal and map hyperspheres (or hyperplanes) to hyperspheres (or hyperplanes).

r—a =x—2

Definition 10.1.3. A M6bius transformation of R™ U {00} is a composition of inversions
in hyperspheres and reflections in hyperplanes. The Mobius transformations form a
group called the Mobius group denoted by Mob(n).

A Mobius transformation is orientation reversing or preserving depending on whether it
is the composition of an odd or even number of reflections. The subgroup of orientation
preserving Mobius transformations is called the special Moébius group and denoted by
SMob(n) or Mob™ (n).
The Mobius group contains all similarity transformations:
* A translation v — x + v is the composition of two reflections in parallel hyperplanes.
* An orthogonal transformation x — Ax with A € O(n) is the composition of at most n
reflections in hyperplanes through the origin, see Appendix ??
* A scaling transformation x — Ax with A\ > 0 is the composition of a reflection in the
unit sphere followed by a reflection in a sphere with center 0 and radius /.

Corollary 10.1.4. A Mobius transformation is conformal and maps any hyperplane or
hypersphere to a hyperplane or hypersphere.

From now on we will consider hyperplanes as a special cases of hyperspheres that
contain c0. So hypersphere will mean hypersphere or hyperplane.

Theorem 10.1.5 (Fundamental theorem of Mobius geometry). Any bijective map
f R U {w} - R" U {0} which maps hyperspheres to hyperspheres is a Mobius
transformation.

Proof. (i) Suppose f(0) = co. Then f maps hyperplanes to hyperplanes. Then it also
maps lines to lines, because a line is the intersection of n — 1 hyperplanes. By the
fundamental theorem of affine geometry (see 3.8.7), the restriction f|g~ is an affine
transformation. Since it also maps spheres to spheres it must be a similarity.

(ii) Suppose f(o0) = ¢ % . Let g be the inversion in a sphere with center c. Then
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go f also maps hyperspheres to hyperspheres and also oo to co. By (iii) it is a similarity
transformation, so f = g o g o f is a Mobius transformation. [ [

Definition 10.1.6. The map

X Ty

o:S" - R", S U A (10.1)
- Tn+1
Tn+1 In

is called stereographic projection.

Proposition 10.1.7. The stereographic projection o is the restriction of the inversion

1 Rn+1 i Rn+1, P €yl — QL%
Ip — €ntal

to the unit sphere S™.

Corollary 10.1.8. Stereographic projection is conformal and maps hyperspheres of S™
(hyperplanar sections) to hyperspheres (or hyperplanes) of R™.

It is even more natural to consider Mobius geometry in the unit sphere

S" = {y e R"'[{y,y) = 1}.

Indeed, identifying R™ U {oo} with S™ by the stereographic projection, we see that spheres
in R™ are mapped to spheres in S™, and hyperplanes are mapped to hyperspheres in S™
passing through the north pole y = e,,, 1, which is the center of the stereographic projection.
There are several equivalent representations of hypersheres S < S, see Fig. 10.3:

» S = 5"~ S is the intersection of S™ with an orthogonal n-dimensional sphere S,
centered at the point s located outside the unit ball. The hypersphere S is uniquelly

represented by this point s € R"™! with ||s| > 1.

» S = 8" N P is the intersection of S™ with the hyperplane P = {y € R""!|(y, s) = 1},
polar to s with respect to S”,

» S is the contact set of the cone touching the sphere S™ with the tip s.
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Mébious transformations of S™ are generated by inversions in hyperspheres S orthogonal

to S™: )
P

y—s+ —s(y—s),
ly = sl
where p is the radius of S. They preserve S™, and map hyperspheres to hyperspheres. Their
action, similar to the inversions in the spheres centered in R"”, is extended to the whole

RnJrl

n>

= S

Figure 10.3. Mobius geometry in the sphere S™. A hypersphere S as the intersection of S™
with an orthogonal sphere S, with the hyperplane P polar to the center s of S, and the tangent
cone with the tip at s. It is uniquelly represented by a point s outside the unit ball.

10.2 Two-dimensional Mobius geometry

This case is special because we can identify R? with C, and R? U {0} with the extended
complex plane C=Cu {oo}, which is the same as CP?, the complex projective line
(see Example 2.3.2). The orientation preserving and reversing similarity transformations
are z — az + band z — az + b (a F 0), reflection in the real line is z — Z, and inversion

in the unit circle |z| = 1 is the map z — oE = i

Proposition 10.2.1. The orientation preserving and reversing Mobius transformations
of C = CP! are precisely the maps of the form

az +b az+b
and 2 —

9 ab) _ _
td 1 d with det(cd) ad — be £ 0.

Z —>

The corresponding group of orientation preserving Mobius transformations is (cf. 3.2.3):

SMob(2) = PGL(2,C)
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Proof. First, these transformations form a group: The transformations of the first kind
are the projective transformations of CP!, and the transformations of the second kind
are compositions of these with complex conjugation z — z. (Note that first performing
a transformation of the first kind and then complex conjugation also leads to a trans-
formation of the second kind.) This groups contains the similarity transformations and
inversion in the unit sphere, so it contains the Mobius group. On the other hand, it is
not bigger than the Mobius group, because any of these transformations is a compo-
sition of reflections and similarity transformations: If ¢ = 0, they are just similarity
transformations. Otherwise, this follows from

az+b_g+ bc — ad
cz+d ¢ clcz+d)

and the equation obtained by replacing z by Z. [ [

This has the following immediate consequences:

Corollary 10.2.2.
(i) The orientation preserving Mobius transformations of the plane preserve the com-

plex cross ratio cr(z1, 2o, 23, 24) = % If [ is an orientation reversing

Mobius transformation, then cr(f(z1), f(z2), f(23), f(24)) = cr(z1, 22, 23, 24).

(ii) For any three points z1, 2o, z3 and any three points wy, wsy, ws, there is a unique
orientation preserving Mobius transformation f € PGL(2, C) with f(z;) = w;.
There is also a unique orientation reversing one mapping z; — w;, namely f
followed by an inversion in the circle through wy, ws, ws.

Proposition 10.2.3. Four points z,, 29, 23, 24 lie on a circle if their cross ratio is real.
Moreover, they are in that cyclic order on the circle if cr(z1, 2o, 23, 24) < 0.

Proof. A map z — %IZ is a projective transformation of CP! in affine coordinate.

It maps circles to circles and preserves cross-ratios. Moreover there exists the one
mapping 21, 22, 23 to 0, 1, co. The circle determined by 2z, 25, 23 is then mapped to the
real line. Let w be the image of z4. The cross-ratio cr(zy, 29, 23, 24) = cr(0, 1,00, w) is
real if and only if w € R, or equivalently, z1, 29, 23, 24 lie on a circle. The order of the
points can be easily controlled for their images 0, 1, o0, w on the real line. [




204 Mébius geometry

10.3 The projective model of Mobius geometry

As we have seen at the end of Section 10.1, stereographic projection maps R™ u {0} to the
n-dimensional sphere S™ = R™"*!. We now embed the sphere into projective space

Sn c RnJrl c P(RnJrl,l) _ RPnJrl
with the Lorentz product ‘

o) = X3 " qemp

1 ViW; — Uny2Wpy2-

Definition 10.3.1. The set
L™ = veR™ | (v,v) =0}
is called the light cone, and
Q:=PL"") = [v] e RP*""|(v,v) =0}

is called the Mébius quadric.

We2 Qo

V“n.'- 4

e

Figure 10.4. Different sections of the light cone lead to different models of M&bius geometry.

For y € R"*!
”y”Rn‘H =1 g <(y7 1)a (y> 1)> =0.

Thus, the unit sphere S™ and the quadric Q can be identified by choosing the following

normalization
~ o +1 _
S"=Q7 = vel” }vn+2—1},

since
veQR] < wv=(y,1)withye S" <R ie. |y|gon = 1.

10
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Letes,..., e, €ni1,Enso be an orthonormal basis of R™+1:1:
5ij7 1<i<n+1
<ei> 6j> = .
_5ij> =N+ 2
Define

€o = %(6n+2 - €n+1)7 € = %(en-&-Q + en-&-l)-
Then _.!z! 2 { XHVplotVeolim €o= > = -.;:‘v,
{eo,e0) = (e, e0) =0, {eg, ) = _%7 <7 =4
and we can indentify R™ U {00} and the qudaric Q by the following normalization
R'"=Qp = vel™ |(v,eny =—3} = veL™" | vy — vy = 1},
O = <Xt EotVialeo, X+ eotiner)

2 2
= "X“ ‘;” Voo~ 2 e {"—) Vw= ”K”
vER, < v=x+e+ xzewwithxeR”.

i.e., the ep-th component is normalized to be equal to 1. We find

The point co € R™ U {0} is indentified with e.,, which is the only point of L"*! with the ¢,-th
component equal to 0. In this way R™ is modeled as a paraboloid in an (n + 1)-dimensional
affine space (see Figure 10.5): eg + span {ey, ..., e, €5} .

Figure 10.5. Paraboloid model of Mobius geometry.

Theorem 10.3.2. In the projective model of Mobius geometry the points are identified
with the points of the quadric

Q= [v] e P(R™) | (v, v) = 0}.
The identification Q <> S™ with the spherical model is given by the coordinate normal-

ization
[1]e Q@ < fJ=y+e2eQ < yes

11



206 Mobius geometry

The identification Q < R™ U {c0} with the Euclidean model is given by the coordinate
normalization

[£] € Q\{[ew]} < d=z+eo+|z|’ene@QF < 2zeR™

The corresponding map
S" > R"u{w}, y—u

given by the identification of Q7 and QU along the straight line generators of L™t
gz with [g] = [Z]

is the stereographic projection.

Proof. The identification is given by the formula
[#=a+eo+ o] en] = [§ =y + enta]
with z € R" and y € S™. We write
U=y +en1 =7+ Ynt1ns1 + nra =+ (1 = Ynr1)eo + (1 + yny1)ew

with § € R". Then 2 = \y implies

1
A= ——
1 — Yn+1
Thus, ,
Y
r=\T1,...,Tp) = = Y1y -5 Yn
(1 ) 1_yn+1 1_yn+1(1 )
and
fol2, = T8 oy = 1.
1 — Yn+1

10.4 Spheres in the projective model

Consider the spherical model of Mobius geometry. Let s € R"*1, [s| > 1 be the center of
the sphere S 1 S™. We identified spheres S = S n .S™ in S™ with such points s, and thus
with elements
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These points build the exterior of the quadric Q:
Q, = [v]e P(R*™™!) | (v,v) > 0}.

Indeed, we have
((5,1),(5,1)) = [[8]fner — 1> 0

Thus, the spheres in S™ =~ R™ U {00} are identified with the exterior Q of the quadric Q.
The identification with the spherical model is given by the normalization

o= veR™ [ (v,v) >0, vpya =1},

Thus, v = § = s + e, 12 Where s is the center of the sphere S orthogonal to S™.

SW

Figure 10.6. Spheres as polar planes of a point outside the Mobius quadric.

Proposition 10.4.1. Points on the sphere S — S™ corresponding to [§] € Q. with
§ € Q7 | are given by

Qn [3]*
ie., points [v] € Q with

(8,vy =0.

Proof. Withs = s+ e,,oand y =y + e,2 we find

<‘§7@> = <3a y>R"+1 -1=0 <= <S,y>Rn+1 =1

Remark 10.4.2. The points [5] € Q, 5 € Q7 with the last coordinate equal to 0
correspond to great hyperspheres.

13
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The identification with the Euclidean model is given by the section
Qp, = vE RAHLL ‘ v,y >0, {eg,v) = —%
This implies the following general form

s=c+eo+ (|c> =rPew, ceR"™ r>0

Proposition 10.4.3. Points on the sphere S — R" corresponding to (5] € Q. with
§ € Qq . are given by

Qn[3]*
ie., points [v] € Q with

(8,vy = 0.

Proof. This follows from Theorem 10.3.2 and Proposition 10.4.1. We verify by com-
putation anyway:

(#,8) = {w + eo + 2] exs, ¢ + eo + (ef* = r*)ews)
2 2
= (x, 0 — 3(c|” = %) = 52| =0

< |- c||2 =7

Remark 10.4.4. The points [3] € Q, § € Qf , with eg-component equal to 0, i.e.,
§ = v+ 2(v, a)gneo,
correspond to hyperplanes in R". Indeed,

(3,2) = (W + 20, Qrree, T + €0 + ||| ex)
= (x,v)pn — (v, a)gn = 0
< (r—a,v)re = 0.
We summarize in the following theorem:

Theorem 10.4.5. In the projective model of Mobius geometry the spheres are identified
with the exterior of the Mobius quadric

Qs = [v]e PR | (v,v) > 0}.

14
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The incidence x € S of a point x lying on a sphere S is given by polarity
8,2)=10

for[z] € Q, [5] € Q..
The identification with the spherical model S™ is given by the normalization of the
€n+2-COmponent:

§=S8+eua <« hyperspheres,

§5=s+0-e,,9 <« great hyperspheres.

The identification with the Euclidean model R™ U {0} is given by the normalization of
the eg-component:

hyperspheres with center c € R"
S=c+ey+ (||CH2 —rHey P p'
and radius v > 0,

hyperplanes through a € R"

S=v+{v,a)pneyn <
and normal vector v € R".

TN
/

3

Figure 10.7. Intersection angle of two spheres.

Proposition 10.4.6. In the spherical model and in the Euclidean model, two intersecting
spheres corresponding to the two points |51, [S2] € Q. intersect at an angle 0 (defined
up to 0 — w — 0) given by

<§17 §2>2

(81,81)(82,52)

cos?f =

Proof. The formula is well-defined for projective elements. We start with the Euclidean
model:
$i=citeot (¢ —1)ew, i=1,2.
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Then ) )
(81,89) = {er + e + (el = 11)ew, c2 + €0 + (lea|” — r3)ew)
= {c1, e — (lea])* = 15 + [eal* = 73)
= —%(”01 - 02H2 - 7‘% - T%):
and

iy = leil” = (el = %) = 2.

Now the formula follows from the cosine rule. Similarly, if either or both of s;
represent a hyperplane. The spherical and Euclidean model are related by stereographic
projection, which is a conformal map. Thus the claim also holds for the spherical model
by Corollary 10.1.8. 0

L5]
Corollary 10.4.7. Tiwvo hyperspheres corresponding to [$1],[$2] € Q. are orthogonal ’@1
if and only if ‘°¢
(81,82 = 0. </
1,92 '

Definition 10.4.8. A family of hyperspheres corresponding to the points on a line in
the projective model of Mobius geometry is called a pencil of hyperspheres.

Pencils of spheres are classified by the relative location of the line with respect to the
Mobius quadric.

Definition 10.4.9. Let ¢ = P(R™™"!) be a line in the projective model of Mobius
geometry.

(i) g elliptic :<= (-, >} has signature (++)
9

(ii) g hyperbolic :< (-, >’ has signature (+—)
g

(iii) g parabolic < (-, >‘ has signature (+0)
g
(+++-)

Proposition 10.4.10. Elliptic, parabolic, and hyperbolic pencils are characterized by
the following properties: Let g = P(R™"11) be a line in the projective model of Mobius
geometry. Then

(i) g elliptic < all spheres of g intersect

(ii) g hyperbolic < all spheres of g are disjoint

16



10.5 Mébius transformation group 211

(iii) g parabolic < all spheres of g touch in a common point

Proof. We prove (i). The other claims are proven analogously.
The signature of g is (++) if and only if g does not intersect Q. In this case, g*
intersects Q. But all spheres of the pencil g contain all points of Q N g*.

In the case of planar Mobius geometry (n = 2), the polar of a line g is another line g,
and thus defines another pencil of circles, containing all circles that are orthogonal to all
circles of g (see Figure 10.8).

Figure 10.8. Left: An orthogonal pair of elliptic and hyperbolic pencils of circles. Right: An
orthogonal pair of two parabolic pencils of circles.

Corollary 10.4.11.
(i) A hyperbolic pencil of circles consists of all circles that are orthogonal to an
elliptic pencil of circles, and vice versa.

(ii) A parabolic pencil of circles consists of all circles that are orthogonal to another
parabolic pencil of circles.

10.5 Mobius transformation group

By Theorem 10.1.5, Mobius transformations are characterized by the properties of mapping
hyperspheres in R™ U {co} to hyperspheres in R” u {oo}. In the projective model of
Mobius geometry, hyperspheres are represented by sections of the Mobius quadric Q with
hyperplanes of RP"*1, Thus, the projective transformations of RP™"! that map Q to itself
maps hyperspheres to hyperspheres. Hence PO(n +1,1) < Mob(n). In this section we use
this as an alternative definition for Mobius transformations and then, in Theorem 10.5.3,
show that both definitions coincide.

17
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10.5 Mobius transformation group

By Theorem 10.1.5, M&bius transformations are characterized by the properties of mapping
hyperspheres in R™ u {oo} to hyperspheres in R” U {o0}. In the projective model of
Mobius geometry, hyperspheres are represented by sections of the Mobius quadric Q with
hyperplanes of RP"*!. Thus, the projective transformations of RP™*! that map Q to itself
maps hyperspheres to hyperspheres. Hence PO(n+1,1) € Mob(n). In this section we use
this as an alternative definition for Mobius transformations and then, in Theorem 10.5.3,
show that both definitions coincide.

Definition 10.5.1. Mébius transformations are projective transformations
T P(Rn+1’1) N P(Rn-‘rl,l)
that preserve the Mobius quadric:

r(Q) = Q.

By Theorem 7.6.2, a projective transformation 7 that maps Q to itself is a porjective
orthogonal transformation, i.e.,

7€ PO(n+1,1).
Thus, it comes from a linear map
T - Rn+1,1 N RnJrl,l

which is orthogonal with respect to the Lorentz product (-, -), i.e.,

TeOn+1,1).
In the basis eg, €1, . . . , €y, €, of R™! the orthogonality condition for the matrix 7" reads
TTET =F
with
010 —%
= (<ei7€j>)i,j:0,1,.‘.,n,oo = 0 | 1] 0O
—3/0]0

Example 10.5.2. We use the Euclidean normalization of Mdbius geometry, i.e., points
x € R™ are represented by

. 2 L
T=zx+e+ |z ex = (H;HQ>

in the basis eg, e1, ..., €., €x.

19
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®

(ii)

(iii)

inversion in the unit sphere
x

.
]

In the Euclidean normalization of Mobius geometry we obtain

<3|2> — <1"> ~ <nf%u2)

ER

Thus, it can be represented by the matrix

which satisfies

Euclidean motions
x+— Rrx+r withreR" ReO(n),ie, RTR = 1.

In the Euclidean normalization of Mobius geometry we obtain

1 1
( T > —s Rx+r .
=] |=]?+27T R+ |r|?

Thus, it can be represented by the matrix

1 0 0
B = r R 10 |,
Ir|* | 2r"R | 1
which satisfies
BTEB=F

Scaling
xz — Az withe A € R\{0}.

In the Euclidean normalization of Mobius geometry we obtain

1
1 1 ES
2
[l A2z Alz|2

20
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@iv)

Thus, it can be represented by the matrix

$10]0
C = 0(71|0 ],
010 A
which satisfies
CTEC = E.

Inversion in a sphere
Let § € R*"b! be a space-like vector (representing a sphere). Consider the
transformation R"*1:! — RnFL1

z,8) .

& A>S’

(3,8)

which is the reflection in the hyperplane polar to [$]. This is an orthogonal
transformation. We compute its Euclidean representation: With

T—2—2

fT=x+eo+ |z 0, §=c+eg+ (HCH2 —7?) ew

we find ]
<‘§7§>:T27 <§7i>: _5 (HC—ZL‘HQ—T‘Q).

z,8 c—x 2
1 1-2$0% 14le=gl B
“ @8 = 2|2 ~ P (
<HxH2> | 22 I+<%,1>C c+HC_wf(a§ o,
*

*

Thus,

which is inversion in the sphere with center ¢ and radius 7.

Theorem 10.5.3. Definition 10.1.3 and Definition 10.5.1 of Mobius transformations
are equivalent:

Mob(n) = PO(n + 1,1).

Proof. By Theorem 10.1.5, we have seen that PO(n + 1,1) < Mob(n). Vice versa,
in Example 10.5.2 (iv), we have seen how inversion in a sphere can be described by a
projective orthogonal transformation, and thus, Mob(n) < PO(n + 1, 1). O

21
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Thus, we eventually arrive at the following correspondences:

elementary model projective model
R" U {0} «— S" = Q c RP""!
Mob(n) «— PO(n + 1,1)

hypersphere — R™ U {00} «— hyperplane « RP"*! intersecting Q polariy point outside Q

10.6 The hyperbolic model of Mobius geometry

While the spherical model of Mobius geometry can be obtained by normalizing the e, o-
component, a hyperbolic model can be obtained by normalizing the e,, . ;-component:

H"= Q" =={vel" | vy =1, vy > 0}.

Indeed, for
ve Q"

we find
V=21.nt €1+ Znti€nia = 21€1 + - Zn€pn + €np1 + Zny1€n42

with
Z = (Zl...n7 Zn-i—l) = (Zh ceey zn—i—l) € Rn’l

satisfying
<Za Z>h = _17 Zn+l > 07

where (-, -), is the Lorentz product on R™!. Thus,
ze H".

Note, that due the condition v,,.» > 0 the set )", describes only one sheet of a two-sheeted
hyperboloid. To recover the whole Mobius quadric Q the other sheet

—Q",

needs to be added, and both sheets glued together at

lle

—H"”

{U e Lt ‘ Upyl = O} ~ oH".

Now we can add the following to Theorem 10.3.2:
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216 MOBIUS GEOMETRY

Theorem 10.6.1. The identification Q — H" v 0H™ U —H" with the hyperbolic model
is given by the coordinate normalization

[2] € Q\[en—&-l]L < Z=21.ntens1t Znyibnr2 € Q0 U —Q7,

o  z=(21.n2n41) = (21, -, 2n41) € H* U —H".

The corresponding map
H" - S" z+—y

given by the identification of Q™ , and Q7 along the straight line generators of L™+
Z— g with [Z] =[9]
vields the hemisphere model of hyperbolic space, while the corresponding map
H" > R" z-ux
given by the identification of Q™ , and Q¥ along the straight line generators of L"!
Zw— & with [Z] = |7]
vields the Poincaré ball model of hyperbolic space.
Same as in the Euclidean and spherical models in the hyperbolic model the hyperbolic
hyperspheres of H" correspond to hyperplanar sections of the Mobius quadric Q which, by

polarity, we identify with the points outside the Mobius quadric Q. For these points we
employ the normalization

Q" = {veRrR™H! \ (v,v) > 0,011 = 1}.

Theorem 10.6.2. In the hyperbolic model of Mobius geometry a hyperplanar section
Qn 3], [8le Qs

corresponds to a hyperbolic sphere. The identification with the pole 8] is given by the
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normalization of the e, . 1-component:

. n
. it hypersphere with center c € H
oshrClon T €ng1 + g€y <>

W>
Il

coshr and radius r > 0,
G- o 4o gemi, hypersurface of constant distance
= . n+l — ¢ n+
sinhr sinhr to the hyperplane {c,z), = 0,{c,c), =1
§=Clp+ent1 £ Cuy1€ny2 < horosphere with centerc,{c,c), = 0
S=c1.n+0 epp1Cht1€ns2 < hyperplane {c,z), =0

Proof. For the first case we find

(8,2) = —2={c,z), +1=0
< {¢,z), = —coshr,

which is the equation for hyperbolic sphere. 0

10.7 Relation between Mobius and other geometries

Mobius geometry deals with properties of figures in S < RP"*! that are invariant under
the group PO(n + 1,1) of projective transformations of RP"*! that map S™ — S™.
Thus, n-dimensional Mobius geometry is a subgeometry of (n + 1)-dimensional projective
geometry. The same group, PO(n + 1,1), also maps B"*! (the inside of S™) to itself.
This gives the Klein model of (n+ 1)-dimensional hyperbolic geometry. So n-dimensional
Mobius geometry can be seen as the geometry of the points in the ideal boundary of
(n + 1)-dimensional hyperbolic space.

For a point P = [p] € RP", let Gp be the subgroup of PO(n + 1,1) consisting of all
projective transformations that map P — P (in addition to mapping S™ — S™). These also
map the polar plane of P to itself.

If P is outside S™, then the polar plane intersects B"*!, and the geometry of this
intersection with the group G'p is n-dimensional hyperbolic geometry.

If P is the center of 5™, then the polar plane is the plane at infinity, so G p is the group of
affine transformations mapping S™ to itself. This is the group of orthogonal transformations.
So the space S™ with the group G'p is n-dimensional spherical geometry. If P is any other
point inside S™, one obtains a Mobius geometrically equivalent model for n-dimensional
spherical geometry.

If P is the north pole of S™, then GGp corresponds (via stereographic projection) to the
MGobius transformations of R U {oo} that fix co. These are the similarity transformations.
Thus, S™ with G'p is a model for n-dimensional similarity geometry. If P is any other point
in S™, one obtains a Mdbius geometrically equivalent model of similarity geometry.
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218 MOBIUS GEOMETRY

If P e S”, the group G'p consists of all projective transformations that come from
orthogonal maps A € O(n + 1,1) with Ap = Ap for some A € R\{0}. Because p is
a lightlike vector A is not always equal to £1. (For example consider the orthogonal
transformations that correspond to scalings in R" u {oo}) If instead of G'p, one considers
the (projectivized) group of all A € O(n + 1,1) with Ap = p, then one obtains a model for
n-dimensional Euclidean geometry.

(n + 1)-dimensional projective
RP™!, PGL(n + 2,R)

(n + 1)-dimensional hyperbolic n-dimensional Mobius
points inside S™, PO(n + 1, 1) S" < RP", PO(n + 1,1)

|n—dimensiona1 hyperbolic| |n—dimensional spherica1| |n—dimensional similarity|

| n-dimensional elliptic | | n-dimensional Euclidean |
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7.5 Associated points

The span of three quadrics Q;, @5, Q3 in RP? (not belonging to a common pencil) is a
linear system of quadrics of dimension 2. Its base points are the points common to all
conics from the pencil and given by the intersection of any three of them (not belonging
to a common pencil). The intersection of three quadrics in RP? consists of at most eight
points. On the other hand, the family of all quadrics through 7 points in general position
already constitutes a linear system of quadrics of dimension 2.

Theorem 7.5.1 (associated points). Given eight distinct points which are the set of
intersections of three quadrics in RP3, all quadrics through any subset of seven of the
points must pass through the eighth point. Such sets of points are called associated
points.

Proof. Let Ay, As, ..., Ag be the set of intersections of three quadrics Q1, Qs, O3.
Note that no three of the eight points A; can be collinear, since otherwise the set of
intersection of the three quadrics would contain a whole line and not just eight points.
For similar reasons no five of the eight points Aj, can be coplanar. Indeed, five coplanar
points no three of which are collinear determine a unique conic. The intersection of
the three quadrics Q1, Qs, O3 would contain this conic and not just eight points.

Choose any subset of seven points A;, As, ..., A7. We show that any quadric Q
through these seven points must belong to the family

Qi1 v Qv Qs

As aconsequence, the eighth intersection point Ag will automatically lie on Q. Suppose
that, on the contrary, Q is linearly independent of Q;, Q5, Q3. Consider the family of
quadrics

P=0Q1vQyvQsv o

Due to the assumed linear independence, one could find a quadric in this family through
any prescribed triple of points in RP®. We show that this would lead to a contradiction.

First assume that no four points among A;, Ao, ..., A; are coplanar. Choose three
points B, C, D in the plane of A;, As, A3 so that the six points B, C, D, A, A, A3 do
not lie on a conic. Find a quadric @’ in the family P through B, C, D. This quadric
must be reducible, one component being the plane of Ay, A5, A3 (indeed, otherwise
Q' would cut this plane in a conic through Ay, As, A3, B, C, D, which contradicts the
choice of B, C, D). The other component of Q' must be a plane containing four points
Ay, As, Ag, A7, a contradiction.

The remaining case, when there are four coplanar points among A;, As, ..., A7,
is dealt with analogously. Let Ay, Ay, A3 and A, be coplanar. Denote the plane
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through these four points by II. Take two points B, C' in the plane II so that the six
points Ay, Ay, Az, Ay, B, C' do not lie on a conic, and take a point D not coplanar with
As, Ag, A7 (which is always possible, because the latter three points are not collinear).
Then there exists a quadric Q' in the family P through B, C, D. Again, this quadric
must be reducible, consisting of two planes, one of them being the plane II. The other
component of Q must be a plane containing As, Ag, A7, D, a contradiction again (this
time to the choice of D). ]

Theorem 7.5.2 (Miquel’s theorem on quadrics). Let Q be a quadric in RP? of rank 3
or4. Let x,x1,To,x3,T19, Tz, X13,L123 € Q be eight points of a combinatorial cube
(see Figure 7.7), such that five of its faces are coplanar and no two planes coincide.
Then its sixth face is coplanar as well.

x23

Z123

Z12

I

Figure 7.7. Combinatorial cube.

Proof. For {i,7,k} = {1,2,3},i < j define the six planes
Hijzwiivxj, H?Zxkvxikvxjk.

The five plane IT'2 I1?3, TT*3, 1123, TI33 each contain one more of the eight point, and we
need to show x93 € T13%,
Consider the two degenerate quadrics

Q=P U, Q=T"ully’.
Then, since Q does not contain any planes, the eight points are exactly the intersection

On 9 n Q.
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The degenerate quadric
Qs = I U I13?

contains seven of the eight points, and therefore, by Theorem 7.5.1, also contains the
eighth point ;3. This point must be contained in the plane TI3* since otherwise

T12 = T123- L]
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10.8 Miquel’s theorem, Steiner’s theorems and the four
coins lemma

We present here a couple of incidence results in Mobius geometry, which turned out to be
relevant for modern research.

Theorem 10.8.1 (Miquel). Given four points x, 1, x4, 12 on a circle, and four circles
passing through each adjacent pair of points, the alternate intersections of these four
circles at x3, x13, Ta3, T123 then lie on a common circle (see Figure 10.9).

Proof. After stereographic projection to the sphere S? = R3 apply Theorem 7.5.2. [

Figure 10.9. Miquel’s six circle theorem.

This theorem is crucial for construction of multidimentional circular nets. The latter are
maps f : Z" — RY where all elementary quadrilaterals are circular. Such nets are discrete
analogs of orthogonal coordinate systems, see [BS08, BMS03]. The following formulation
of Miquel’s theorem is better suited to the construction of circular nets, and we give a more
elementary proof.
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Theorem 10.8.2 (Miquel’s theorem for circular nets). Given seven points f, f;, and
fij (1 <i<j <3)in R® such that each of the three quadruples (f, fi, f;, fij) is
inscribed in a circle C;;, define three new circles Cj’-k as those passing through the
triples (f;, fij, fix), respectively. Then these new circles intersect at one point:

/ ! !
J123 = Ca3 0 C31 N Oy,

see Fig. 10.10.

Figure 10.10. Miquel’s incidence theorem in three-dimensional space

Proof. Under the conditions of the theorem, the seven points f, f;, fi;; lie on some
two-sphere S2. Indeed, there is a unique sphere S? through the four points f, f;.
The circles C;; through the triples (f, fi, f;) lie on S?, and since f;; € Cj;, we find
that f;; € S?, as well. Under a stereographic projection of the sphere S, the picture
becomes planar; see Figure 10.11 (left).

30
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Figure 10.11. Miquel’s incidence theorem in a plane: Left: general case, Right: with one
vertex normalized to infinity.

After mapping f to infinity by a Mobius transformation, the circles Cj; become
the straight lines (f;f;); see Figure 10.11 (right). The claim of the theorem is then
equivalent to the following claim.

Consider a triangle with the vertices fi, f2, f3, and arbitrary points f;; on each side
(fif;)- Then the three circles ", through (fi, fij, fix) intersect at one point fio3.

This result can be proven by elementary geometric methods. Denote the angles
of the triangle A(f1, fo, f3) by a1, ag, ag, respectively. The circles CY; through
(f1, fi2, f13) and C14 through (f2, fi2, fo3) intersect at two points, one of them being
f12. Denote the second intersection point by f123. We have to show that this point fio3
belongs also to the circle C7, through ( f3, fi3, fo3). For this, note that

4(f12f123f13) =T =0, 4(f12f123f23) =T — O,

As a consequence, we find:

A(fizfizsfos) =2 — (M — 1) — (T — a2) = a1 + . = ™ — a,

as it follows from the circularity of the quadrilaterals ( f1, fi2, fi23, f13) and (f2, fi2, fi23, fb

and this yields that the quadrilateral (fs, fi3, fi23, f23) is also circular. O

Other elementary results concern touching spheres and touching circles in three-space.

Lemma 10.8.3. Whenever four spheres in 3-space touch cyclically their points of contact

lie on a circle.
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222 MOBIUS GEOMETRY

Figure 10.12. To the proof of the touching spheres lemma.

Proof. Mapping one of the touching points to infinity by a Mobius transformation we
obtain two parallel planes with two touching spheres between them, see Fig. 10.12.
An elementary geometric consideration shows that the points of contact of the spheres
with the planes and of the spheres lie on a line. [

We see also that the circle intersects all the spheres at the same angle. A specially interesting
is the case when this intersection is orthogonal. The centers of four cyclically touching
spheres with an orthogonal circle built a degenerate case of Brianchon’s theorem shown in
Fig. 6.28.

Two circles touch in three space if they have the same tangent line in the point of contact.

Lemma 10.8.4 (Touching Coins Lemma). Whenever four circles in 3-space touch cyclically
but do not lie on a common sphere, they intersect the sphere which passes through the points
of contact orthogonally.

Proof. Mapping one of the touching points to infinity by a Mobius transformation we
obtain two parallel lines C5, C'; with two touching circles between them, see Fig. 10.13.
The common tangent line ¢ of touching circles is the intersection line of their planes,
and therefore is parallel to the lines C's, Cy. Thus the touching points of circles lie in a
plane orthogonal to the lines C5, Cy, ¢. ]

32



10.8 MIQUEL’S THEOREM, STEINER’S THEOREMS AND THE FOUR COINS LEMMA 223

Figure 10.13. To the proof of the touching coins lemma.

Nets of touching circles with the corresponding orthogonal spheres as in Lemma 10.8.4
lie in the core of the concept of S-isothermic surfaces [BHS06, BS08]. The later are
defined as nets of touching circles with the combinatorics of the square grid and with the
corresponding orthogonal spheres, which also touch. An example of such a surface is a
discrete minimal Schwarz P-surface shown in Fig. 10.14.

Figure 10.14. A discrete minimal Schwarz P-surface constructed in [BHS06]: four cyclically
touching discs intersect the sphere through their points of contact orthogonally. The spheres
intersecting a common circle also touch cyclically.

Let K and K be two circles with K inside K. Define a sequence of circles C', Cy, . ..
touching both K and K as follows. Chose a point P € K and define C, as the circle
touching K at P and touching K .Construct further circles iteratively so that Cj.; touches
Cy, see Fig. 10.15.

Theorem 10.8.5 (Steiner’s alternative). If the sequence of circles Cy, is periodic, i.e.
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the circle C,, touches the circle C for some point P, then it is periodic for any P.

Proof. Apply aMobius transformation mapping /& and K totwo concentric circles. [

Figure 10.15. Steiner sequence of circles.
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10.9 Curves and surfaces in Mobius geometry R~

10.9.1 Osculating circle of planar curves %) Ylﬂ

NC Y
v:a,b] > R?

be a smooth planar curve. We further assume that v is regular, i.e., ¥(t) # 0 forall ¢ € [a, b].
We denote the curve parameter by ¢ and derivatives with respect to ¢ by

v(t), (1), (1), . . .

For a smooth bijective function 3

w:[a,b] — [a,0]
which serves a reparametrization of the curve v we denote the new curve parameter by s
and derivatives with respect to s by

v(s) = (yov)(s),7(s),7"(s), -

The arc-length of v is given by

s(0) = [ 1rOhadt = [ /GOt

which is a strictly monotonically increasing function. By setting ¢ = s~ we find

T .1,("{{,(;:-=4':j_'_

URRAR T S 3+ Sl - A~
which satisfies < .

AL,y =1 5<i AN

g
Thus, using arc-length as the parameter, the curve is travexrsed in unit speed. This further
implies

D=0 oy 2w

The unit normal vector of the curve is given by
n(s) = Jv'(s) = (9 7) <7i(8)> _ (—Wé(é‘))
=T =0 ) (e ) T e

In arc-length parametrization the acceleration 7" and the normal vector n point in the same
(or opposite) direction. The (signed) curvature of the curve v is given by

k=" ny=—-{"ny, o= Z,L(x'.u> AR 124 (LB

or equivalently,
f}/” — /in,

= —kKy.
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Let us compute the curvature with respect to the general parameter ¢. The second

derivati ith tt -length satisfi Y ’ %
erivative with respect to arc-length satisfies q,).__ (,_!.r) - ,_’ud. +(,.(,)1.r
" " - AV -
¥ ="y + (¢)A. . .-
dHg> G ekt
From this we obtain ” "‘]Eﬁi" - ugll’ ueh®
/ : . Y,n)  det (.5
ff=<7'7n>=<<p"y+(90’)2%n>=<.2>= gg )
¥l 171
The osculating circle of «y at ¢ is the circle with center '(
1 w
t = t + — t \
(1) = 7(0) + 5l
and radius
1
r(t) = —

K
It the unique circle that touches the curve in y(t) with 2nd order contact (equal tangent line
and curvature).

Proposition 10.9.1. Let v a smooth regular curve in R%. Let
A(t) = () + eo + VB ew
be its lift to the Mobius quadric, and
&(t) = e(t) + eo + (le(®)* = r(t)*)ew

be the lift of its osculating circle. Then

=P (spantd 73)) -
=(ghv v Ix])
Proof. With 1\ %L"'“L’ %p— 2 (s %."’ %‘-t-‘b % .
E=7v+in+e+ (H'yH2 + 2(,n)) ex
we obtain
3,8 =y + iy — 3 = 2w — P =o.
Now with
Y =T+ 20 e
we obtain

(3,6) = Gy + Iy = (3 = 0
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Finally, with )
F=5+2(IW° +{5,%) e
we obtain )
Ghey = G+ iy =1 = (3 = 0.
]

One easily checks the following properties of this Mobius geometry representation of
the osculating circle:

Proposition 10.9.2. For a curve [7] : [a,b] — Q on the Mobius quadric giyen by a
smooth representation ¥ : [a,b] — L' the point

.oe L
P (span{3, 4,3})

is invariant under

» scaling of representative vectors 4(t) — A(t)3(t) with a smooth non-vanishing
function \,

» Mobius transformations 4(t) — AY(t) with A € O(3,1),

» reparametrization y(t) — (¥ o ¢)(s) with a smooth bijective function .

Remark 10.9.3. The properties stated in Proposition 10.9.2 are not specific to curves on
a quadric or Mobius geometry at all. They hold true for curves in a general projective
space if Mobius transformations is replaced by projective transformations.

Corollary 10.9.4. The osculating circle of a planar curve is Mobius invariant.

Remark 10.9.5. The circle represented by
P <8pan{‘m,§}>
may also be obtained by considering the circle
P (span{3(t1), (1), 7(t2)})

= Bef Weimeiginsts_, o, P iur gk
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through three close point on the curve and taking the limit ¢, ¢, — ¢.

10.9.2 Curvature line parametrized surfaces

Let

f:RP>U —R?
a smooth parametrized surface patch. We further assume that f is regular, i.e.,

_df L _of
Ju= ou’ Joi= ov

are linearly independent at every point (u,v) € U. Thus, we can define the unit normal
field of f by
n(u,v) = Jux Jo )

- ”fuvaH 9“( > =Cfahn +4"v>
The first and second fundamental forms of f are given by / > =9 = 5 > = o>+ o

(= (ol o). e (o) o) S (s o).

A parametrization is called orthogonal if the first fundamental form is diagonal, i.e.,

<fuva> =0

Proposition 10.9.6. The property of a parametrization to be orthogonal is Mobius
invariant.

Proof. Mobius transformations are conformal, i.e., preserve angles. O] ’

A parametrization is called conjugate if the second fundamental form is diagonal,

’<fuv7n> = <fu7nv> = <fv7nu> = 0.

Proposition 10.9.7. A parametrization f : R? > U — R? is conjugfite i
there exist two functions o, 8 : U — R such that

fuv = Oéfu"i_ﬁfv (102)
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Proof. Generally,
fuv = afu + va + yn.
with some functions «, /3, . Thus,
{fusmy=0 < ~=0.

]

Note that the condition (10.2) does not depend on the existence of a normal field
anymore. It may be used to define conjugate parametrizations in any dimension: Thus, a
parametrization f : R2 > U — R"™, n > 3 is called conjugate if it satisfies an equation of
the from (10.2).

Proposition 10.9.8. Let f : R? > U — R" be a conjugate parametrization. Then an
arbitrary lift to homogeneous coordinates

f=Xx-(f1):U—-R"!
with a smooth non-vanishing function \ : U — R, satisfies

fuw = afu + Bfs +f (10.3)

with some functions o, 3, .

Equation (10.3) states the linear dependence of four representative vectors, or equiva-
lently that four points lie in a plane. While the four points are not projectively well-defined
(the points defined by the derivatives are not invariant under scaling f) this property
is:

Proposition 10.9.9. Equation (10.3) is invariant under

» scaling of representative vectors f(u,v) — X(u,v)f(u,v) with a smooth non-
vanishing function ),

> projective transformations f(u,v) — F f(u,v) with F € GL(n + 1,R),

> reparametrization along the coordinate lines f(u,v) — f(u(@),v(?)).

Corollary 10.9.10. The property of a parametrization to be conjugate is projectively
invariant.
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Returning to parametrized surfaces in R®: A parametrization
f:RP>U —R?

is called curvature line parametrization if the first and second fundamental form are diag-
onal, or equivalently if it is orthogonal and conjugate, i.e.,

<fmfv>207 and fuv :Oéfu+ﬁfv'

Proposition 10.9.11. Let f : R? > U — R? be a parametrized surface and

f=f+eo+ £ e

its lift to the Mobius quadric. Then f is a curvature line parametrization if and only if
[f] is a conjugate parametrization.

Proof. For the derivatives of the lift we obtain

A~

fu = fu +2<f7fu>eooy

~

fv = fv +2<f7fv>6007

~

Juv = fuo + 2({f, fuv) + {fur o)) €co-

Let f be a curvature line parametrization. Then

Fuw = Fuo + 2{F, fuvp € = afu + By + 2 (lf, fu) + By fo)) € = afy + B

The reverse direction is shown similarly. [
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Chapter 11

Laguerre geometry

Classically, Laguerre geometry is the geometry of oriented lines and oriented circles in the
Euclidean plane, and their oriented contact. More generally, it is the geometry of oriented
hyperplanes and oriented spheres in Euclidean space.

11.1 Models of Laguerre geometry

11.1.1 The Blaschke cylinder

P
Oriented hyperplanes A hyperplane in the n-dimensional Euclideat"ﬁl space is given by k)

P(z/,h) IZ{J‘ER“’V'I"F}L:O}CRH

with v € S"! and h € R. The vector v serves as the unit normal vector of the hyperplane
and, by that, induces an orientation on the hyperplane. It distinguishes the two regions that
Euclidean space is separated into by P, ;) and points into the region

P(t’h) ={reR"|v-z+h>0}cR"

The left-hand-side v - x + d of the equation expresses the signed distance of the point z € R”
to the hyperplane P, ). It is positive if the point lies in P(:h). Finally, h is the signed
distance of the origin to P, ). The two tuples (v, h) and (—v, —h) determine the same
hyperplane P, 5, but with opposite orientation.

Definition 11.1.1. The oriented hyperplane in the n-dimensional Euclidean space with
unit normal vector v € S"~! to which the origin has signed distance h € R is denoted
by P(,,JL).

Oriented hyperplanes ﬁ(y’h) in the Euclidean space R™ are in one-to-one correspondence
with points (v, h) on the Blaschke cylinder h=L 2= SXRCR"’

-
Z={(r,h) eR"xR||v| =1} =S" ' x R R""..

231
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Oriented hyperspheres A hypersphere in the n-dimensional Euclidean space is given by

Ser) = {zeR" | |z —c|* = r’} c R"

with some center ¢ € R" and signed radius r € R. The sign of radius induces an orientation
on the hypersphere by assigning normal vectors that point towards the center if » > 0 and
away from it if » < 0. The two tuples (¢, 7) and (¢, —r) describe the same hypersphere, but
with opposite orientation, where the special case of » = 0 describes a point, also called a

null-sphere, and is non-oriented.

Definition 11.1.2. The oriented hypersphere in the n-dilrlensional Euclidean space
with center ¢ € R" and signed radius € R is denoted by Sg.y.
(")

Figure 11.1. An oriented circle and an oriented line in oriented contact in the Euclidean plane.

Oriented contact An oriented hyperplane and an oriented hypersphere are said to be in
oriented contact if the hyperplane is tangent to the circle and their normal vectors coincide

at the point (see Figure 11.1).

Proposition 11.1.3. An oriented hyperplane Jg(l,,h), (v, h) € Z, and an oriented hyper-
sphere S(.,, (c,r) € R™*, are in oriented contact if and only if

c-v+h=r. (11.1)

sl dich of c‘!';gcvl.)

Equation (11.1) is linear in (v, h) and thus describes a plane.

Proposition 11.1.4.
(i) The oriented hyperplanes P, y) in oriented contact with an oriented hypersphere

Se,ry correspond to the points of the hyperplanar section of the Blaschke cylinder

{(v,h)e Z|c-v+h=r}

44
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(ii) Viceversa, a hyperplanar section of the Blaschke cylinder with a hyperplane non-
parallel to the axis corresponds to all oriented hyperplanes in oriented contact
with a fixed oriented hypersphere.

(iii) A hyperplanar section of the Blaschke cylinder with a hyperplane non-parallel to
the axis corresponds to all oriented hyperplanes through a point, i.e., describes
a null-sphere, if and only if the plane contains the origin.

Proof.
(i) Follows from Proposition 11.1.3.
(ii) A hyperplane non-parallel to the axis is given by
{(v,h)e Z|a-v+LFh=1}

with « € R™, 3,7 € R, and 8 # 0. Dividing by  yields an equation of the form
(11.1).

(iii) The hyperplane contains the origin if and only if » = 0.

Figure 11.2. The Blaschke cylinder model of 2-dimensional Euclidean Laguerre geometry.
An oriented line in the Euclidean plane is represented by a point on the Blaschke cylinder Z.
All oriented lines in oriented contact to an oriented circle correspond to the points of a planar
section of Z (non-parallel to the axis).
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Thus, generally speaking, in the Blaschke cylinder model of Laguerre geometry, oriented
hyperplanes correspond to points on the Blaschke cylinder and oriented hyperspheres
correspond to hyperplanes (non-parallel to the axis of the Blaschke cylinder).

Corollary 11.1.5. A section of the Blaschke cylinder with a k-dimensional plane non-
parallel to the axis corresponds to all oriented hyperplanes in oriented contact with k

fixed oriented hyperspheres.
In particular, sections with codimension 2 planes describe oriented right circular

cones.

What about the planar sections parallel to the axis of the Blaschke cylinder? These
contain straight line generators of the Blaschke cylinder.

Proposition 11.1.6.
(i) A generator of the Blaschke cylinder corresponds to a one-parameter family of
parallel oriented hyperplanes, where parallel means “with coinciding normal

vectors” .

(ii) A hyperplanar section of the Blaschke cylinder with a hyperplane parallel to the
axis corresponds to all oriented hyperplanes parallel to an oriented right circular
cone.

Proof.
(i) Generators of the Blaschke cylinder are of the form (v, h)pcr. 2%

ii) A hyperplane parallel to the axis is given b -
(i) A hyperplane p g y4(3-h.(-‘>’°

s

(b eZ|a-vV=n)

with o € R", v € R. The solution is given by all v from a hyperplanar section of
S"~1 and arbitrary h € R.

]

11.1.2 The cyclographic model

In the Blaschke cylinder model oriented hyperplanes are the primary objects and described
as points, while oriented hyperspheres are described as hyperplanes in the same space.
Taking oriented hyperspheres as the primary objects gives rise to the cyclographic model.

An oriented hypersphere with center ¢ € R"™ and signed radius € R corresponds to
a tuple (c,7) € R"*1. We embed the Euclidean space into the same R"*! by identifying

C 2

|\"—N-

e
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it with the » = 0 hyperplane, which is the hyperplane of null-spheres and called the base

plane.
E:={(c,r)eR" xR |r =0} =

Definition 11.1.7. For a point (¢, r) € R""! the cone

Ciery = {(&, Tps1) eR" x R } 13— > = (2psq — 1) = 0}.

is called its isotropic cone.

Isotropic cones are right circular cones with an axis orthogonal to the base plane. Their
opening angle is 7 and they intersect the base plane in a constant angle of 7. The intersection
of an isotropic cone C(.,y with the base plane yields the hypersphere represented by the
point (¢, r):

Ster) = Clery N E,

while the orientation of 5’)(”) has to be inferred from the sign of . The map
(C, 7’) —> S(c,,«)

is sometimes referred to as the cyclographic projection.

%1%

(e:r)

Pu,ny

Figure 11.3. The cyclographic model of 2-dimensional Euclidean Laguerre geometry. The
Euclidean plane is embedded as the base plane E. An oriented circle in the Euclidean plane is
represented by a point (c,r) € R3. All oriented circles in oriented contact to an oriented line
]3(,,’ n) correspond to points in an isotropic plane I(,,yh).
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The tangent hyperplanes of an isotropic cone intersect the base plane at an angle of 7.
Such hyperplanes are called isotropic hyperplanes. Reviewing equation (11.1) we find that
it is linear in (¢, r), and describes an isotropic hyperplane.

Proposition 11.1.8. R
(i) The oriented hyperspheres S .., in oriented contact with an oriented hyperplane

P, 1y correspond to the points on the isotropic plane

Zon ={(cr)eR" xR|v-c—r=—h}.

(ii) Vice versa, an isotropic hyperplane corresponds to all oriented hyperspheres in
oriented contact with a fixed oriented hyperplane.

Proof.
(i) Follows from Proposition 11.1.3.

(ii) An isotropic hyperplane is of the form
{(e,r)eR"xR|a-c+ pBr=n}
with o € R™, 3,~, € R where ]a\m: (% # 0.

]

The intersection of an isotropic hyperplane Z, 5y with the base plane yields the hyperplane
represented by the point (v, d):

Puny =Zwn nE,

while the orientation of f’(y,h) has to be inferred from the direction of v.

Summarizing, in the cyclographic model of Laguerre geometry, oriented hyperspheres
correspond to points in R™"*!, or equivalently isotropic cones, and oriented hyperplanes
correspond to isotropic hyperplanes.

Tangential distance The appearance of isotropic cones and planes in the cyclographic
model makes it natural to introduce a Lorentz product

n
(x, y>n,1 = Z LiYi — Tn+1Yn+1;
i=1

and in particular the corresponding (squared) Minkowski distance

n

|z — y”ig ={x—y,x— y>n,1 = Z(% - yi)2 — (Tn41 — yn+1)2
i=1
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~

for z,y € R"*1, @_@ @
-2

Then an isotropic cone with apex = € R**! is given b -
p p g Y |U'Z\1'> (%) (2 =T

ye R o —y|2, =0} 2~
{ ’ Y i |2l

and an isotropic plane by
{y e R™! ‘ (Y, = 7}

with some n € R ||n| , = 0and y € R.

g

Proposition 11.1.9. For z, 7 € R**! o)

|z — iHil >0 < S,, Sz have multiple hyperplanes in common oriented contact

|z — xHi’l — 0 < S,,S; are in oriented contact
lz -z, <0< S,, S5 have no hyperplanes in common oriented contact
If |x — itHil > 0, then the Minkowski distance |x — |, | is equal to the Euclidean

distance between the two touching points of any common oriented tangent hyperplane

0f§x and §57

Proof. With x = (¢,r) and ¥ = (Z,7) we obtain

2 ~\2

~ =12
lo =], = le—e” = (r=7)"

O

In the context of Laguerre geometry the (squared) Minkowski distance in the cyclo-
graphic model is also called the (squared) tangential distance.

Remark 11.1.10. If one of the two spheres is null-sphere, i.e., describes a point, then
the squared Minkowski distance becomes the power of that point with respect to the
hypersphere.
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7.4 Dual quadrics RP".
o[<] D
Theorem 7.4.1. Let Q be a non-degenerate quadric in RP™. Then the set of tangent
hyperplanes to Q forms a non-degenerate quadric in the dual space (RP™)x. This
quadric Q* is called the dual quadric of Q and has the same signature as Q. Aoul
Furthermore, let QQ be a symmetric matrix representing Q in some basis of R""1, l

Then 0 o (me"

is a symmetric matrix representing the dual quadric Q* in the dual basis of (R"*!)".

Proof. The set of tangent hyperplanes of Q is given by
{X*<RP"|XeQ}.

Thus, the dual quadric is given by

= {(x*) e ®P")"
={[Q ] (RP™)* | [z] € RP", 2TQxz = 0}
= {[y] € (RP")* | yTQ 'y = 0},

= (@JTQ™Ax = x'Qx

which indeed is a quadric represented by the symmetric matrix (Q~*. The signs of the
eigenvalues are the same for Q and Q~*. Thus, Q and Q* have the same signature. [

Now consider a (possibly degenerate) quadric Q < RP™ of signature (r, s, t) represented
by the symmetric bilinear form . Let <

Vi=kerq= iv 2 tk““\ yxe R*™: %(v,'l-)w.} \)

é W

and let 11 be any complementary linear subspace of V, i.e.,
R =VW.
Thus, V := P(V) is the set of singular points of Q
=VvW, VW=,

where W := P(W).
For a point X € Q\V the tangent hyperplane of Q at X is given by its polar hyper-

plane X*. By duality each tangent hyperplane corresponds to a point in the dual space
(RP™)*.



7.4 DUAL QUADRICS 127

Definition 7.4.2. For a quadric Q@ < RP" its dual quadric is given by
Q"= {(X")" e (RP")"| X € Q\V}.

where V is the set of singular points of Q.

The bilinear form ¢ induces a linear map
Q:R"™ — (R™*, z—q(z,-) 1y — qlz,y).

Note that V' = ker Q. For a point [z] € RP" the image [Q x| represents the dual of the
polar hyperplane of [z]: .
[}k = [Qu]’

With this map the quadric Q can be written as

Q= {[z] [ (Qz)(x) = 0}.

»

2 q (%
The dual of the tangent hyperplane at the po?ﬁt [92] e RP™ is given by [Qz] € (RP™)*.
With the decomposition
r=v+w

where v € V and w € W this yields
[Qz] = [Qu],

and thus the dual quadric of Q can be written as

Q" ={[Qz] | [z] € QV} = {[Qu] | [w] € Qn W}.

Theorem 7.4.3. Let Q — RP™ be a (possibly degenerate) quadric of signature (r, s, t)
with singular points V = P(V). Then its dual quadric Q* < (RP")* is entirely
contained in the projective subspace V* of dimensionn —t — 1:

o c V.

InV* ¢ (RP™)* the dual quadric Q* constitutes a non-degenerate quadric of signature

(r,s). LW)* ~

Furthermore, let VW = P(W) < RP™ be a complementary subspace of V, and Qy—
be a symmetric matrix representing Q in some basis of W. Then

. { =

is a symmetric matrix representing the dual quadric Q* in the dual basis of V'*.




128 QUADRICS

Proof. The restriction of the map Q) : R**! — (R"*1)* to W is a bijective map to V*
QW::Q|W:W—>V.

In particular, this implies Q* < V.
Furthermore, for [w] € W and a = Qw we find

a(Qy @) = (Qu)(Qy Qw) = (Qu)(w),

and thus
Q" = {[a] e V" | a(Qy} a) = 0}.
A basis representation of (Qy;, and the consideration of the signs of its eigenvalues yields
the remaining claims. [
"
easd
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11.1.3 The projective models and their duality

In the Blaschke cylinder model oriented hyperplanes correspond to (special) points and
oriented hyperspheres correspond to hyperplanes, while in the cyclographic the roles of
points and hyperplanes are reversed. Yet in both models the oriented contact is given by the
incidence of a point lying on a hyperplane. Embedding both models into projective space
will reveal that they are related by duality.

The Blaschke cylinder Let (-, -) be the standard degenerate symmetric bilinear form of

signature (n,1,1), i.e., S Riyp 54

(T,y) = T1y1 + -+ Taln — Tnt1Yn1 .-1x) W
‘v.u-ﬁ/i.
for 2,y € R"*2, and LIRS 2 Xt ent Fp= 4 2O } '
* PR
Z = {[z] e RP"* | (z,3) = 0} < RP"*!
v
the corresponding quadric in RP™*!, which we call the (projectivization of the) Blaschke®
cylinder. Projectively Z is a cone with apex

q = lens2] = [0,...,0,1].

The Blaschke cylinder as described in Section 11.1.1 is recovered by introducing affine
coordinates x,, .1 = 1.

Thus, an oriented hyperplane ﬁ(y,h) in the n-dimensional Euclidean space with unit
normal vector v € S"~! and signed distance h € R corresponds to the point

[v,1,h] € 2 < RP™1,

The only point not captured in the affine picture is the apex ¢ of the Blaschke cylinder. It
can be interpreted as the (non-oriented) hyperplane at infinity.
Orientation reversion P,y — P, _p) is given by the projective involution

2 2
o :RP"™ — RP"™*,  [21,..., Tny Tni1, Tnga] = [T1, o Toy —Tns1, Tnyoal
It preserves Z and fixes the point

b= [6n+1] = [07"'707170]

and all points on its polar hyperplane.

An oriented hypersphere §(C’T) in the n-dimensional Euclidean space with center c € R"
and signed radius r € R corresponds to the intersection of the Blaschke cylinder with the
hyperplane Coiresprviong r""‘— aqpehon

[c, —r, 1]* < RP™ eV -vrgtgh=0
It is a null-sphere if and only if it contains the point p. The hyperplanes of RP™"! that,

in the affine picture (x,,+1 = 1), appear as hyperplanes parallel to the axis of the Blaschke
cylinder, are exactly the hyperplanes that contain the point q.



11.1 MobpELS OF LAGUERRE GEOMETRY 239

R 1 c mP"qu
The cyclographic model Dually, an oriented hypersphere S(., is represented by the — ——

point v
[c, —r, 1] € (RP™T1)*,

[
Thus, we may identify the points of the cycligraphic model with the points of (RP"™*!)* upon A
introducing affine coordinates x,,.» = 1 and reversing the sign of the (n + 1)-coordinate. °P
The base plane of the cyclographic model is then embedded as o

*
E = p* = {[z] € RP"™')* | 2.,y = 0}. (‘R""; 2
The Blaschke cylinder Z is a degenerate quadric of signature (n,1,1). Its singular é

points consist exactly of the apex q. By Theorem 7.4.3, its dual quadric is given by /

Z* ={[z] € (RP")* ’x%+~--+xi—xi+1=0,xn+2=0}. ol

_—f

It is contained in the hyperplane EX Q Z*.
* n+1\* G= (—WL) ;4
¢ = {[z] € RP")" | 2,5 = 0}, °

which, in affine coordinates x,,. o = 1, is the hyperplane at infinity. In this hyperplane, Z*
constitutes a quadric of signature (n, 1).

The dual of a point on the Blaschke cylinder is a hyperplane in (RP"*1)* that touches
the dual quadric Z*. Now the following proposition establishes the correspondence of the
dual of the Blaschke cylinder model and the cyclographic model.

Proposition 11.1.11. Upon introducing affine coordinates x, o = 1 on the dual spac i
(RP™1)*, which contains the dual of the Blaschke cylinder Z* and the base plane X, \

the following correspondence holds: \T7T~ = @’
S _/

(i) A hyperplane in (RP™"1)* is an isotropic hyperplane of the cyclographic moﬁ
if and only if it touches Z*. ar

=l
Qs )

(ii) A cone in (RP™1)* is an isotropic cone of the cyclographic model if and only if
it contains Z*.

Proof.
(i) A planeIT = [N]* = (RP™*)* touches Z* if and only if [N] € Z, i.e.

(N,Ny=N{+---N} = N2, =0

On the other hzind, in affine coordinates z,,» = 1, the angle between the
normal vector N = (Ny,...,N,;1) of the plane II and the normal vector

ot
Ut
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P =(0,...,0,1) of the base plane E is equal to y = 7 if and only if

1 ~ |2 - .
SOV 4+ N2 = N[ oty = (V- P)? = N2,

< (N,N)=0.

(ii) A cone containing Z* consists of all lines through its apex and points on Z*. For
a line with point [v1, ..., v,41, 0] at infinity the vector (vy, ..., v,41) gives the
direction of the line in affine coordinates z,, ;o = 1. Thus, a line contains a point
of Z* if and only if it direction vector satisfies

2 2 .2 _
v] + v — v, = 0.

Yet, by a similar argument as above, this is equivalent to the line intersecting the
base plane in an angle of 7.

O
Thus, the dual of the Blaschke cylinder model yields the cyclographic model.
Note that orientation reversion acts on the dual space as
U* : (RP”+1)* - (RP”+1)*> [xla co oy Tpy Ty, xn+2] — [mh <oy Ty —Tp4d, xn+2]'

In particular, it preserves the base plane
E=p" = {[z] e RP""")" | 2,1 = 0},

which we identified with the base plane.

The tangential distance How do we recover the tangential distance in the projective
version of the cyclographic model?

We first note that in the hyperplane ¢*, the quadric Z* is described by the Lorentz product
., ->n71, which we used to describe the tangential distance. For two oriented hyperspheres
5”)(67,,), §(5,7z) the two corresponding points [c, —r, 1], [¢, —7, 1] < RP"*! span a line, which
intersects the hyperplane at infinity in a point with representative vector

(¢,—r, 1) —(¢,—7,1) = (c—¢,—r +7,0)

For this point at infinity, we can use the Lortentz product to obtain the tangential distance
of S(CM and S(gﬂ:):
H(C —C—r+ f? O)Hn,l :

But the result depends on the representative vectors chosen for the two oriented hyper-
spheres.
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In the cyclographic model, the hyperplane at infinity is given by
¢ = {[z] € RP"™)* | a(z) = w12 = 0}

where o : (R"™?)* — R is a corresponding linear functional on (R"*?)*. The quadric
Z* < ¢* is given by this functional and the Lorentz product (-, ->n,1

z* = {[x] e (RP™1)*

a(z) =0, <x,x>n71 = O} )

For two points [z], [y] € (RP™"1)*\¢* we recovered the tangential distance as

It is invariant under rescaling x — Az with A # 0, and also invariant under rescaling
y — Ay, but not invariant under rescaling & — Aa. Yet for three points [z], [y], [2] €
(RP™"1)*\g* the quotient of tangential distances

is invariant under rescaling &« — A«. Thus, it is a well-defined quantity in (RP™*1)*, which
is entirely determined by Z*.



242 LAGUERRE GEOMETRY

11.2 Miquel’s theorem in Laguerre geometry

Theorem 7.6.2 yields a Laguerre geometric version of Miquel’s theorem (Theorem 10.8.2).

Theorem 11.2.1 (Miquel’s theorem in Laguerre geometry).

Let (1,05, 03,04, mq1, Mo, m3, my be eight oriented lines in Euclidean plane. If the
five quadrilaterals ({1, (s, m1,ms), (1,ls, m3,my), (3,04, m1,m3), ({3, L4, M3, My),
(Lo, €3, Mo, m3) are circumscribed (each quadruple of lines touches a common oriented
circle), then so is the quadrilateral ({1, 0y, my1, my4) (cf. Figure 11.11).

Figure 11.4. Combinatorial pictures on Miquel’s theorem in Laguerre geometry. Left: The
eight oriented lines and six incircles in the plane. Right: The eight corresponding points on
the Blaschke cylinder and how to associate them with the vertices of a cube.

Proof. The eight oriented lines correspond to eight points on the Blaschke cylinder.
Associate them with the vertices of a combinatorial cube (see Figure 11.11). Copla-
narity of the bottom and side faces corresponds to the assumed circumscribility. By
Theorem 10.8.2 the top face is planar as well. [

Remark 11.2.2. Under duality the cube in the Blaschke cylinder with planar faces
becomes an octahedron in the cyclographic model with isotropic face planes.
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4.2 DUAL PROJECTIVE TRANSFORMATIONS .Y « I "‘?’
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4.2 Dual projective transformations {4(Y)

65

A projective transformation maps hyperplanes to hyperplanes. Thus it induces a corre-
sponding map on the dual spaces.

Definition 4.2.1. Let f : P(V') — P(W) be a projective transformation. Then the map
fFP(V)* > PW)*, Y — f(Y").

is called the dual transformation of f.

Theorem 4.2.2. The dual transformation is a projective transformation. In particular,
it satisfies

for every projective subspace K < P(V').

Proof. The dual map is invertible with inverse Z — f~1(Z*)*, and maps k-planes
to k-planes as shown in the following. Let Xi,..., X1 € P(V) such that K =
XiVv...vXpp1.Then K = X7 n...n X}, and

(K4"H-} *. K Ky

FIED = (FXD) 00 f(XG)
S PG v F(X )" f adinby sl Koo
= f*(X1> V...V f*(XkJrl)
= f*(Xl V...V Xk+1)
= f*(K)

60
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Proposition 4.2.3. If the projective transformation f : P(V') — P(W) is represented
by a matrix F with respect to some chosen bases of Vand W, then the dual projective
transformation f* is represented by the matrix

F*=F7T.

with respect to the corresponding dual bases of V* and W*.

Proof. Let [y] € (RP™)* with y € R™"! the representative vector in the chosen dual

basis. Then
f(Qyl) = f(lyl")”
f({[z] e RP" | yT2 = 0})"

Remark 4.2.4. In a basis-free way, this proposition may be formulated as: The dual
map is represented by the inverse of the adjoint map.

61
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11.3 Laguerre transformations

The transformation group of Laguerre geometry of the n-dimensional Euclidean space con-
sists of all transformations that map oriented hyperplanes to oriented hyperplanes, oriented
hyperspheres to oriented hyperspheres, while preserving their oriented contact. Thus, in the
Blaschke cylinder model, Laguerre transformations are given by transformations of RP™"!
that preserve the Blaschke cylinder Z and map hyperplanes to hyperplanes.

Definition 11.3.1. The group of projective transformations RP"*! — RP"*! that /

preserve the Blaschke cylinder Z >
]\ (e k
/] —

In Laguerre geometry points of the n-dimensional Euclidean space are described as special
hyperspheres, namely null-spheres. Thus, points are not generally mapped to points by a
Laguerre transformations, but to hyperspheres.

PO(n,1,1)

is also called the group of Laguerre transformations.

Proposition 11.3.2. Laguerre transformations map parallel oriented hyperplanes to
parallel oriented hyperplanes.

Proof. Parallel oriented hyperplanes are described by points on the Blaschke cylin-
der contained in the same generator. As projective transformations that preserve the
Blaschke cylinder Laguerre transformations map straight line generators to straight line
generators. [

62
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Theorem 11.3.3.
(i) Every Laguerre transformation f € PO(n, 1,1) in the Blaschke cylinder model

is of the form
1 A0
J= cT | d

with some A € O(n,1), ce R"™ and d + 0.

(ii) Dually, every Laguerre transformation f* € PO(n,1,1)* in the cyclographic

model is of the form o
« | A|b
r-[ot]

with some A € O(n, 1), be R andd + 0.

Proof.
(i) Let f = [F], F e GL(n +2,R), Ae GL(n + 1,R), b,c € R""!, d € R with

Alb
Po (),
Furthermore, let

7 = (%P) . 7= diag(1,...,1,—1) e RvFx(n+D)

denote the Gram matrix of the Blaschke cylinder. Then,

~ ~ N
(AN [ Z]|o0 Alb\ ([ ATZA| ATZb
e - (i) (16) () - (i) = (3

Thus,| FTZF = Z|is equivalent to A € O(n,1) and b = 0. To ensure F €
GL(n + 2,R) this further implies d # 0.

L (AT tATTe (Alb
() = ()

where Ae O(n,1) & Ae O(n,1),ce R"! < heR"™ , d#0<d+0.
AT5n-2 & A*ZAT-T & @) Fn"-F

(ii) We find that

\

), ¢
Z

QuEn-2

ATEL =0 €760

63
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We found that, in the cyclographic model, Laguerre transformations are special affine
transformations. In affine coordinates x,, o = 1 a Laguerre transformation f* € PO(n, 1,1)

takes the form A A ~ ~
R lb _ (Ax+b
g:R"™ S R p= (21, ,2,01) = Mz + b o '7/\4 A

with some A € O(n,1),be R*"™, and \ # 0.

Thus, it preserves the ratios of tangential distances ——
~\ 12 ~112
lg(@) = g(@)[5, = X* |z — 2| C C

n,l n,1?

similar to similarity transformations preserving the ratios of Euclidean distances.

Corollary 11.3.4. Laguerre transformations in the cyclographic model are exactly the
affine transformations preserving ratios of the tangential distance.

To better understand the group of Laguerre transformations we first establish that it
contains the group of similarity transformations.

Proposition 11.3.5. A Laguerre transformation f € PO(n,1,1) is a similarity trans-
Sformation if and only if it fixes the point

D= [€n+l] = [07 707170]'

Proof. Dually, this means that a Laguerre transformation f* € PO(n, 1,1)* is a simi- Q x !
larity transformation if and only if it preserves the base plane /

B —p* = {[z] € RP"")" [ 21 = 0}, /
E/

Thus, if and only if it maps points of the Euclidean space to points, which is certaifity
a necessary requirement for a similarity transformation.
In affine coordinates x,,,» = 1, the condition g(E) = E on the transformation

g:x=(r1,...,Tp11) —> Nz +b R ::)-l-l,s(E)
° 0
reads
R |*
Al 1,171 + Ay 10Tn + b1 =0 A= ( ___k.—]
ol\¥
for all x4, ..., x, € R, which yields
bpi1 = Upg11 = = Opg1p = 0.

64
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Since A € O(n, 1) this implies
Aip+1 = " = App+1 = 07

and further
Ap4+1n+1 = 1.

Thus, we obtain

b1
A:<ﬂ%>’ b:<;>eR”“, A#0
0 b,
0

with R € O(n), which describes a similarity transformation on E. [l

As examples of Laguerre transformations which are not similarity transformations we
introduce the following two families of transformations:

%
T
Laguerre offset Consider the family of Laguerre transformations [
I10
St = l?‘lﬁo] s teR
t1 | v
r'

with [ = diag(1,--- ,1) € R™*". Note that S; preserves the line p v ¢ = span{e, 1, €12},
and maps p to any point on this line except q.
It acts on an oriented hyperplane /7, 1,y by

s[i] = [4

1
and thus maps every oriented hyperplane to a parallel oriented hyperplane at distance ¢.
Dually, in the cyclographic model, this family is described by

—’

0] 07
It acts on an oriented hypersphere 5’)(“) by

alf]- [

and thus maps every oriented hypersphere with radius 7 to a concentric oriented hypersphere
with radius r + ¢.
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Laguerre boost Consider the family of Laguerre transformations

T ! ‘ ! R
ol Eianie | e
0 0 1
with I = diag(l,---,1) € R Dx(=1) Tt preserves the line span{e,,e,.1}, which

intersects the Blaschke cylinder in the two points
[en + en-‘rl] = [07 T 707 ]-a il? 0])

and it maps p to any point on this line inside the Blaschke cylinder.
Dually, in the cyclographic model, this family is described by

I 0
77; = cosht —sinht 0 R te R,
O | —sinht cosht 0
0 1

It maps the base plane EE = p* to any space-like hyperplane in the pencil of hyperplanes
spanned together with [e,, & e,,1]*.

It turns out, that up to similarity transformations a Laguerre transformation is a either a
Laguerre offset or a Laguerre boost.

Theorem 11.3.6. Let f € PO(n, 1,1) be a Laguerre transformation. Then there exist
two similarity transformations ®, U € PO(n, 1, 1) such that either

fzéost:StO\I’

for some t € R, or
f=®0T,0W

for some t € R.

Proof. Consider the line L = p v f(p).

» If L contains the point ¢, let € R such that S;(p) = f(p). Then ® = S, o f fixes
the point p and thus is a similarity transformation.

» If L does not contain the point g, it is a line of signature (+—) and intersects the
Blaschke cylinder Z in two points. Let ¥ be a similarity transformation that maps
r = [e, + eny1] to one of the intersection points L n Z. Then it maps the line
L = pvrtotheline L, and thus p = W' o f(p) € L. Lett € R such that T,(p) = p.
Then ® = 7;* o U~! o f fixes the point p and thus is a similarity transformation.

]
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Week 7: Curves in Laguerre geometry, Gingham in-
circular nets
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N

11.4 Curves in Laguerre geometry

Let K

7 : [a,b] — R?
be a smooth regular curve in the Euclidean plane. Its unit tangent and normal vector are "‘/’ o
given by Blsils
Gbidey

T(t) = L,  N(t)=JT(t), whereJ:=(07).
Bl —32
Then the tangent line at the point ~y(¢) is given by Nm . (x- Yw) =0

PivianwAx e R* | N(t) -z + h(t) =0}, h(t) = —N(t) - y(t).

The oriented tangent lines ]3( N(t),h(t)) Yield a curve on the Blaschke cylinder. We have seen
this in the example of circles which correspond to curves on the Blaschke cylinder given
by planar sections. On the other hand, the curve v can be uniquely reconstructed from its
tangent lines as the envelope.

Proposition 11.4.1. Let v be a smooth regular curve in R%. Then

7)== (N (), 1, h(t), h(t) == =N(t) - ¥(t)

defines a curve on the Blaschke cylinder. The corresponding oriented lines are the
oriented tangent lines of 7, i.e.,

N-v+h=0,
N-~v=0.
Furthermore, the curve -y is the envelope of those lines, i.e.,
N-v+h=0,
) . (11.2)
N-v+h=0.

Vice versa, given a smooth regular curve t — (N(n), 1, h(t)) on the Blaschke cylinder
not tangent to a generator, equations (11.2) determine a unique curve as the envelope
of the corresponding oriented lines in the plane.

68



250 LAGUERRE GEOMETRY

11.4.1 Osculating circle of planar curves

The osculating circle of the planar curve  at the point (t) is the circle §(C(t),r(t)) with
center

and radius

where k(t) is the curvature at y(t).

Proposition 11.4.2. Let v a smooth regular curve in R%. Let

4() = (N(0), 1, h(t)) _
be its lift to the Blaschke cylinder, and let ’

é(t) = (C(t)7 _T(t>7 1)

be the lift of its osculating circle to the cyclographic model. Then

[e(®)]" = P (span{3,4,4}) .

Proof. Show that ' )

Ty =¢c"y=¢"y=0
where one uses N - N = —N - N and N = —KY. [

To apply a Laguerre transformation to a curve it is applied to its oriented tangent lines. Then
the image curve is reconstructed as the envelope of the image tangent lines.

Corollary 11.4.3. The osculating circle of a planar curve is Laguerre invariant.
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11.4.2 Conics and hypercycles

We will now study which curves on the Blaschke cylinder correspond to conics (more
precisely ellipses and hyperbolas).

By means of a rotation and a translation (which constitute special Laguerre transforma-
tions) an ellipse or a hyperbola may be brought into the form

2
LA 1} (11.3)

Cz{(:vy)eRQ —+5

with some a, b # 0. The case a > 0,b > 0 corresponds to an ellipse and the case ab < 0 to
a hyperbola.

Proposition 11.4.4. The curve on the Blaschke cylinder Z corresponding to the tangent
lines (with both orientations) of the conic C'is given by the intersection of Z with the

cone
C= {[xl,xg,xg,x4]eRP3 ‘axfjtba:%—xi:O}. (11.4)

Proof. The tangent line to C' at a point (g, y) € C'is given by

o)

and its two lifts to the Blaschke cylinder by
To Yo s zoh yoh
+ = -1 = L h|eZ
[a’b_\/ T ] [a B ]e

h =

where

g}wloaw
_|_
S

In particular, we found that the curve on the Blaschke cylinder corresponding to an
ellipse or hyperbola is given by the intersection with a quadric.
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Figure 11.5. Hypercycle base curves corresponding to an ellipse and hyperbola respectively.

Definition 11.4.5. The intersection curve of the Blaschke cylinder Z with another
quadric @ is called a hypercycle base curve. The envelope of the corresponding lines
in the plane is called a hypercycle.

Corollary 11.4.6. Conics (considered with both orientations) are hypercycles.

The hypercycle base curve is the base curve of the pencil of quadrics spanned by Z and
Q. The intersection of any quadric from this pencil with the Blaschke cylinder yields the
same curve Z N Q.

Figure 11.6. A conic under Laguerre transformations.
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11.5 Gingham incircular nets

Definition 11.5.1. Two families (¢;);cz, (m;);ez of oriented lines in the Euclidean
plane are called a gingham incircular net if for every even ¢,j € 7Z the four lines
Ui, liy1, mj, mj;q touch a common oriented circle.

WMo ra e bn

IR
=

Figure 11.7. Left: Gingham fabric. Right: A piece of a gingham incircular net.

Theorem 11.5.2. All lines of a generic gingham incircular net are in oriented contact
with a common hypercycle.

Moreover, let ({;);cz, (m;) ez be the points on the Blaschke cylinder Z — RP? that
correspond to the oriented lines of the gingham incircular net. Consider the lines

Li = El \ €i+17 Mj = m; vV mj;yy.

Then, all lines Loy, My lie on a common hyperboloid H — RP3, which intersects the
Blaschke cylinder in the hypercycle base curve. The lines Loy are contained in one of
the two families of rulings of H while the lines My, are contained in the other family of
rulings of H.

Proof. The existence of the incircles in a gingham incircular nets is equivalent to every
line Lo intersecting every line Ms;, and vice versa. Thus, all lines Loy, Mo, generically
lie on a common hyperboloid .

Furthermore, this implies that all points (¢;);cz, (m;);ez lie in the intersection of
the Blaschke cylinder and H. Thus, the corresponding oriented lines touch a common
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hypercycle. [

E
20
N\ | A
20
\ | A
20
N\ | A

mM A0 ZE 2N
e NI NI N

g
1

~
|

20
\_| A
1Y
\_| A

Lo Lo Ly
f() 51 52 33 Z4 Z5

Figure 11.8. Gingham incircular net on the Blaschke cylinder. The lines Loy, My, are rulings

of the hyperboloid H.

This result yields the following construction for gingham incircular nets:

» Choose a hyperboloid % — RP? that intersects the Blaschke cylinder Z. This corre-
sponds to choosing a hypercycle to be the envelope of the gingham incircular net.

» Distinguish the two families of rulings of H as the L-family and the M -family.
» Choose two arbitrary points ¢, and m on the hypercycle base curve H n Z.

» Let L be the ruling in the L-family that contains the point ¢, and define ¢; as the second
intersection point of Ly with Z. Similarly, let M, be the ruling in the M-family that
contains the point m, and define m; as the second intersection point of M, with Z.

» Choose two arbitrary points /5 and ms on the hypercycle base curve H n Z, and continue
in the same manner.

Remark 11.5.3. A special case of gingham incircular nets is given by checkerboard
incircular nets. Here all lines lines ¢;, (;1,m;, m;, with ¢, j € Z where ¢ + j is even
touch a common oriented circle.
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Figure 11.9. Left: Piece of a checkerboard incircular net touching a hypercycle. Right:
Periodic checkerboard incircular net touching an ellipse.
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4.3 Dual representation of surfaces

Let
f:RP>U - R}

be a smooth regular parametrized surface patch,
Instead of describing the surface f as a two-parameter family of points, we can equiva-
lently describe it as the envelope of its two-parameter family of tangent planes.
Let
n:U—R?

be an arbitrary smooth normal field of f,i.e.,

nfu:07
n-f,=0

The tangent plane of f at the point (u,v) € U is given by
{z e R®| n(u,v) -z + h(u,v) = 0}

with some function i : U — R. Thus, the tangent planes of f described by the tuple (n, h)
(uniquely up to a common scalar multiple) is determined by the set of equations

nfu:07
n- f, =0, 4.1
n-f+h=0  ~» h,‘-f-ru-fhi.lq,‘sp

uv-j+ ngsh, =0
Differentiating the last equation with respect to v and v, respectively, we find that (4.1) is

equivalent to
f "My, T+ hu = 07
fny+hy, =0, 4.2)
f-n+h=0.

Note that if we consider the lifts .
f = (f7 1)7
n = (n,h)

to homogeneous coordinates of RP? and (RP?)*, respectively, then equations (4.1) and
(4.2) become the duality relations for tangent planes of the respective surfaces [f] and

[].

A

Definition 4.3.1. Let [f] : R? > U — RP? be a smooth regular parametrized surface
in RP?. Then

~ A

[7] = (1 v [f v [£]) - U — (RP?)*
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is called the dual surface of f.

In homogeneous coordinates the dual surface is determined by the three linearly independent

equations
PO ~ r
w 4(,. = N - fu = 0,
A f,=0, (4.3)
- f=0,
and satisfies .
f : ﬁJu = Oa
fi, =0, (4.4)
f-n=0

These equations are completely symmetric in f and n.

Proposition 4.3.2. If the dual surface of a smooth regular parametrized surface[f]in

RP3 is itself regular, then the dual surface of a the dual surface is[fJ.

Remark 4.3.3. The primal surface is regular if it is locally not a curve. The dual surface

is regular if the primal surface is locally not developable.

o fuu® <ol of

We have established in Section 2.7 that conjugate line parametrizations are a notion of

projective geometry.

Theorem 4.3.4. A smooth regular parametrized surface | f] :R?2>U - RP?isa
conjugate line parametrization if and only if its dual surface [n] : U — (RP*)* is a
conjugate line parametrization.

Proof. | f] is a conjugate line parametrization if f satisfies an equation in homogeneous
coordinates of the form

N ~ ~ A A A A A A

qu:Oéfu+6fv+’Yfa (.4" w1""P1"+{{+$k
which is equivalent to X ?w- noe S(h)
fuv -n = 0. f o

From equations (4.3), or equivalently, equations (4.4), we find that this is equivalent to
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either of the three equations

fur iy =0,

fo T =0, (4.5)

f = 0,
and thus in turn to .

Ny = Ty, + By + 0,
O

Remark 4.3.5. The first two equations of (4.5) state, respectively, that

A A

L1V [fu] = (I2] v [2])7,

A A

L v [fol = ([2] v [2u])"
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11.6 Surfaces in Laguerre geometry

Let
f:RP>U - R}

be a smooth regular parametrized surface patch. Let
n:U—R?
be an arbitrary smooth normal field of f such that at every point (u,v) € U
n=Afux fo)
with some positive scalar A > 0, and let
o:=|n|>0
denote the norm of n. Furthermore, let i be such that
n-f+h=0.
Then the lift of f to the Blaschke cylinder is given by
f= (n,o,h). <2,‘2>’ hi-S* =0

Recall that f is a curvature line parametrization if and only if f is orthogonal and
conjugate. In Section 4.3 we have established that f is conjugate if and only if its dual
surface [n, h] is conjugate. Thus, to describe curvature line parametrizations in Laguerre
geometry we should determine how to express the orthogonality in the homogeneous
coordinates (n, o, h).

Lemma 11.6.1. For a parametrized surface f the lift to the Blaschke cylinder (n, o, h)
satisfies

o’ =n-n,

00, =N - Ny,
(11.5)

00y =N - Ny,

OO0y + Ou0y = N+ Ny + Mgy * Ny,
E Lev{be o m!&‘s: Ve prromghtwsd sutfaws Thew
Lemma 11.6.2. : f is orthogonal if and only if its lift to the Blaschke

cylinder (n, o, h) satisfies
OOup = N+ Ny
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onality condition
f u f v =0

is equivalent to

n
= 00yy = N Ny,

where we used Lemma 11.6.1.

Proof. Since f, is proportional to n,, x n and f, is proportional to n x n,, the orthog-

Vv
h

e {v

4

{ e
&/ '(IL' hy<°
&= { o < (/]

Theorem 11.6.3. Let f : R2 > U — R? be a parametrized surface and

f = (n,o,h)

a lift to the Blaschke cylinder. Then [ is a curvature line parametrization if and only if

[f] is a conjugate parametrization.

Proof. f is a conjugate line parametrization if and only if [n, h] is a conjugate line

parametrization, i.e., if
Nup = ANy, + By, + YN,

o = Qhy + Bhy + Yh

with some functions o, 5,7 : U — R.

Now if f is orthogonal, then by Lemma 11.6.1 and Lemma 11.6.2

OO0uy = Ny - M = QMg - N+ By -1+ yngn- = ooy, + Boo, + yo?

and thus
=
Ouww ® QO + Bo, + 0.

Vice versa, if o satisfies the previous equation, the argument may be reversed. [

_C'L“ai‘#: Cavthus Live rum...‘-fmkms [ Lqum; mvaded,

80



Chapter 12

Lie geometry

The basic objects from Mobius geometry and Laguerre geometry may all be seen as special
cases of oriented spheres.

Figure 12.1. The Mébius quadric S « RP"*! (depicted in the case n = 2) and two oriented
hyperspheres in oriented contact.

12.1 Oriented hyperspheres of S”

We first give an informal description of Lie (sphere) geometry as the geometry of oriented
hyperspheres of the n-dimensional sphere S™ and their oriented contact.

Thus, let
Sn — {yERn+1‘y-y=1}CRn+l,

where y - y denotes the standard scalar product on R™™!, An oriented hypersphere of S”
can be represented by its center ¢ € S™ and its signed spherical radius € R (see Figure

257
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12.1). Tuples (c,r) € S™ x R represent the same oriented hypersphere if they are related
by a sequence of the transformations

p1:(c,r) = (e,r +2m), pa:(e,r)— (—c,r—m). (12.1)
The corresponding hypersphere as a set of points is given by
{yeS"|c-y=cosr}, (12.2)

while its orientation is obtained in the following way: The hypersphere separates the sphere
S™ into two regions. For r € [0, 7) consider the region which contains the center c to be the
“inside” of the hypersphere, and endow the hypersphere with an orientation by assigning
normal vectors pointing towards this region. The orientation of the hypersphere for other
values of r is then obtained by (12.1).

Definition 12.1.1. We call

F= xR oo}

the space of oriented hyperspheres of S™.

Remark 12.1.2. Orientation reversion defines an involution on .%, which is given by

p:(ce,r)— (e, —r).

Thus, the space of (non-oriented) hyperspheres of S™ may be represented by

_ 7 S" x R
y = /p:( g )/{paplva}.

Two oriented hyperspheres (c1,71) and (cz, 2) are in oriented contact if (see Figure 12.1) . 2

c1 - ¢y = cos(ry — ry), (12.3)

which is a well-defined relation on .7. Upon using the cosine addition formula, this is
equivalent to
C1 - Cy — COST1COSTy — Sinrysinry = 0, (12.4)

which is a bilinear relation in (¢;, cosr;,sinr;), @ = 1,2. This gives rise to a projective
model of Lie geometry as described in the following.

Definition 12.1.3.
(i) The quadric
L < Rpnt?

82
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corresponding to the standard bilinear form of signature (n + 1,2)

n+1

<x7 y> = Z TiYi — Tn4+2Yn+2 — Tn+3Yn+3
i=1

for x,y € R"*3, is called the Lie quadric.
(‘,,S‘, > co

(ii) Two points [s1], [s2] € £ on the Lie quadric are called Lie orthogonal if (s1, so) =
0, or equivalently if the line [s;] v [s2] is isotropic, i.e. is contained in £. An
isotropic line is called a contact element.

(iii) The projective transformations of RP™*2 that preserve the Lie quadric £
Lie := PO(n + 1,2).

are called Lie transformations.

Proposition 12.1.4. The set of oriented hyperspheres 52 of S™ is in one-to-one corre-
spondence with the Lie quadric L by the map

é: 7 — L, (e,r)— (c,cosr,sinr)

such that two oriented hyperspheres are in oriented contact if and only if their corre-
sponding points on the Lie quadric are Lie orthogonal.

{u,..bk"u,
Y O A Y

Proof. A point s € L can always be represented by s = [¢, cosr,sinr] with ¢ € S™,
r € R. The transformations (12.1) act on s = (¢, cosr,sinr) as

(¢,cosr,sinr) — (c,cos(r + 2m),sin(r + 2m)) = (¢, cosr,sinr), (12.5)
(¢c,cosr,sinr) — (—c,cos(r — m),sin(r — 7)) = —(c, cosr,sinr). '

and the oriented contact becomes the bilinear relation (12.4). ]
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spherical geometry

Lie geometry

point & € S"

[£,1,0] € L

oriented hypersphere
with center § € R™ and signed radius » € R

[8,cosr,sinr] e L

Table 12.1. Correspondence of hyperspheres of the n-sphere S™ and points on the Lie quadric

L= {ac = (z1,...,Tny3) € RPTL2 | (r,x) = 0} — RP"*2,

This correspondence leads to an embedding of S™ into the Lie quadric in the following
way. Among all oriented hyperspheres the map S distinguishes the set of “points”, or
null-spheres, as the set of oriented hyperspheres with radius » = 0. It turns out that

{é(c,O)lceS”} —{xel|ry3=0=LNp",

where

p = [eny3] = [0,...,0,1] e RP"*2.
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12.2 The projective model of Lie geometry

Lo
Definition 12.2.1. LcRP

(i) The quadric -

L < RP™?
corresponding to the standard bilinear form of signature (n + 1,2)

n+1

<$> y> = Z TiYi — Tp+2Yn+2 — Tn+3Yn+3
i=1

for z,y € R™*3, is called the Lie quadric.
(ii) The projective transformations of RP""2 that preserve the Lie quadric £
Lie :== PO(n + 1, 2).

are called Lie transformations.

5'1.

Proposition 12.2.2. The set of oriented hyperspheres 7 of S™ is in one-to-one corre-
spondence with the Lie quadric L by the map

®:.7 - L, (c,r)— (c,cosr,sinr)

such that two oriented hyperspheres (c1,11), (¢a,72)are in oriented contact if and only
if their corresponding points on the Lie quadric satisfy

(®(c1,71), P(c2,72)) = 0

Proof. A point s € L can always be represented by s = [¢, cosr,sinr] with ¢ € S™,
r € R. The transformations (12.1) act on s = (¢, cosr,sinr) as

(¢,cosr,sinr) — (c,cos(r + 2m),sin(r + 2m)) = (¢, cosr,sinr), (12.5)

(¢c,cosr,sinr) — (—c,cos(r — m),sin(r — 7)) = —(c, cosr,sinr).

and the oriented contact becomes the bilinear relation (12.4). ]
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spherical geometry Lie geometry
point & € S™ [£,1,0] € L
oriented hypersphere R .
with center § € R™ and signed radius » € R [, cosr,sinr] € £

Table 12.1. Correspondence of hyperspheres of the n-sphere S™ and points on the Lie quadric

L = {[z] e RP"*? | (z,2) = 0}.

(n+4,4)

Figure 12.2. The Lie quadric £ — RP™*2 and the Mébius quadric S = £ n p* as a section.

This correspondence leads to an embedding of S™ into the Lie quadric in the following
way. Among all oriented hyperspheres the map & distinguishes the set of “points”, or
null-spheres, as the set of oriented hyperspheres with radius » = 0. It turns out that

{(®(c,0)|ceS"y={zeLlL]|xhs=0}=Lnp,

where
p = lenss] = [0,...,0,1] € RP™2.

The quadric £ n p* has signature (n + 1, 1) and may be identified with the Mébius quadric.
In the projection

Tp L — pt, [21,. .. Tngs] — [21,. ., Tnyo, 0]

The points on the Lie quadric £\p* are mapped to the outside of £ N p=.
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Theorem 12.2.3. Mobius geometry is a subgeometry of Lie geometry in the following
sense: If the quadric
S=Lnp"

is identified with the Mobius quadric, then the group of Lie transformations that preserve
the hyperplane p* (or equivalently that fixes the point p) acts on p* as the group of
Mobius transformations.

Proof. The Lie transformations that preserve the hyperplane p* build a group whose
action can be restricted to p*. In p* they preserve the quadric £ n p* and thus act as
Mobius transformations.

Vice versa, a Mobius transformation on p' represented by

AeO(n+1,1)

can be lifted to a Lie transformation as

o]

Remark 12.2.4. The group of Lie transformations that fixes the point p is a double cover
of the group of Mdbius transformations.
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A relation between the Euclidean and the projective model of Mobius geometry has
been established by stereographic projection, or equivalently, by introducing

€eg ‘= %(en” — 6n+1>7 Cop = %(en+2 + 6n+1)7

which satisfy
<607 €0> = <6007 eOO> = 0, <€0, 600> = —%

Theorem 12.2.5. The identification of points on the Lie quadric L and oriented hyper-
spheres (including points and oriented hyperplanes) of (to one point compactification
of) the n-dimensional Euclidean space R™ U {0}

. 9 5 oriented hypersphere with center c € R"
S=cH+e+ (¢ —717)en +TE <«
0+ (el Jew s and signed radius r > 0,

hyperplane through a € R"
S=v+2v-a)ey +e -
( e + enss with normal vector v € S".

§=z+en+ |z|le < pointzeR"

S=eyn <« pointat infinity oo
is one-to-one and such that for [51], [$2] € L
(81,82) =0

if and only the oriented hyperspheres corresponding to [s1] and s3] are in oriented
contact.

Proof. We first check that a point

§=cH4eo+ (|c|> = r?)ew + renys
lies on the Lie quadric:

3,8 = le|* = (le|* =) = r* = 0.
Now for two points

i =ci+eo+ (|eil® = r])ew + rienas, i=1,2
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we find

(1,820 = c1 -2 = g(|er]” = 11) = §(lleal” = 73) = a7
= —3ler = ol + 5(r —1o)?
=0

< e = CzHQ = (r1 —12)*.

The remaining claims are left to the reader. ]

Proposition 12.2.6. In the correspondence of Thereom 12.2.5:

(i) [8] € L corresponds to a point if and only if 3] € p* (no e,,.3-component), where —
b= [67’L+3]' (h«l\qld)

(ii) [8] € L corresponds to a hyperplane if and only if [3] € ¢+ (no ey-component), £” "
where q = [ey].

Theorem 12.2.7. Laguerre geometry is a subgeometry of Lie geometry in the following
sense: If the quadric
Z=LNqg"

is identified with the Blaschke cylinder, then the group of Lie transformations that
preserve the hyperplane q*- (or equivalently that fixes the point q) acts on q* as the
group of Laguerre transformations.

Proof. The hyperplane ¢* can be spanned by

1
q = Span{ela -+ +3€n,y €0,y 6n+3}a

and thus is a hyperplane of signature (n + 1,1, 1).
Now show that every Laguerre transformation on ¢ can be lifted to a Lie transfor-
mation. [

Two oriented hyperspheres which are in oriented contact span an isotropic line in the
Lie quadric.

Definition 12.2.8. The one-parameter family of oriented hyperspheres corresponding
to an isotropic line in the Lie quadric is called a contact element.
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Each isotropic line (not contained in ¢*) intersects p* and ¢* in exactly one point respec-
tively. Thus, a contact element can always be thought of being spanned by a point and an
oriented hyperplane through this point.
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Week 10: Sphere complexes and signed inversive dis-
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12.3 Sphere complexes and signed inversive distance

Any hyperplane in RP"*2 can equivalently be described by its polar point with respect to
the Lie quadric.

Definition 12.3.1. For a point z € RP"*? the set of points

Lzt

on the Lie quadric as well as the n-parameter family of oriented hyperspheres cor-
responding to these points is called a (linear) sphere complex. A sphere complex is
further called

C crr“™

» ellipticif (2,2) > 0,

» hyperbolic if (Z,2) < 0,

» parabolic if (2,%) = 0,

where z = [Z]

Two points in RP"™2 can be mapped to each other by a Lie transformation if and only if
they have the same signature. Thus, any two sphere complexes of the same signature are
Lie equivalent.

Example 12.3.2.
(i) The point p = [e, 3] defines a hyperbolic sphere complex, which contains all
null-spheres and is called the point complex.

(ii) The point [0, — sin R, cos R] defines a hyperbolic sphere complex, which contains
all oriented hyperspheres of S™ with spherical radius R.

(iii) The point [—2Re, + e, 3] defines a hyperbolic sphere complex, which contains
all oriented hyperspheres of R" with (Euclidean) radius R.

Ves"
(iv) The point [ — 2hey| defines an elliptic sphere complex, which contains all

oriented hyperspheres of R which are orthogonal to the hyperplane v-x +h = 0.

(v) The point ¢ = [e] defines a parabolic sphere complex, which contains all
oriented hyperplanes of R" and is called the plane complex.
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A point z € RP""2\L not on the Lie quadric and its polar hyperplane z* together |,
induce an involution o, € Lie that fixes the point z, every point on z*, and preserves the

Lie quadric L:
o.(x) = |3 — 2<Z:’:f>2 :
(3,2

Thus, every non-parabolic sphere complex comes with an involution that fixes the sphe
complex.

Example 12.3.3. For the point complex defined by the point p, the corresponding
involution

[:Bla <o Tpt2, xn+3] = [xla <o T2, _xn-l-?)]
describes the orientation reversion of hyperspheres. Note that it preserves the plane
complex.

Furthermore, a non-parabolic sphere complex induces an invariant for pairs of oriented
hyperspheres. This invariant will eventually allow for a more general geometric description
of the different types of sphere complexes.

Definition 12.3.4. Let z = [2] € RP"2\ L. Then we define

_&9E L

L) = 1= .5

for any two points x = [z],y = [¢] € L.

The invariant 7, is projectively well-defined, in the sense that it does not depend on the
choice of homogeneous coordinate vectors for the points z, y, and z, and it is invariant
under Lie transformations that fix the point z.

Remark 12.3.5. Although we are interested in this invariant for points on the Lie quadric,
it can be extended to all of RP™"*2\ 21, It then satisfies

(1_[Z(xay))2 <£7?)>2

(1 - IZ(QZ',ZE))(l - Iz(y>y)) - <£7£> <Q,Zj>

for z = [2],y = [§] e RP™2\(L U z1).

Applying the involution o, to one of the arguments of I, results in a change of sign.
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Proposition 12.3.6. Let z € RP" "2\ L. Then

L(o.(z),y) = L(z,0.(y) = —L(z,y).

forall x,y € L.

Proof. We compute

L GDEH 2050
— G55

_@ey

= GG, LT k)

L(o.(z),y)

]

We now consider the specific example of the invariant I, corresponding to the point com-
plex. It is invariant under all Lie transformations that fix the point p, i.e., all Mobius
transformations, and turns out to be a signed version of the inversive distance from Mdbius
geometry.

Theorem 12.3.7. For two oriented hyperspheres represented by
5 :Ci+€0+(|Ci\2—7“i2)€oo+7’i€n+37 1=1,2

with Euclidean centers c1,co € R" and signed radii r,75 # 0 the point complex
invariant is given by

It further satisfies:

» I, € (—1,1) < the two oriented hyperspheres intersect. In this case I, = cos ¢
where ¢ € [0, 7] is the angle between the two oriented hyperspheres.

» I, = 1 < the two oriented hyperspheres touch with matching orientation (oriented
contact).

» [, = —1 < the two oriented hyperspheres touch with opposite orientation.

» I, € (00,—1) U (1,00) < the two oriented hyperspheres are disjoint.
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Proof. With the given representation of the hyperspheres we find

’ <§17 €n+3> <§27 en+3> 27’17”2

]

We now use the inversive distance to give a geometric interpretation for most sphere
complexes in Lie geometry. P

Theorem 12.3.8. Let z € RP""2, » # p such that the line p v z intersects the Lie ‘__Eclu

quadric in two points, i.e. has signature (+—). Denote by \
{z4, 2.} =(pv2)nL l /
the two intersection points (the two oriented hyperspheres corresponding to z, and z ~
only differ by their orientation). TS Ty
Then the sphere complex corresponding to the point z is given by the set of oriented
hyperspheres that have some fixed constant inversive distance I, to the oriented hyper-
sphere corresponding to z,, or equivalently, fixed constant inversive distance —1I, to

the oriented hypersphere corresponding to z_.
Furthermore, in this case the sphere complex is

» elliptic if I, € (—1,1),
» hyperbolic if I, € (—o0, —1) U (1, o0),

» parabolic if [, € {—1,1}.

Proof. The two points z; may be represented by
2 =Z2+e+ (|27 — R?) ew £ Renys,

with some R # 0, where we assumed that the ey-component of Z does not vanish.
The case with (Z,e,) = 0, which corresponds to z; being planes, may be treated
analogously.

Now the point z can be represented by

2=Z2+eo+ (|2 — R?) e + Kenia

97



286 LIE GEOMETRY

with some « € R, and for any point s € L represented by
$=5+eg+ (\§|2 — r2) € + TCpyis,
we find that the condition for it to lie on the sphere complex is given by
(2,5 =0 = (%,5, =1k,

where (-, ->p is the Lie scalar product of the projection from p.  Thus, the signed
inversive distance of z, and s is 1ven‘3{

=< ">r
I (Z S) —1_ Z+73 €n+5>€n+5> <§7’2>p _ ﬁ
e <Z+, en+3> <Sv 6n+3>, rR R

- s =\
The change z, — z_ is equivalent to E — — R which leads to I — —1I.
The distinction of the three types of sphere complexes in terms of the value of the
inversive distance is obtained by observing that

(2,2) >0, ifw? < R?
(3,8) <0, ifK? > R%,
(2,2) =0, ifw? = R>

Ry Y = LRt ot Rty s Sea? -

ten 2,2 8m ) Yatet. . ¥

r:“o’"‘” 7
Ymr€upr? -&"ﬂﬁﬁd:
= <;l">’-x“13ml

Examples 12.3.9.

(i)| For an elliptic sphere complex the line p v z always has signature (+—). Fur-
thermore, in this case we have I, € (—1,1). Thus, any elliptic sphere complex
is given by all oriented hyperspheres with constant angle to some fixed oriented
hypersphere.

(ii) For hyperbolic sphere complexes the line p v z can have signature (+—), (——), or
(—0). Only the first case is captured by Theorem 12.3.8. In Example 12.3.2 (ii),
the line has signature (——), while in Example 12.3.2 (iii) it has signature (—0).

(iii) Parabolic sphere complexes are captured by Theorem 12.3.8 if and only if z ¢ p*.
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12.4 Planar curves in Lie geometry

Let C
71 [a,0] > R?
be a smooth regular curve in the Euclidean plane. Its unit tangent and normal vector are J Vo7 il
given by ‘
T(t) = ﬁ, N(t) == JT(t), whereJ:=(!').
Y

We can lift the points of the curve as well as the oriented tangent lines to the Lie quadric.

sp(t) = (1) + €0 + |7 (1)]* €xs, <s.5 > =0
So(t) = N(t) — 2h(t)ew + e5.  or fagadbiu  Noxth =€

Neither a point nor an oriented line are Lie invariant objects, yet together they span a
contact element (an isotropic line in the Lie quadric). Thus, we can lift the curve 7y to a
one-parameter family of lines (a ruled surface) in the Lie quadric:

((t) = [sp(t)] v [54(1)]
The condition for the oriented lines to be the tangent lines of the curve becomes
(8,80 =% N =0, Tl G Y S (12.6)

. of . "5 =
or equivalently . o 2ee <. Sp2> 2 LS, 5.04<5p5p 7 ¢ o
(Sps8g) =7 N+h=0.

Proposition 12.4.1. Let

((t) = [s1(t)] v [s2(t)] = £ = RP*

be a smooth regular one-parameter family of lines in the Lie quadric that satisfies

(31,829 =0, (12.7)
or equivalently,
{s1,82) = 0. (12.8) ~
Then its sections with the point complex and plane (line) complex
[sp(t)] = €(t) N p™,
[s¢(t)] = €(t) n ¢*

define a planar curve in the Euclidean plane together with its oriented tangent lines.
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Proof. Firstly, note that equations (12.7)and (12.8) are equivalent since

(81,89) =0
implies
<31, 82> + <51, 82> = 0.

Secondly, this condition is invariant under a change of choice of points spanning the
lines /. Indeed, for
51 := M\81 + )\282,

So 1= 151 + U282

with smooth Ay, Ao, pt1, 12, we find

<§1, §2> = <).\181 + )\15‘1 + )'\282 + )\Qég,ulsl + /L252> = 0.

Thus, in particular

(Sps 8¢9 =0
which by (12.6) is equivalent to the claimed tangency condition. 0
Lemma 12.4.2. Let %
Ut) = [s1(0)] v [52(8)] = £ = RP?

be a smooth regular one-parameter family of lines in the Lie quadric. Then the following
are equivalent:

(i) {$1,82) =0.
(ii) (51,35 = 0.
(iii) [s1], [s2], [$1], [$2] span a plane.
(iv) There exists a unique curve s(t) = A\ (t)s1(t) + Aa(t)s2(t) such that
[s] v [$] = ¢.

The curve |s] is called the edge of regression of /.

Remark 12.4.3.

» Conditions (iii) and (iv) are also equivalent for a general ruled surface in a projective
space (not necessarily contained in a quadric). A ruled surface satisfying condition
(iii) or (iv) is called a developable surface. The edge of regression is a curve tangent
to its rulings.
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» The equivalence (iii) and (iv) to (i) and (ii) only holds for a ruled surface contained

in the Lie quadric in RP%.
Proposition 12.4.4. Let v a smooth regular curve in R%. Let = X
yel
£62) = [5p(0)] v [s4(0)] /

with ,

sp(t) = (1) + o + [V(®)[" co;

sq(t) == N(t) — 2h(t)ex + es. J

A

be its lift to the Lie quadric L = RP*, and let cl) =i+ vty , vl i<y

s(t) = c(t) + e + (Hc(t)”2 —r(t)?)eqw + 7(t)es

be the lift of its osculating circles. Then [s(t)] is the edge of regression of the developabl
surface ((t), i.e.
[s] v [s] =¢.

G ++--)
Proof. We first check that
S =8p+ T84
and thus [s] € /. S~ L =¢29)
As a linear combination of s, and s, the curve s satsifies Sy 4t =(+00) , %], 1 gt
G, 89y = (3 50) = 0, 2inL <y

and thus [s] € ¢*. We check that furthermore, [$] € £, and thus [s] € £. Indeed, with
s=c¢+2(¢-c—rr)eqn +res

we find )
@8y = = () =[5+ N + N = () =0,

where we used | N[> = 1 and 4 = —rN. O

Corollary 12.4.5. The osculating circles of a planar curve are Lie invariant.
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12.5 Surfaces in Lie geometry

Let
f:RP>U - R}

be a smooth regular parametrized surface patch. Let

n:U — S?

be the unit normal field of f such that at every point (u,v) € U

L duxds
| fur % fol
Furthermore, let A be such that
n-f+h=0.

At each point of the surface this point together with the oriented tangent plane defines a
contact element. The lift of f to the Lie quadric is given by the two-parameter family of
isotropic lines representing these contact elements:

(u,v) = [sp(u, )] v [54(u, V)]

where )
sp(u,v) = f(u,v) +eo + || f(u,v)] e,
Sq(u,v) = n(u,v) — 2h(u,v)ey, + .

The conditions for oriented planes to be tangent planes of the surface becomes

<au8p7 Sq> = fu = O,
(OpSp,Sq) = fo-m =0,

or equivalently,
(Sps Ousq) = (Sp; OuSq) = 0.

Proposition 12.5.1. Let
O(u,v) = [s1(u,v)] v [s2(u,v)] = £ < RP®
be a smooth regular two-parameter family of lines in the Lie quadric that satisfies
(Ous1,82) = {Ov51,52) = 0, (12.9)

or equivalently,
<51, 8u52> = <Sl, av82> = O, (1210)
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Then its sections with the point complex and plane complex

[sp(u, 0)] = £, v) N p™,
[5q(u,v)] = €(u,v) N g+

define a smooth regular surface in Euclidean space R? together with its oriented tangent
planes.

Definition 12.5.2. Let

l(u,v) = [s1(u,v)] v [s2(u,v)] € RP"

be a smooth regular two-parameter family of lines in a projective space RP". Then ¢
is called a (torsal) line congruence if the two ruled surfaces given by v — ¢(u,v) and /
v — {(u,v) are developable, i.e.,

[s1], [s2], [Ous1], [Ous2] span a plane, and
[81]7 [52]7 [avsl]a [@,82] Span a plane.

Theorem 12.5.3. Let f : R2 > U — R? be a parametrized surface and
(u,v) = [sp(u, v)] v [s4(u,v)]
be its lift to the Lie quadric L < RP®, where

sp(u,v) = f(u,v) + €9 + ||f(uaU)H2eoo7
Sq(u,v) == n(u,v) — 2h(u, v)ey, + €.

If f is a curvature line parametrization then ( is a (torsal) line congruence.
Vice versa, let

O(u,v) = [s1(u,v)] v [s2(u,v)] = £ = RP®
be a (torsal) line congruence in the Lie quadric. Then its section with the point complex
[s,(u,v)] == £(u,v) N p*

is a curvature line parametrization.
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Proof. Let f be a parametrized surface. Then

auSp = fu + 2(fu ’ f)eom

by
aUSq =Ny — 2hueoo = Ty, + 2(f : nu)eoo. " N h‘..ﬁ 2 d
P
Thus, / /et
0-5,+05;+ K10uSp — OpSq = 0, - ~ L-Ph..sf(‘ﬁ

where we used n,, = k1 f, for some k1, since f is a curvature line parametrization.
Similarly, for the v direction.

Now let ¢ be a (torsal) line congruence. We first need to check that conditions
(12.9) are satisfied, so that the ¢ actually defines a surface. Indeed, since / is a (torsal)
line congruence there exist «, 3, 7 such that

OuS2 = S + BSo + Y0uS1.

Thus,
<81, &‘u32> = 0.

Similarly,

<31; av32> =0.

By Lemma 12.5.4 the points

[s1], [s2], [Qusi1], [Ousal;, [Ous1], [Ous2], [Culusi], [Oulysa]

lie in a 3-dimensional space II, which here is given by

T = ([s1] v [s2])"

Thus, the four points
[s], [Ous], [Ovs], [Cudys] € 11

lie in II for any linear combination s = A;s; 4+ A2s3 such as s,. On the other hand [s,]
lies in the hyperplane p*. The intersection II N p* is 2-dimensional. Thus, the four
points

[sp]; [Ouspl; [Cuspl, [Cuusp] € T N P

liein a plane, i.e., the parametrization [ s, ] is conjugate. But a conjugate parametrization
in the Mdbius quadric represents a curvature line parametrization in R3. [

Lemma 12.5.4. Let
l(u,v) = [s1(u,v)] v [s2(u,v)] = RP"

be a (torsal) line congruence. Then

[s1], [s2], [Qus1], [Ous2], [Ovs1], [Ovs2], [Oulus1], [Oulys2]
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span a 3-dimensional subspace.

Proof. By the condition for a (torsal) line congruence the points

[s1], [s2], [Ous1], [Ousa], [Ous1], [Onsa]

lie in a 3-dimensional subspace II. Thus, we need to show [0, 0y51], [0u0y51] € TL.
There exist «, 3,7, @, 3,7 such that

OuS2 = 81389770451,

OypSo = (S1389770,S1.
Cross-differentiation leads to

0u0ypSo = OpiS1 + 0pfSo + a0yS1 + POyS2 + 0y Y0uS1 + Y0u0pS1,
OulpSy = Ou@S1 + Oufiss + Aust + BOusa + 0uV0ps1 + F0ulus1,

which shows that [,,0,s1] € II.  Similarly, [0, 0,s5] € 1. O

Corollary 12.5.5. Curvature line parametrizations are Lie invariant.
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Chapter 13

Plucker geometry

Pliicker geometry is the geometry of lines in the 3-dimensional real projective space RP?
and their incidences. From the fundamental theorem of projective geometry we know that
the bijective transformations of RP? that map lines to lines and preserve their incidences
are the projective transformations. Yet Pliicker geometry comes with a different model of
projective geometry in which the lines instead of the points (or by duality the planes) are
the fundamental objects. This model is based on exterior calculus, which we introduce in
arbitrary dimensions, and which may be used to generally describe k-dimensional projective
subspaces in an n-dimensional projective space.

13.1 Exterior calculus

A vector a € V' (an element of a vector space V') may be thought of representing a weighted
version of the 1-dimensional linear subspace that it spans. The weight can be interpreted
as a length on that line compared to some unit length. Then a vector space contains some
weighted 1-dimensional linear subspaces and all of its linear combinations.

The exterior product a A b of two linearly independent vectors a, b € V' may be thought
of a weighted version of the 2-dimensional linear subspace they span. The weight can be
interpreted as an area in that plane compared to some unit area. The exterior products of
all vectors of a vector space together with its linear combinations constitute a vector space
themselves AV

This construction can be formalized by the following definition. As in the case of vector
spaces, more important than the definition of the exterior powers of a vector space are its
properties, which allow for the given interpretation.

Definition 13.1.1. Let V' be a vector space over the field F = R or F = C, then a
multilinear map
m:Vx---xV ->F
—_——

295

108



296 PLUCKER GEOMETRY

that satisfies
M(V1, .-y Uiy ooy Ujy ooy U) = —M(V1,y ..o, Vg e vy gy e o, Ug)

for all vy,...,v, € V is called an alternating multilinear form of degree k (or an
alternating k-form) on V.

Example 13.1.2. On the vector space " the determinant
det(vy -+ vy)
is an alternating n-form.
The set of alternating multilinear forms of degree k£ on V' is a vector space of dimen-

sion (Z) If by,...,b, is a basis of V, then an alternating multilinear form m is uniquely
determined by the values

m(b“,,blk), {Zl,,lk}c {1,,H}Wlth21 <o < e < 1.

Alternating 1-forms are just linear forms and thus constitute the dual vector space of V.
Alternating O-forms may be identified with elements from the field F.

Definition 13.1.3. Let I be a finite dimensional vector space. Then the dual space of
the vector space of alternating k-forms on V' is called the k-th exterior power of V and
denoted by

%

Elements of A"V are called k-vectors.

In particular NV =F, AN'V =V, and
dm ANV = ().
im ( k)

Definition 13.1.4. Let vy, --- , v € V. Then their exterior product (or wedge product)
kv, .
vy A -+ A v € NV is defined by

(v1 A - Avg)(m) =m(vy, ..., vx)

for any alternating k-form m on V.
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The exterior product has the following characterizing properties. The map

k
Vx--xV AV, (U1, .., UE) > UL A oo A U
—_—
k

is linear in every variable, and alternating.

Furthermore, if by, ..., b, is a basis of V/, then the set of
biy Ao A by,
for {i1,...,ix} < {1,...,n} withi; < --- < i} is a basis of N'V.
Example 13.1.5. AR
(i) V = R2. Let ey, e; € R? be the canonical basis. ]
e

4
» N\’R2 = R with basis 1.

» A'R2 = R? with basis e1, €a.

A2 . .
» dim /A'R? = 1 with basis e; A e5 = —es A €. Or& 2 ~oad =) arn =0
Let a = aje; + ases, b = biey + bees € R? be two vectors. Then

a b= (are; + azes) A (breg + baes)
= a1b161 N €1 + CL1Z72€1 N € + agbleg N €1+ angeg N\ €9
= (a1b2 — a2b1)€1 N\ €9

=det(‘;; 2;)61 A €.

The coefficient are the area of the parallelogram spanned by @ and b.
Q
3

(ii) V = R3. Let ey, e, e3 € R? be the canonical basis.
» A’R3 = R with basis 1.
» A'R3 = R3 with basis e, e, e3. e St
» dim A’R3 = 3 with basis e; A e, €9 A €3,63 A €1
» dim /BR3 = 1 with basis ¢; A ey A e3.

Let a = aje; + ases + ages, b = bie; + baey + bses € R3 be two vectors. Then

a nb=(are; + ases + ages) A (brey + baey + bses)

= (a1b2 — agbl)el A €9 + (a2b3 — (l3b2)62 A €3 + (a3b1 — a1b3)€3 N €1,
L__/-EY"_J
8
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The coeflicients are areas of the projections of the parallelogram spanned by a
and b to the coordinate planes. With ¢ = cie; + o€y + c3es € R3 we obtain

a1 b1 ¢1
CL/\b/\CZdet<a26262>€1/\62/\63
as bz c3
The coefficient is the volume of the parallelepiped spanned by a, b, and c. VoV

 §

L 3
The exterior product vanishes if any two entries are the same. V,a_ av;a weA A Ay, = ©
-7

o\
Example 13.1.6. Leta,b € R", and @ == a + 1b. ‘F\/{g R-B
inb=(a+i)Ab=anb+ibab=anb. ///'%‘
Note that the two parallelgrams spanned by a, b and by a, b have the same area.
Thus, we can always add a linear combination of, say vs, . .., vy to v; without changing the
exterior product:
(V1 + Aoy + -+ + AgUE) AU A -+ - AU =V1 AUz Aves A V.

More generally:

Proposition 13.1.7. Let vy, ..., v, € V. Then

VA Av=0 < wvy,..., v linearly dependent.

Proof. Let vq,. .., v be linearly dependent. Then there exists an 7 € {1,...,k} such
that

V; = Z )\jvj,

j#i
and thus,
v1/\---Avi/\---AkaZAjvl/\---AvjA---/\vj/\---vk:().
j¢z o ;(0 /
Vice versa, let vy, . .., v; be linearly independent. Then they can be extended to a

basis of V/, and thus

Vr N - N Uk
is a basis vector of /\kV, which cannot be 0. U]
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Definition 13.1.8. A k-vector a € A"V that can be expressed as the wedge product of
k 1-vectors, i.e., there exists vy, ..., v, € V such that

a =TV N+ NV,

is called decomposable, or a k-blade.

Not every k-vector a € NV is decomposable. If a € NV is decomposable, then certainly
ana=0.

Starting at dimension n = dim V' = 4 we can create a 2-vector which does not satisfy this
property:

Example 13.1.9. Let vy, vy, v3, v4 € V be linearly independent. Then

a:= V1 AUz + U3s A Uy

o418z (Uaviry, avy) Alvaavy + v_.,"V.,') 2 VAV, AL AV T Ay Ay avy
: e
satisfies o !

]
+V‘4/,‘Av4|v‘_+|,z4\ a
ana=20; Avy Avg A vy # 0, .._“LJ:‘-:"'_,

=0
and therefore is not decomposable.

We can easily extend the exterior product to multi-vectors which are decomposable: For
ap-bladea =v; A+ Av, e NV and a g-blade b = w; A --- A w, € N'V the exterior
product a A be N7V is defined in the obvious way

anb=viA-v, AW A AWy

From there it can be extended to arbitrary multi-vectors a € /\’V,b € A\'V by linearity. If
bi,...,b, € Vis abasis, then

a = Z Ail...ipbil ANRIRIVAN bip

1< <lp

for some ;. ;, € F and

b= D b A A Dy,

J1<<Jq

for some 15, ;, € F. We define a & NIV by

aAnb:= Z Z Ail---iplujl---jqbil N bip A bjl A s A qu,

1 <--<ip J1<<qq

112



300 PLUCKER GEOMETRY

which does not depend on the chosen basis. The resulting general exterior product is still
linear by definition.

For 1-vectors the exterior product is alternating. Thus, forap-bladea = vi A--- A v, €
N’V and a g-blade b = wy A -+ A w, € NV this leads to

AaANb=0VI A AU AW A AWy

= (—DPwi AU A AU, AW A AWy

= (=1)PMwy A AWy AV A A
(=1)P2b A a,

which again extends to general multi-vectors by linearity.
Thus, we have obtained the following general properties of the exterior product:

Proposition 13.1.10. The exterior product
ANV x NV - NTy
satisfies the following properties:
(i) Forae NV, be N'V,be NV
an(barc)=(and)Ac
(ii) Forae NV, b,ce NV

an(b+c)=anb+anc

(iii) Forae NV, b,ce NV

anb=(=1)Pbna.

Example 13.1.11 (Cramer’s rule). Let a, b € R? linearly independent, and

T = aa+ fbe R
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To determine the coefficients we take the exterior products

rAa=pFbna

Tz Ab=caaAb.

Since the 2-blades appearing on both sides are linearly dependent their quotient is well
defined, and we obtain

7
Caab det(Z) ﬁ_an_da@%g i
- - a1 b1\’ o o ap b1’ -~ ’
anb et (5}) anb et (3F)
which is Cramer’s rule for solving the linear system . - e
. '
£ /’
aq b1 ay (X ./
as by B)  \z)’ 'I/
7/
and, thus, leads to a geometric interpretation of it. > -
= oG

¥ab = Zabz=warb

Remark 13.1.12. The direct sum
NVeoANVe. - - eoNV

is called the Grassmann algebra of V' and constitutes a vector space of dimension 2".
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13.2 Grassmannians and the Pliicker embedding

The projective subspaces of a projective space P(V') are represented by the linear subspaces
of the underlying vector space V.

Definition 13.2.1. Let V' be a vector space, k € N. Then the Grassmannian Gr(k, V)

is the set of all k-dimensional linear subspaces of V.

In particular,
Gr(1,V) =P(V).

We can now take the decomposable vectors of th k-th exterior power of V' to represent
k-dimensional linear subspaces of V: Let U € Gr(k, V') be a k-dimensional linear subspace
of V' Then there always exist k vectors vy, ..., v € V such that

U = span{vy, ..., v}

Furthermore, vy, ..., v} are linearly independent. Now let 01, ..., U; be another k vectors
such that
U = span{vy, ..., Ux}.

Since vy, ..., v are a basis in U, we have

v = Zk: QU
j=1
for some «a;; € R. With A := () j=1,.x we find
O#U A AU,=detAvy A -+ Ay
where det A # 0 since U; A --+ A U, # 0. Thus,
[G1 A ATk = [v1 A A vg] € PNV,
and the following map is well defined.
Definition 13.2.2. The map
v: Gr(k,V) — P(N'V), span{vy, ..., vg} — [v1 A -+ A V]

is called the Pliicker embedding.
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Proposition 13.2.3. The Pliicker embedding is injective, and surjective onto the subset
represented by decomposable k-vectors.

13.2.1 Decomposable 2-vectors

Let V' be a finite dimensional vector space. We have seen that a necessary condition for a
k .
k-vector a € /\"V to be decomposable is O2Voh AV |V, . Ve eV

had )
ana=0e NV

In the case & = 2, this condition is also sufficient.
We start with the case dim V' = 3, in which all 2-vectors are decomposable.

Lemma 13.2.4. Let dim V' = 3. Then every 2-vector a € NV is decomposable.

Proof. Let a € N'V. Consider the linear map
AV - Ny, Vs a A .

Since dim A’V = 1, we have dimker A > 2. Let vy, v, € ker A linearly independent
and extend them to a basis vy, v9, v3 € V. Then

a = a1V2 N U3 + QU3 A U1 + A3V1 A Vs.

Now
0= A(Ul) = a1 U1 N\ Uy N\ Vs,
—_——

0
and thus a; = 0. Similarly, a; = 0. Therefore,

a = asvi; N Uy,

which is decomposable. [

Theorem 13.2.5.
ae NV decomposable < anra=0¢€ NV
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=)

(=)

Proof.

Leta e NV be decomposable, i.e.,
a = UV N\ Uy
with vy, v9 € V. Then

ana=1uv, AUy AV AUy =0.

Letae NV witha A a = 0.
In the cases dim V' = 0 and dim V' = 1, we have dim A’V = 0.

In the case dimV = 2, we have dim NV = 1. If v1,v9 € V is a basis, then
0# v Ay € A’V and thus all 2-vectores are demposable.

The case dim V' = 3 has been treated separately in Lemma 13.2.4.

We continue by induction in the dimension of V. Assume the statement is true for all
dimensions dim V' < n, and consider the case dim V' = n+1. Letvy, ..., v, € V
be a basis. Then

a = Z AN
g<i<j<n+1
n
= Z A n+1V; | ANUpy1 + Z QijV; A Vj
i=1 i<i<j<n
- >

g
=u a

=UA Ups1+ Q

where u € U and @ € N°U with U = span{vy, ..., v,}, dimU = n.

Now
O=ana
= (UAUpp1 + @) A (UA Vg + Q)

=UAUpt1l AUA Upy1 F20ANUA Upy1 +a A G
A J
'

=0

The vector v, does neither appear in the expansion of @ A w nor a A a, thus we
obtain
anu=0, ana=0.

By induction a A a = 0 implies
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with some w1, us € V. Then the first equation becomes
up A ug Au = 0.
Thus, by Proposition 13.1.7, uy, us, u are linearly dependent, i.e.,
AU + A + Au =0

with some A1, Ay, A € F which are not all 0.

If A = 0, then wuy, us are linearly dependent, and thus a = u; A us = 0. Then
a=1uAnUpyt,

which is decomposable.

If A # 0 we can write
U = (U1 + fols

and thus
a = [1UL N Upt1 + MUz A Upy1 + U A Us.

This is the 3-dimensional case, which by induction, or by Lemma 13.2.4, is always
decomposable.

]

13.3 The Klein-Pliicker quadric

We now look at the Pliicker embedding in the case VV = R*. A line ¢ = RP? is represented

by a 2-dimensional linear subspace U € Gr(2,R*), ¢ = P(U). By means of the Pliicker

embedding, this subspace, in turn, is represented by a decomposable 2-vector a € NR4,
Let e1, €9, 3, e4 € R* be the canonical basis. Then

a = A2€1 A €3 + A1361 A €3 + A4€1 A €4 + Aza3 A €4 + Asnes A €9 + )\2362_ N e3,

and
a N a= 2()\12)\34 + )\13)\42 + )\14)\23) €1 N €2 N\ €3 N €4.

-

={a,a)

where (-, -) is a quadratic form on the 6-dimensional vector space N'R*. Thus, the decom-
posable 2-vectors of R* are given by the kernel of the quadratic form (-, -):

arna=0 < {a,ay=0.
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Definition 13.3.1. The Klein-Pliicker quadric is the quadric

Q= {[a] e P(NRY) ‘ {a,a) = 0} < P(A’RY) = RP®.
\_'-——Y_J
&7 crae®
In the homogeneous coordinates [ 12, As4, A13, Aa2, A14, A2g| the Gram-matrix of the Pliicker
quadric takes the form

01
10
01
10
01
10
from which we see that Q is a quadric of neutral signature (+ + + — ——), and thus contains

isotropic lines and planes.

Theorem 13.3.2. By the Pliicker embedding, lines in RP3 are in one-to-one corre-
spondence with points on the Pliicker quadric Q < P(/\2R4), such that two lines
(1,05 < RP? intersect if and only if the line through their two corresponding points
[a1], [az] € Q is isotropic. i.e.,

<CL1, CL2> = 0.

Proof. The one-to-one correspondence follows from the previous discussions and
Proposition 13.2.3.

Let {1, {5 = RP3 be two lines that intersect in the point [u] € RP3. Let [uy], [us2] €
RP3 such that

b = [u] v [u], Uy = [u] v [us].

Then the line [a1] v [as] = P(A’R?) is spanned by u A u; and u A us. Thus, a point
[z] € [a1] v [az] is of the form

T =MuUA U + At AUy =u A (Ajug + Aaug),

which is decomposable. Therefore, [x] € Q. 4, s
Let ¢, /5 — RP? be two lines that do not intersect. Then RP3 = ¢, v ¢, and there 0‘{1\
exists a basis wu;, us, us, us € R* such that Dy

bo=[w]vw], b= [u] v [m] u‘,[,‘\J\
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Now a point [z] € [a1] v [az] is represented by
T = AU A U + [Uug A Uy,

and thus
TALT =2 LU AUz AU A Uy .
- -7

20
This only vanishes for A = 0 or i = 0. Therefore, the line [a;] v [az] intersects quadric
@ in exactly two points, and thus, is not isotropic. U

Corollary 13.3.3. A non-degenerate non-empty planar section of the Pliicker quadric
corresponds to one of the two one-parameter families of rulings of a one-sheeted
hyperboloid in RP?.

The intersection with its polar plane corresponds to the other one-parameter family
of rulings.

Remark 13.3.4. 4
» All lines in RP? that lie in a common plane and intersect in a common plane j~—
correspond to an isotropic line in the Pliicker quadric. %

Pliicker quadric. Such isotropic plane are called a-planes. Two a-planes always

» All lines in RP? through a common point correspond to an isotropic plane in the l f
intersect in a point.

correspond to an isotropic plane in the Pliicker quadric. Such isotropic plane are

» By duality, all lines in RP?3 through that lie in a common plane correspond also @
called -planes. Two (3-planes always intersect in a point.

» Each isotropic plane in the Pliicker quadric is either an a-plane or a 3-plane. Gener-
ically, an a-plane and a $-plane intersect. The special case in which they intersect
(which is always in an isotropic line), occurs when the point that corresponds to the
a-plane lies in the plane corresponding to the S-plane.
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