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Week 2: Möbius transformations, hyperbolic model, associated points,
Miquel’s theorem 18

Week 3: Curves and surfaces in Möbius geometry 35
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Week 1: Möbius geometry, projective model
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Chapter 10

Möbius geometry

10.1 Elementary model

Figure 10.1. Left: Inversion in a hypersphere. Right: Reflection in a hyperplane.

Consider Rn with the standard Euclidean scalar product xx, yy “ řn
1 xiyi.

Definition 10.1.1. Inversion in a hypersphere with center c and radius r is the map

Rn Y t8u Ñ Rnt8u, x ÞÑ x1 “ c ` r2

}x ´ c}2 px ´ cq, c Ø 8.

Note that x1 lies on the same ray emanating from c and }x ´ c} ¨ }x1 ´ c} “ r2. Inversion
in a sphere is an involution on Rn, except that the center c has no image and no preimage in
Rn. We fix this by adding one extra point, 8, to Rn and we declare it to be the image and
preimage of c.

Theorem 10.1.2. Inversions in spheres are conformal and map hyperspheres (or hy-
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198 Möbius geometry

perplanes) to hyperspheres (or hyperplanes).

Proof 1. Let us first give an elementary geometric proof. Since the geometry is
rotationally symmetric to prove the claim about the hyperspheres it is enough to prove
it for circles in a plane. The case of straight lines is limiting and the proof is analogous.
Let ℓ be the line through the inversion circle S0 and a circle S, and A and B be the
intersection points of S and ℓ. the cirlce S can be characterized as the set of vertices C
of all right angle triangles ∆ABC, see Fig. 10.2 (left). Let A1, B1, C 1 be the images of
A,B,C under the reflection in the sphere S0 with the center O. We have

|OA||OA1| “ |OB||OB1| “ |OC||OC 1|,
which implies the similarity of the triangles ∆OCB „ ∆OB1C 1 and ∆OCA „
∆OA1C 1. The corresponding angles are equal =ABC “ =B1C 1O, =OAC “
=A1C 1O. Thus we obtain

=A1C 1B1 “ =A1C 1O ´ =B1C 1O “ =OAC ´ =ABC “ =BCA “ π

2
.

We see that the point C 1 lies on the circles with the diameter A1B1.
To prove the conformality consider two intersecting lines ℓ1 and ℓ2. Their images

under inversion i in a hypersphere are two circles ipℓ1q and ipℓ2q passing through the
center O of the inversion sphere, see Fig. 10.2 (right). For the symmetry reasons the
tangent lines ℓk to the circles ipℓkq at O are parallel to the corresponding lines ℓk. Thus
the circles ipℓkq intersect at the same angle as the lines ℓk.

Figure 10.2. Left: Inversion in a circle. Circles are mapped to circles. Right: To the proof of
the conformality.
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10.1 Elementary model 199

Proof 2. We give a second algebraic/analytic proof for both statements in the case of
inversions in the unit sphere:

We show that the inversion in the unit sphere maps spheres and planes to spheres
and planes. One could consider hyperspheres and hyperplanes separately but we will
treat both cases simultaneously. Any hypersphere or hyperplane is determined by an
equation of the form

p}x}2 ´ 2xv, xy ` q “ 0 with }v}2 ´ pq ą 0.

If p “ 0, the inequality implies v “ 0 so the equation describes a hyperplane. If p “ 0,
it describes a hypersphere. Indeed, divide through by p to obtain

0 “ }x}2 ´ 2x1
p
v, xy ` q

p
“ }x ´ 1

p
v}2 ´ 1

p2
}v}2 ` q

p
.

This is a sphere with center 1
p
v and radius

b
1
p2

}v}2 ´ q
p

. (The assumed inequality
ensures that the expression under the square root is positive.) Now for x1 “ 1

}x}2 x one
obtains

p}x1}2 ´ 2xv, x1y ` q “ 0 ðñ q}x}2 ´ 2xv, xy ` p “ 0.

So x1 is contained in a particular hyperplane or hypersphere if and only if x is contained
in some other hyperplane or hypersphere.

We show that inversion in the unit sphere is conformal. Let t ÞÑ γptq, t ÞÑ ηptq
be two parameterized curves intersecting in γpt0q “ ηpt0q. The intersection angle α is
determined by

cosα “ xγ1pt0q, η1pt0qy
}γ1pt0q}}η1pt0q} .

Let γ̂ “ 1
xγ,γy γ, η̂ “ 1

xη,ηy η, be the image curves after inversion in the unit sphere. One
finds that

γ̂1 “ 1

xγ, γy2
`xγ, γyγ1 ´ 2xγ, γ1yγ˘,

and similarly for η̂1. From this one obtains xγ̂1, γ̂1y “ 1
xγ,γy2 xγ1, γ1y, so }γ̂1} “ 1

}γ}2 }γ1},
and in the same way }η̂1} “ 1

}η}2 }η1}. Using γpt0q “ ηpt0q “: p one finds that

xγ̂1pt0q, η̂1pt0qy “ 1

}p}4 xγ1pt0q, η1pt0qy

and hence xγ1pt0q, η1pt0qy
}γ1pt0q}}η1pt0q} “ xγ̂1pt0q, η̂1pt0qy

}γ̂1pt0q}}η̂1pt0q}
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200 Möbius geometry

Reflection in a hyperplane tx : xx ´ a, vy “ 0u is the map

x ÞÝÑ x1 “ x ´ 2
xx ´ a, vy

xv, vy v.

We also declare that reflections in hyperplanes map 8 to 8 and thus are involutions on
Rn Y t8u. We consider them to be special cases of inversions in a hypersphere when
the hypersphere becomes a hyperplane. And same as inversions in hyperspheres, they are
conformal and map hyperspheres (or hyperplanes) to hyperspheres (or hyperplanes).

Definition 10.1.3. A Möbius transformation ofRnYt8u is a composition of inversions
in hyperspheres and reflections in hyperplanes. The Möbius transformations form a
group called the Möbius group denoted by Mobpnq.

A Möbius transformation is orientation reversing or preserving depending on whether it
is the composition of an odd or even number of reflections. The subgroup of orientation
preserving Möbius transformations is called the special Möbius group and denoted by
SMobpnq or Mob`pnq.

The Möbius group contains all similarity transformations:
• A translation x ÞÑ x ` v is the composition of two reflections in parallel hyperplanes.
• An orthogonal transformation x ÞÑ Ax with A P Opnq is the composition of at most n

reflections in hyperplanes through the origin, see Appendix ??
• A scaling transformation x ÞÑ λx with λ ą 0 is the composition of a reflection in the

unit sphere followed by a reflection in a sphere with center 0 and radius
?
λ.

Corollary 10.1.4. A Möbius transformation is conformal and maps any hyperplane or
hypersphere to a hyperplane or hypersphere.

From now on we will consider hyperplanes as a special cases of hyperspheres that
contain 8. So hypersphere will mean hypersphere or hyperplane.

Theorem 10.1.5 (Fundamental theorem of Möbius geometry). Any bijective map
f : Rn Y t8u Ñ Rn Y t8u which maps hyperspheres to hyperspheres is a Möbius
transformation.

Proof. (i) Suppose fp8q “ 8. Then f maps hyperplanes to hyperplanes. Then it also
maps lines to lines, because a line is the intersection of n ´ 1 hyperplanes. By the
fundamental theorem of affine geometry (see 3.8.7), the restriction f |Rn is an affine
transformation. Since it also maps spheres to spheres it must be a similarity.
(ii) Suppose fp8q “ c “ 8. Let g be the inversion in a sphere with center c. Then
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10.1 Elementary model 201

g ˝f also maps hyperspheres to hyperspheres and also 8 to 8. By (iii) it is a similarity
transformation, so f “ g ˝ g ˝ f is a Möbius transformation.

Definition 10.1.6. The map

σ : Sn Ñ Rn,

¨
˚̋

x1
...

xn`1

˛
‹‚ ÞÑ 1

1 ´ xn`1

¨
˚̋
x1
...
xn

˛
‹‚. (10.1)

is called stereographic projection.

Proposition 10.1.7. The stereographic projection σ is the restriction of the inversion

i : Rn`1 Ñ Rn`1, p ÞÑ en`1 ´ 2
p ´ en`1

}p ´ en`1}2 .

to the unit sphere Sn.

Corollary 10.1.8. Stereographic projection is conformal and maps hyperspheres of Sn

(hyperplanar sections) to hyperspheres (or hyperplanes) of Rn.

It is even more natural to consider Möbius geometry in the unit sphere

Sn “ ty P Rn`1|xy, yy “ 1u.

Indeed, identifying Rn Y t8u with Sn by the stereographic projection, we see that spheres
in Rn are mapped to spheres in Sn, and hyperplanes are mapped to hyperspheres in Sn

passing through the north pole y “ en`1, which is the center of the stereographic projection.
There are several equivalent representations of hypersheres S Ă Sn, see Fig. 10.3:

§ S “ Sn X Ŝ is the intersection of Sn with an orthogonal n-dimensional sphere Ŝ,
centered at the point s located outside the unit ball. The hypersphere S is uniquelly
represented by this point s P Rn`1 with }s} ą 1.

§ S “ Sn X P is the intersection of Sn with the hyperplane P “ ty P Rn`1|xy, sy “ 1u,
polar to s with respect to Sn,

§ S is the contact set of the cone touching the sphere Sn with the tip s.

7



202 Möbius geometry

Möbious transformations ofSn are generated by inversions in hyperspheres Ŝ orthogonal
to Sn:

y ÞÑ s ` ρ2

}y ´ s}2 py ´ sq,

where ρ is the radius of Ŝ. They preserve Sn, and map hyperspheres to hyperspheres. Their
action, similar to the inversions in the spheres centered in Rn, is extended to the whole
Rn`1.

Figure 10.3. Möbius geometry in the sphere Sn. A hypersphere S as the intersection of Sn

with an orthogonal sphere Ŝ, with the hyperplane P polar to the center s of Ŝ, and the tangent
cone with the tip at s. It is uniquelly represented by a point s outside the unit ball.

10.2 Two-dimensional Möbius geometry
This case is special because we can identify R2 with C, and R2 Y t8u with the extended
complex plane pC “ C Y t8u, which is the same as CP1, the complex projective line
(see Example 2.3.2). The orientation preserving and reversing similarity transformations
are z ÞÑ az ` b and z ÞÑ az̄ ` b (a “ 0), reflection in the real line is z ÞÑ z̄, and inversion
in the unit circle |z| “ 1 is the map z ÞÑ z

|z|2 “ 1
z̄
.

Proposition 10.2.1. The orientation preserving and reversing Möbius transformations
of pC “ CP1 are precisely the maps of the form

z ÞÝÑ az ` b

cz ` d
and z ÞÝÑ az̄ ` b

cz̄ ` d
with det

`
a b
c d

˘ “ ad ´ bc “ 0.

The corresponding group of orientation preserving Möbius transformations is (cf. 3.2.3):

SMobp2q “ PGLp2,Cq

8



10.2 Two-dimensional Möbius geometry 203

Proof. First, these transformations form a group: The transformations of the first kind
are the projective transformations of CP1, and the transformations of the second kind
are compositions of these with complex conjugation z ÞÑ z̄. (Note that first performing
a transformation of the first kind and then complex conjugation also leads to a trans-
formation of the second kind.) This groups contains the similarity transformations and
inversion in the unit sphere, so it contains the Möbius group. On the other hand, it is
not bigger than the Möbius group, because any of these transformations is a compo-
sition of reflections and similarity transformations: If c “ 0, they are just similarity
transformations. Otherwise, this follows from

az ` b

cz ` d
“ a

c
` bc ´ ad

cpcz ` dq
and the equation obtained by replacing z by z̄.

This has the following immediate consequences:

Corollary 10.2.2.
(i) The orientation preserving Möbius transformations of the plane preserve the com-

plex cross ratio crpz1, z2, z3, z4q “ pz1´z2qpz3´z4q
pz2´z3qpz4´z1q . If f is an orientation reversing

Möbius transformation, then crpfpz1q, fpz2q, fpz3q, fpz4qq “ crpz1, z2, z3, z4q.
(ii) For any three points z1, z2, z3 and any three points w1, w2, w3, there is a unique

orientation preserving Möbius transformation f P PGLp2,Cq with fpziq “ wi.
There is also a unique orientation reversing one mapping zi ÞÑ wi, namely f
followed by an inversion in the circle through w1, w2, w3.

Proposition 10.2.3. Four points z1, z2, z3, z4 lie on a circle if their cross ratio is real.
Moreover, they are in that cyclic order on the circle if crpz1, z2, z3, z4q ă 0.

Proof. A map z ÞÑ az`b
cz`d

is a projective transformation of CP1 in affine coordinate.
It maps circles to circles and preserves cross-ratios. Moreover there exists the one
mapping z1, z2, z3 to 0, 1,8. The circle determined by z1, z2, z3 is then mapped to the
real line. Let w be the image of z4. The cross-ratio crpz1, z2, z3, z4q “ crp0, 1,8, wq is
real if and only if w P R, or equivalently, z1, z2, z3, z4 lie on a circle. The order of the
points can be easily controlled for their images 0, 1,8, w on the real line.
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204 Möbius geometry

10.3 The projective model of Möbius geometry
As we have seen at the end of Section 10.1, stereographic projection maps Rn Y t8u to the
n-dimensional sphere Sn Ă Rn`1. We now embed the sphere into projective space

Sn Ă Rn`1 Ă PpRn`1,1q “ RPn`1

with the Lorentz product

xv, wy “ řn`1
1 viwi ´ vn`2wn`2.

Definition 10.3.1. The set

Ln`1 :“  
v P Rn`1,1

ˇ̌ xv, vy “ 0
(

is called the light cone, and

Q :“ PpLn`1q “  rvs P RPn`1
ˇ̌ xv, vy “ 0

(

is called the Möbius quadric.

Figure 10.4. Different sections of the light cone lead to different models of Möbius geometry.

For y P Rn`1

}y}Rn`1 “ 1 ô xpy, 1q, py, 1qy “ 0.

Thus, the unit sphere Sn and the quadric Q can be identified by choosing the following
normalization

Sn – Qn
1 :“  

v P Ln`1
ˇ̌
vn`2 “ 1

(
,

since
v P Qn

1 ô v “ py, 1q with y P Sn Ă Rn`1, i.e. }y}Rn`1 “ 1.
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10.3 The projective model of Möbius geometry 205

Let e1, . . . , en, en`1, en`2 be an orthonormal basis of Rn`1,1:

xei, ejy “
#
δij, 1 ď i ď n ` 1

´δij, i “ n ` 2

Define
e0 :“ 1

2
pen`2 ´ en`1q, e8 :“ 1

2
pen`2 ` en`1q.

Then
xe0, e0y “ xe8, e8y “ 0, xe0, e8y “ ´1

2
,

and we can indentify Rn Y t8u and the qudaric Q by the following normalization

Rn – Qn
0 :“  

v P Ln`1
ˇ̌ xv, e8y “ ´1

2

( “  
v P Ln`1

ˇ̌
vn`2 ´ vn`1 “ 1

(
,

i.e., the e0-th component is normalized to be equal to 1. We find

v P Qn
0 ô v “ x ` e0 ` }x}2 e8 with x P Rn.

The point 8 P RnYt8u is indentified with e8, which is the only point ofLn`1 with the e0-th
component equal to 0. In this way Rn is modeled as a paraboloid in an pn` 1q-dimensional
affine space (see Figure 10.5): e0 ` span te1, . . . , en, e8u .

Figure 10.5. Paraboloid model of Möbius geometry.

Theorem 10.3.2. In the projective model of Möbius geometry the points are identified
with the points of the quadric

Q “  rvs P PpRn`1,1q ˇ̌ xv, vy “ 0
(
.

The identification Q Ø Sn with the spherical model is given by the coordinate normal-
ization

rŷs P Q Ø ŷ “ y ` en`2 P Qn
1 Ø y P Sn

11



206 Möbius geometry

The identification Q Ø Rn Y t8u with the Euclidean model is given by the coordinate
normalization

rx̂s P Qz tre8su Ø x̂ “ x ` e0 ` }x}2 e8 P Qn
0 Ø x P Rn.

The corresponding map
Sn Ñ Rn Y t8u, y ÞÑ x

given by the identification of Qn
1 and Qn

0 along the straight line generators of Ln`1

ŷ ÞÑ x̂ with rŷs “ rx̂s
is the stereographic projection.

Proof. The identification is given by the formula

rx̂ “ x ` e0 ` }x}2 e8s “ rŷ “ y ` en`1s
with x P Rn and y P Sn. We write

ŷ “ y ` en`1 “ ỹ ` yn`1en`1 ` en`2 “ ỹ ` p1 ´ yn`1qe0 ` p1 ` yn`1qe8

with ỹ P Rn. Then x̂ “ λŷ implies

λ “ 1

1 ´ yn`1

.

Thus,
x “ px1, . . . , xnq “ y

1 ´ yn`1

“ 1

1 ´ yn`1

py1, . . . , ynq
and

}x}2Rn “ 1 ` yn`1

1 ´ yn`1

ô }y}Rn`1 “ 1.

10.4 Spheres in the projective model
Consider the spherical model of Möbius geometry. Let s P Rn`1, }s} ą 1 be the center of
the sphere Ŝ K Sn. We identified spheres S “ Ŝ X Sn in Sn with such points s, and thus
with elements

rps, 1qs P PpRn`1,1q.

12



10.4 Spheres in the projective model 207

These points build the exterior of the quadric Q:

Q` :“  rvs P PpRn`1,1q ˇ̌ xv, vy ą 0
(
.

Indeed, we have
xps, 1q, ps, 1qy “ }s}2Rn`1 ´ 1 ą 0

Thus, the spheres in Sn – Rn Y t8u are identified with the exterior Q` of the quadric Q.
The identification with the spherical model is given by the normalization

Qn
1,` :“  

v P Rn`1,1
ˇ̌ xv, vy ą 0, vn`2 “ 1

(
.

Thus, v “ ŝ “ s ` en`2 where s is the center of the sphere Ŝ orthogonal to Sn.

Figure 10.6. Spheres as polar planes of a point outside the Möbius quadric.

Proposition 10.4.1. Points on the sphere S Ă Sn corresponding to rŝs P Q` with
ŝ P Qn

1,` are given by
Q X rŝsK

i.e., points rvs P Q with
xŝ, vy “ 0.

Proof. With ŝ “ s ` en`2 and ŷ “ y ` en`2 we find

xŝ, ŷy “ xs, yyRn`1 ´ 1 “ 0 ô xs, yyRn`1 “ 1

Remark 10.4.2. The points rŝs P Q`, ŝ P Qn
1,` with the last coordinate equal to 0

correspond to great hyperspheres.
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208 Möbius geometry

The identification with the Euclidean model is given by the section

Qn
0,` :“  

v P Rn`1,1
ˇ̌ xv, vy ą 0, xe8, vy “ ´1

2

(

This implies the following general form

ŝ “ c ` e0 ` p}c}2 ´ r2qe8, c P Rn`1, r ą 0

Proposition 10.4.3. Points on the sphere S Ă Rn corresponding to rŝs P Q` with
ŝ P Qn

0,` are given by
Q X rŝsK

i.e., points rvs P Q with
xŝ, vy “ 0.

Proof. This follows from Theorem 10.3.2 and Proposition 10.4.1. We verify by com-
putation anyway:

xx̂, ŝy “ xx ` e0 ` }x}2 e8, c ` e0 ` p}c}2 ´ r2qe8y
“ xx, cyRn ´ 1

2
p}c}2 ´ r2q ´ 1

2
}x}2 “ 0

ô }x ´ c}2 “ r2.

Remark 10.4.4. The points rŝs P Q`, ŝ P Qn
0,` with e0-component equal to 0, i.e.,

ŝ “ v ` 2xv, ayRne8,

correspond to hyperplanes in Rn. Indeed,

xŝ, x̂y “ xv ` 2xv, ayRne8, x ` e0 ` }x}2 e8y
“ xx, vyRn ´ xv, ayRn “ 0

ô xx ´ a, vyRn “ 0.

We summarize in the following theorem:

Theorem 10.4.5. In the projective model of Möbius geometry the spheres are identified
with the exterior of the Möbius quadric

Q` “  rvs P PpRn`1,1q ˇ̌ xv, vy ą 0
(
.
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10.4 Spheres in the projective model 209

The incidence x P S of a point x lying on a sphere S is given by polarity

xŝ, x̂y “ 0

for rx̂s P Q, rŝs P Q`.
The identification with the spherical model Sn is given by the normalization of the

en`2-component:

ŝ “ s ` en`2 Ø hyperspheres,
ŝ “ s ` 0 ¨ en`2 Ø great hyperspheres.

The identification with the Euclidean model Rn Y t8u is given by the normalization of
the e0-component:

ŝ “ c ` e0 ` p}c}2 ´ r2qe8 Ø hyperspheres with center c P Rn

and radius r ą 0,

ŝ “ v ` xv, ayRne8 Ø hyperplanes through a P Rn

and normal vector v P Rn.

Figure 10.7. Intersection angle of two spheres.

Proposition 10.4.6. In the spherical model and in the Euclidean model, two intersecting
spheres corresponding to the two points rŝ1s, rŝ2s P Q` intersect at an angle θ (defined
up to θ Ñ π ´ θ) given by

cos2 θ “ xŝ1, ŝ2y2
xŝ1, ŝ1yxŝ2, ŝ2y .

Proof. The formula is well-defined for projective elements. We start with the Euclidean
model:

ŝi “ ci ` e0 ` p}c}2 ´ r2qe8, i “ 1, 2.

15



210 Möbius geometry

Then
xŝ1, ŝ2y “ xc1 ` e0 ` p}c1}2 ´ r21qe8, c2 ` e0 ` p}c2}2 ´ r22qe8y

“ xc1, c2yRn ´ 1
2
p}c1}2 ´ r21 ` }c2}2 ´ r22q

“ ´1
2
p}c1 ´ c2}2 ´ r21 ´ r22q,

and
xŝi, ŝiy “ }ci}2 ´ p}ci}2 ´ r2q “ r2.

Now the formula follows from the cosine rule. Similarly, if either or both of ŝi
represent a hyperplane. The spherical and Euclidean model are related by stereographic
projection, which is a conformal map. Thus the claim also holds for the spherical model
by Corollary 10.1.8.

Corollary 10.4.7. Two hyperspheres corresponding to rŝ1s, rŝ2s P Q` are orthogonal
if and only if

xŝ1, ŝ2y “ 0.

Definition 10.4.8. A family of hyperspheres corresponding to the points on a line in
the projective model of Möbius geometry is called a pencil of hyperspheres.

Pencils of spheres are classified by the relative location of the line with respect to the
Möbius quadric.

Definition 10.4.9. Let g Ă PpRn`1,1q be a line in the projective model of Möbius
geometry.

(i) g elliptic :ô x¨, ¨yˇ̌
g

has signature p``q

(ii) g hyperbolic :ô x¨, ¨yˇ̌
g

has signature p`´q

(iii) g parabolic :ô x¨, ¨yˇ̌
g

has signature p`0q

Proposition 10.4.10. Elliptic, parabolic, and hyperbolic pencils are characterized by
the following properties: Let g Ă PpRn`1,1q be a line in the projective model of Möbius
geometry. Then

(i) g elliptic ô all spheres of g intersect

(ii) g hyperbolic ô all spheres of g are disjoint

16



10.5 Möbius transformation group 211

(iii) g parabolic ô all spheres of g touch in a common point

Proof. We prove (i). The other claims are proven analogously.
The signature of g is p``q if and only if g does not intersect Q. In this case, gK

intersects Q. But all spheres of the pencil g contain all points of Q X gK.

In the case of planar Möbius geometry (n “ 2), the polar of a line g is another line gK,
and thus defines another pencil of circles, containing all circles that are orthogonal to all
circles of g (see Figure 10.8).

Figure 10.8. Left: An orthogonal pair of elliptic and hyperbolic pencils of circles. Right: An
orthogonal pair of two parabolic pencils of circles.

Corollary 10.4.11.
(i) A hyperbolic pencil of circles consists of all circles that are orthogonal to an

elliptic pencil of circles, and vice versa.

(ii) A parabolic pencil of circles consists of all circles that are orthogonal to another
parabolic pencil of circles.

10.5 Möbius transformation group
By Theorem 10.1.5, Möbius transformations are characterized by the properties of mapping
hyperspheres in Rn Y t8u to hyperspheres in Rn Y t8u. In the projective model of
Möbius geometry, hyperspheres are represented by sections of the Möbius quadric Q with
hyperplanes of RPn`1. Thus, the projective transformations of RPn`1 that map Q to itself
maps hyperspheres to hyperspheres. Hence POpn`1, 1q Ă Mobpnq. In this section we use
this as an alternative definition for Möbius transformations and then, in Theorem 10.5.3,
show that both definitions coincide.

17
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212 Möbius geometry

10.5 Möbius transformation group
By Theorem 10.1.5, Möbius transformations are characterized by the properties of mapping
hyperspheres in Rn Y t8u to hyperspheres in Rn Y t8u. In the projective model of
Möbius geometry, hyperspheres are represented by sections of the Möbius quadric Q with
hyperplanes of RPn`1. Thus, the projective transformations of RPn`1 that map Q to itself
maps hyperspheres to hyperspheres. Hence POpn`1, 1q Ă Mobpnq. In this section we use
this as an alternative definition for Möbius transformations and then, in Theorem 10.5.3,
show that both definitions coincide.

Definition 10.5.1. Möbius transformations are projective transformations

τ : PpRn`1,1q Ñ PpRn`1,1q
that preserve the Möbius quadric:

τpQq “ Q.

By Theorem 7.6.2, a projective transformation τ that maps Q to itself is a porjective
orthogonal transformation, i.e.,

τ P POpn` 1, 1q.
Thus, it comes from a linear map

T : Rn`1,1 Ñ Rn`1,1

which is orthogonal with respect to the Lorentz product x¨, ¨y, i.e.,
T P Opn` 1, 1q.

In the basis e0, e1, . . . , en, e8 of Rn,1 the orthogonality condition for the matrix T reads

T ᵀET “ E

with

E “ pxei, ejyqi,j“0,1,...,n,8 “
¨
˝

0 0 ´1
2

0 In 0
´1

2
0 0

˛
‚

Example 10.5.2. We use the Euclidean normalization of Möbius geometry, i.e., points
x P Rn are represented by

x̂ “ x` e0 ` }x}2 e8 “
´

1
x
}x}2

¯

in the basis e0, e1, . . . , en, e8.
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10.5 Möbius transformation group 213

(i) inversion in the unit sphere
x ÞÑ x

}x}2 .

In the Euclidean normalization of Möbius geometry we obtain

´
1
x
}x}2

¯
ÞÑ

˜
1
x

}x}2
1

}x}2

¸
„
´ }x}2

x
1

¯

Thus, it can be represented by the matrix

A “
¨
˝

0 0 1
0 I 0
1 0 0

˛
‚,

which satisfies
AᵀEA “ E.

(ii) Euclidean motions

x ÞÑ Rx` r with r P Rn, R P Opnq, i.e., RᵀR “ I.

In the Euclidean normalization of Möbius geometry we obtain
´

1
x
}x}2

¯
ÞÑ

ˆ
1

Rx`r
}x}2`2rᵀRx`}r}2

˙
.

Thus, it can be represented by the matrix

B “
¨
˝

1 0 0
r R 0

}r}2 2rᵀR 1

˛
‚,

which satisfies
BᵀEB “ E.

(iii) Scaling
x ÞÑ λx withe λ P Rzt0u.

In the Euclidean normalization of Möbius geometry we obtain

´
1
x
}x}2

¯
ÞÑ

´ 1
λx

λ2}x}2
¯
„
ˆ

1
λ
x

λ}x}2

˙
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214 Möbius geometry

Thus, it can be represented by the matrix

C “
¨
˝

1
λ

0 0
0 I 0
0 0 λ

˛
‚,

which satisfies
CᵀEC “ E.

(iv) Inversion in a sphere
Let ŝ P Rn`1,1 be a space-like vector (representing a sphere). Consider the
transformation Rn`1,1 Ñ Rn`1,1

x̂ ÞÑ x̂´ 2
xx̂, ŝy
xŝ, ŝy ŝ,

which is the reflection in the hyperplane polar to rŝs. This is an orthogonal
transformation. We compute its Euclidean representation: With

x̂ “ x` e0 ` }x}2 e8, ŝ “ c` e0 `
`}c}2 ´ r2

˘
e8

we find
xŝ, ŝy “ r2, xŝ, x̂y “ ´1

2

`}c´ x}2 ´ r2
˘
.

Thus,

´
1
x
}x}2

¯
ÞÑ

˜
1´2 xx̂,ŝyxŝ,ŝy
x´2 xx̂,ŝyxŝ,ŝy c˚

¸
“
¨
˝

1` }c´x}2
r2

´1

x`
ˆ
}c´x}2

r2
´1

˙
c

˚

˛
‚„

ˆ
1

c` r2

}c´x}2 px´cq˚

˙
,

which is inversion in the sphere with center c and radius r.

Theorem 10.5.3. Definition 10.1.3 and Definition 10.5.1 of Möbius transformations
are equivalent:

Mobpnq “ POpn` 1, 1q.

Proof. By Theorem 10.1.5, we have seen that POpn ` 1, 1q Ă Mobpnq. Vice versa,
in Example 10.5.2 (iv), we have seen how inversion in a sphere can be described by a
projective orthogonal transformation, and thus, Mobpnq Ă POpn` 1, 1q.
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10.6 The hyperbolic model of Möbius geometry 215

Thus, we eventually arrive at the following correspondences:

elementary model projective model
Rn Y t8u ÐÑ Sn – Q Ă RPn`1

Mobpnq ÐÑ POpn` 1, 1q
hypersphere Ă Rn Y t8u ÐÑ hyperplane Ă RPn`1 intersecting Q polarityÐÑ point outside Q

10.6 The hyperbolic model of Möbius geometry
While the spherical model of Möbius geometry can be obtained by normalizing the en`2-
component, a hyperbolic model can be obtained by normalizing the en`1-component:

Hn – Qn
´1 :“  

v P Ln`1
ˇ̌
vn`1 “ 1, vn`2 ą 0

(
.

Indeed, for
v P Qn

´1

we find

v “ z1...n ` en`1 ` zn`1en`2 “ z1e1 ` ¨ ¨ ¨ znen ` en`1 ` zn`1en`2

with
z “ pz1...n, zn`1q “ pz1, . . . , zn`1q P Rn,1

satisfying
xz, zyh “ ´1, zn`1 ą 0,

where x¨, ¨yh is the Lorentz product on Rn,1. Thus,

z P Hn.

Note, that due the condition vn`2 ą 0 the setQn´1 describes only one sheet of a two-sheeted
hyperboloid. To recover the whole Möbius quadric Q the other sheet

´Qn
´1 – ´Hn

needs to be added, and both sheets glued together at
 
v P Ln`1

ˇ̌
vn`1 “ 0

( – BHn.

Now we can add the following to Theorem 10.3.2:
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216 Möbius geometry

Theorem 10.6.1. The identificationQØ HnYBHnY´Hn with the hyperbolic model
is given by the coordinate normalization

rẑs P Qzren`1sK Ø ẑ “ z1...n ` en`1 ` zn`1en`2 P Qn
´1 Y´Qn

´1

Ø z “ pz1...n, zn`1q “ pz1, . . . , zn`1q P Hn Y´Hn.

The corresponding map
Hn Ñ Sn, z ÞÑ y

given by the identification of Qn´1 and Qn
1 along the straight line generators of Ln`1

ẑ ÞÑ ŷ with rẑs “ rŷs
yields the hemisphere model of hyperbolic space, while the corresponding map

Hn Ñ Rn, z ÞÑ x

given by the identification of Qn´1 and Qn
0 along the straight line generators of Ln`1

ẑ ÞÑ x̂ with rẑs “ rx̂s
yields the Poincaré ball model of hyperbolic space.

Same as in the Euclidean and spherical models in the hyperbolic model the hyperbolic
hyperspheres ofHn correspond to hyperplanar sections of the Möbius quadricQ which, by
polarity, we identify with the points outside the Möbius quadric Q`. For these points we
employ the normalization

Qn
´1,` :“  

v P Rn`1,1
ˇ̌ xv, vy ą 0, vn`1 “ 1

(
.

Theorem 10.6.2. In the hyperbolic model of Möbius geometry a hyperplanar section

QX rŝsK, rŝs P Q`

corresponds to a hyperbolic sphere. The identification with the pole rŝs is given by the
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10.7 Relation between Möbius and other geometries 217

normalization of the en`1-component:

ŝ “ 1
cosh r

c1...n ` en`1 ` cn`1

cosh r
en`2 Ø hypersphere with center c P Hn

and radius r ą 0,

ŝ “ ˘1
sinh r

c1...n ` en`1 ˘ cn`1

sinh r
en`2 Ø hypersurface of constant distance

to the hyperplane xc, zyh “ 0, xc, cyh “ 1

ŝ “ c1...n ` en`1 ˘ cn`1en`2 Ø horosphere with centerc, xc, cyh “ 0

ŝ “ c1...n ` 0 ¨ en`1cn`1en`2 Ø hyperplane xc, zyh “ 0

Proof. For the first case we find

xŝ, ẑy “ 1
cosh r

xc, zyh ` 1 “ 0

ô xc, zyh “ ´ cosh r,

which is the equation for hyperbolic sphere.

10.7 Relation between Möbius and other geometries
Möbius geometry deals with properties of figures in Sn Ă RPn`1 that are invariant under
the group POpn ` 1, 1q of projective transformations of RPn`1 that map Sn Ñ Sn.
Thus, n-dimensional Möbius geometry is a subgeometry of pn` 1q-dimensional projective
geometry. The same group, POpn ` 1, 1q, also maps Bn`1 (the inside of Sn) to itself.
This gives the Klein model of pn`1q-dimensional hyperbolic geometry. So n-dimensional
Möbius geometry can be seen as the geometry of the points in the ideal boundary of
pn` 1q-dimensional hyperbolic space.

For a point P “ rps P RPn, let GP be the subgroup of POpn ` 1, 1q consisting of all
projective transformations that map P ÞÑ P (in addition to mapping Sn Ñ Sn). These also
map the polar plane of P to itself.

If P is outside Sn, then the polar plane intersects Bn`1, and the geometry of this
intersection with the group GP is n-dimensional hyperbolic geometry.

If P is the center of Sn, then the polar plane is the plane at infinity, soGP is the group of
affine transformationsmappingSn to itself. This is the group of orthogonal transformations.
So the space Sn with the group GP is n-dimensional spherical geometry. If P is any other
point inside Sn, one obtains a Möbius geometrically equivalent model for n-dimensional
spherical geometry.

If P is the north pole of Sn, then GP corresponds (via stereographic projection) to the
Möbius transformations of Rn Y t8u that fix8. These are the similarity transformations.
Thus, Sn withGP is a model for n-dimensional similarity geometry. If P is any other point
in Sn, one obtains a Möbius geometrically equivalent model of similarity geometry.
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218 Möbius geometry

If P P Sn, the group GP consists of all projective transformations that come from
orthogonal maps A P Opn ` 1, 1q with Ap “ λp for some λ P Rzt0u. Because p is
a lightlike vector λ is not always equal to ˘1. (For example consider the orthogonal
transformations that correspond to scalings in Rn Y t8u) If instead of GP , one considers
the (projectivized) group of all A P Opn` 1, 1q with Ap “ p, then one obtains a model for
n-dimensional Euclidean geometry.

pn` 1q-dimensional projective
RPn`1, PGLpn` 2,Rq

��tt
pn` 1q-dimensional hyperbolic
points inside Sn, POpn` 1, 1q

n-dimensional Möbius
Sn Ă RPn`1, POpn` 1, 1q//oo

ss �� ++
n-dimensional hyperbolic n-dimensional spherical

��

n-dimensional similarity

��
n-dimensional elliptic n-dimensional Euclidean
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126 Quadrics

7.5 Associated points
The span of three quadrics Q1,Q2,Q3 in RP3 (not belonging to a common pencil) is a
linear system of quadrics of dimension 2. Its base points are the points common to all
conics from the pencil and given by the intersection of any three of them (not belonging
to a common pencil). The intersection of three quadrics in RP3 consists of at most eight
points. On the other hand, the family of all quadrics through 7 points in general position
already constitutes a linear system of quadrics of dimension 2.

Theorem 7.5.1 (associated points). Given eight distinct points which are the set of
intersections of three quadrics in RP3, all quadrics through any subset of seven of the
points must pass through the eighth point. Such sets of points are called associated
points.

Proof. Let A1, A2, . . . , A8 be the set of intersections of three quadrics Q1,Q2,Q3.
Note that no three of the eight points Ak can be collinear, since otherwise the set of
intersection of the three quadrics would contain a whole line and not just eight points.
For similar reasons no five of the eight pointsAk can be coplanar. Indeed, five coplanar
points no three of which are collinear determine a unique conic. The intersection of
the three quadrics Q1,Q2,Q3 would contain this conic and not just eight points.

Choose any subset of seven points A1, A2, . . . , A7. We show that any quadric Q
through these seven points must belong to the family

Q1 _Q2 _Q3.

As a consequence, the eighth intersection pointA8 will automatically lie onQ. Suppose
that, on the contrary, Q is linearly independent of Q1,Q2,Q3. Consider the family of
quadrics

P “ Q1 _Q2 _Q3 _Q.
Due to the assumed linear independence, one could find a quadric in this family through
any prescribed triple of points inRP3. We show that this would lead to a contradiction.

First assume that no four points among A1, A2, . . . , A7 are coplanar. Choose three
points B,C,D in the plane of A1, A2, A3 so that the six points B,C,D,A1, A2, A3 do
not lie on a conic. Find a quadric Q1 in the family P through B,C,D. This quadric
must be reducible, one component being the plane of A1, A2, A3 (indeed, otherwise
Q1 would cut this plane in a conic through A1, A2, A3, B, C,D, which contradicts the
choice of B,C,D). The other component ofQ1 must be a plane containing four points
A4, A5, A6, A7, a contradiction.

The remaining case, when there are four coplanar points among A1, A2, . . . , A7,
is dealt with analogously. Let A1, A2, A3 and A4 be coplanar. Denote the plane
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7.5 Associated points 127

through these four points by Π. Take two points B,C in the plane Π so that the six
points A1, A2, A3, A4, B, C do not lie on a conic, and take a pointD not coplanar with
A5, A6, A7 (which is always possible, because the latter three points are not collinear).
Then there exists a quadric Q1 in the family P through B,C,D. Again, this quadric
must be reducible, consisting of two planes, one of them being the plane Π. The other
component of Q must be a plane containing A5, A6, A7, D, a contradiction again (this
time to the choice of D).

Theorem 7.5.2 (Miquel’s theorem on quadrics). Let Q be a quadric in RP3 of rank 3
or 4. Let x, x1, x2, x3, x12, x23, x13, x123 P Q be eight points of a combinatorial cube
(see Figure 7.7), such that five of its faces are coplanar and no two planes coincide.
Then its sixth face is coplanar as well.

x3

x

x23

x13

x123

x2 x12

x1

Figure 7.7. Combinatorial cube.

Proof. For ti, j, ku “ t1, 2, 3u, i ă j define the six planes

Πij “ x_ xi _ xj, Πij
k “ xk _ xik _ xjk.

The five plane Π12,Π23,Π13,Π23
1 ,Π

13
2 each contain one more of the eight point, and we

need to show x123 P Π12
3 .

Consider the two degenerate quadrics

Q1 “ Π23 Y Π23
1 , Q2 “ Π13 Y Π13

2 .

Then, sinceQ does not contain any planes, the eight points are exactly the intersection

QXQ1 XQ2.
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128 Quadrics

The degenerate quadric
Q3 “ Π12 Y Π12

3

contains seven of the eight points, and therefore, by Theorem 7.5.1, also contains the
eighth point x123. This point must be contained in the plane Π12

3 since otherwise
x12 “ x123.
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10.8 Miquel’s theorem, Steiner’s theorems and the four coins lemma 219

10.8 Miquel’s theorem, Steiner’s theorems and the four
coins lemma

We present here a couple of incidence results in Möbius geometry, which turned out to be
relevant for modern research.

Theorem 10.8.1 (Miquel). Given four points x, x1, x2, x12 on a circle, and four circles
passing through each adjacent pair of points, the alternate intersections of these four
circles at x3, x13, x23, x123 then lie on a common circle (see Figure 10.9).

Proof. After stereographic projection to the sphere S2 Ă R3 apply Theorem 7.5.2.

Figure 10.9. Miquel’s six circle theorem.

This theorem is crucial for construction of multidimentional circular nets. The latter are
maps f : Zn Ñ RN where all elementary quadrilaterals are circular. Such nets are discrete
analogs of orthogonal coordinate systems, see [BS08, BMS03]. The following formulation
of Miquel’s theorem is better suited to the construction of circular nets, and we give a more
elementary proof.
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220 Möbius geometry

Theorem 10.8.2 (Miquel’s theorem for circular nets). Given seven points f , fi, and
fij p1 ď i ă j ď 3q in R3, such that each of the three quadruples pf, fi, fj, fijq is
inscribed in a circle Cij , define three new circles C 1jk as those passing through the
triples pfi, fij, fikq, respectively. Then these new circles intersect at one point:

f123 “ C 123 X C 131 X C 112,

see Fig. 10.10.

Figure 10.10. Miquel’s incidence theorem in three-dimensional space

Proof. Under the conditions of the theorem, the seven points f , fi, fij lie on some
two-sphere S2. Indeed, there is a unique sphere S2 through the four points f , fi.
The circles Cij through the triples pf, fi, fjq lie on S2, and since fij P Cij , we find
that fij P S2, as well. Under a stereographic projection of the sphere S2, the picture
becomes planar; see Figure 10.11 (left).
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10.8 Miquel’s theorem, Steiner’s theorems and the four coins lemma 221

Figure 10.11. Miquel’s incidence theorem in a plane: Left: general case, Right: with one
vertex normalized to infinity.

After mapping f to infinity by a Möbius transformation, the circles Cij become
the straight lines pfifjq; see Figure 10.11 (right). The claim of the theorem is then
equivalent to the following claim.

Consider a triangle with the vertices f1, f2, f3, and arbitrary points fij on each side
pfifjq. Then the three circles C 1jk through pfi, fij, fikq intersect at one point f123.

This result can be proven by elementary geometric methods. Denote the angles
of the triangle 4pf1, f2, f3q by α1, α2, α3, respectively. The circles C 123 through
pf1, f12, f13q and C 113 through pf2, f12, f23q intersect at two points, one of them being
f12. Denote the second intersection point by f123. We have to show that this point f123

belongs also to the circle C 112 through pf3, f13, f23q. For this, note that
>pf12f123f13q “ π ´ α1, >pf12f123f23q “ π ´ α2,

as it follows from the circularity of the quadrilaterals pf1, f12, f123, f13q and pf2, f12, f123, f23q.
As a consequence, we find:

>pf13f123f23q “ 2π ´ pπ ´ α1q ´ pπ ´ α2q “ α1 ` α2 “ π ´ α3,

and this yields that the quadrilateral pf3, f13, f123, f23q is also circular.

Other elementary results concern touching spheres and touching circles in three-space.

Lemma 10.8.3. Whenever four spheres in 3-space touch cyclically their points of contact
lie on a circle.
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222 Möbius geometry

Figure 10.12. To the proof of the touching spheres lemma.

Proof. Mapping one of the touching points to infinity by a Möbius transformation we
obtain two parallel planes with two touching spheres between them, see Fig. 10.12.
An elementary geometric consideration shows that the points of contact of the spheres
with the planes and of the spheres lie on a line.

We see also that the circle intersects all the spheres at the same angle. A specially interesting
is the case when this intersection is orthogonal. The centers of four cyclically touching
spheres with an orthogonal circle built a degenerate case of Brianchon’s theorem shown in
Fig. 6.28.

Two circles touch in three space if they have the same tangent line in the point of contact.

Lemma 10.8.4 (Touching Coins Lemma). Whenever four circles in 3-space touch cyclically
but do not lie on a common sphere, they intersect the sphere which passes through the points
of contact orthogonally.

Proof. Mapping one of the touching points to infinity by a Möbius transformation we
obtain two parallel linesC3, C4 with two touching circles between them, see Fig. 10.13.
The common tangent line ` of touching circles is the intersection line of their planes,
and therefore is parallel to the lines C3, C4. Thus the touching points of circles lie in a
plane orthogonal to the lines C3, C4, `.

32



10.8 Miquel’s theorem, Steiner’s theorems and the four coins lemma 223

Figure 10.13. To the proof of the touching coins lemma.

Nets of touching circles with the corresponding orthogonal spheres as in Lemma 10.8.4
lie in the core of the concept of S-isothermic surfaces [BHS06, BS08]. The later are
defined as nets of touching circles with the combinatorics of the square grid and with the
corresponding orthogonal spheres, which also touch. An example of such a surface is a
discrete minimal Schwarz P-surface shown in Fig. 10.14.

Figure 10.14. A discrete minimal Schwarz P-surface constructed in [BHS06]: four cyclically
touching discs intersect the sphere through their points of contact orthogonally. The spheres
intersecting a common circle also touch cyclically.

Let K and K̃ be two circles with K inside K̃. Define a sequence of circles C1, C2, . . .
touching both K̃ and K as follows. Chose a point P P K̃ and define C1 as the circle
touching K̃ at P and touching K.Construct further circles iteratively so that Ck`1 touches
Ck, see Fig. 10.15.

Theorem 10.8.5 (Steiner’s alternative). If the sequence of circles Ck is periodic, i.e.
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224 Möbius geometry

the circle Cn touches the circle C1 for some point P , then it is periodic for any P .

Proof. Apply aMöbius transformationmappingK and K̃ to two concentric circles.

Figure 10.15. Steiner sequence of circles.
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10.9 Curves and surfaces in Möbius geometry
10.9.1 Osculating circle of planar curves
Let

γ : ra, bs Ñ R2

be a smooth planar curve. We further assume that γ is regular, i.e., γptq ‰ 0 for all t P ra, bs.
We denote the curve parameter by t and derivatives with respect to t by

γptq, 9γptq, :γptq, . . .
For a smooth bijective function

ϕ : rã, b̃s Ñ ra, bs
which serves a reparametrization of the curve γ we denote the new curve parameter by s
and derivatives with respect to s by

γpsq :“ pγ ˝ ϕqpsq, γ1psq, γ2psq, . . .
The arc-length of γ is given by

sptq :“
ż t

a

} 9γptq}R2 dt “
ż t

a

b
x 9γptq, 9γptqyR2dt,

which is a strictly monotonically increasing function. By setting ϕ “ s´1 we find

γ1 “ ϕ1 9γ “ 9γ
} 9γ} ,

which satisfies
xγ1, γ1y “ 1.

Thus, using arc-length as the parameter, the curve is traversed in unit speed. This further
implies

xγ2, γ1y “ 0.

The unit normal vector of the curve is given by

npsq :“ Jγ1psq “ p 0 ´1
1 0 q

´
γ11psq
γ12psq

¯
“
´ ´γ12psq

γ11psq
¯

In arc-length parametrization the acceleration γ2 and the normal vector n point in the same
(or opposite) direction. The (signed) curvature of the curve γ is given by

κ “ xγ2, ny “ ´ xγ1, n1y ,
or equivalently,

γ2 “ κn,

n “ ´κγ1.
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10.9 Curves and surfaces in Möbius geometry 225

Let us compute the curvature with respect to the general parameter t. The second
derivative with respect to arc-length satisfies

γ2 “ ϕ2 9γ ` pϕ1q2:γ.

From this we obtain

κ “ xγ2, ny “ @
ϕ1 9γ ` pϕ1q2:γ, n

D “ x:γ, ny} 9γ}2 “ det p 9γ, :γq
} 9γ}3 .

The osculating circle of γ at t is the circle with center

cptq :“ γptq ` 1

κptqnptq

and radius
rptq :“ 1

κptq .

It the unique circle that touches the curve in γptq with 2nd order contact (equal tangent line
and curvature).

Proposition 10.9.1. Let γ a smooth regular curve in R2. Let

γ̂ptq :“ γptq ` e0 ` }γptq}2 e8
be its lift to the Möbius quadric, and

ĉptq :“ cptq ` e0 ` p}cptq}2 ´ rptq2qe8
be the lift of its osculating circle. Then

rĉs “ P
´

spantγ̂, 9̂γ, :̂γu
¯K

.

Proof. With
ĉ “ γ ` 1

κ
n` e0 `

`}γ}2 ` 2
κ2
xγ, ny˘ e8

we obtain
xγ̂, ĉy “ @

γ, γ ` 1
κ
n
D´ 1

2
}γ}2 ´ 1

κ
xγ, ny ´ 1

2
}γ}2 “ 0.

Now with
9̂γ “ 9γ ` 2 xγ, 9γy e8

we obtain A
9̂γ, ĉ

E
“ @

9γ, γ ` 1
κ
n
D´ xγ, 9γy “ 0.
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226 Möbius geometry

Finally, with
:̂γ “ :γ ` 2

`} 9γ}2 ` x 9γ, :γy˘ e8
we obtain A

:̂γ, ĉ
E
“ @

:γ, γ ` 1
κ
n
D´ } 9γ}2 ´ xγ, :γy “ 0.

One easily checks the following properties of this Möbius geometry representation of
the osculating circle:

Proposition 10.9.2. For a curve rγ̂s : ra, bs Ñ Q on the Möbius quadric given by a
smooth representation γ̂ : ra, bs Ñ L3,1 the point

P
´

spantγ̂, 9̂γ, :̂γu
¯K

is invariant under

§ scaling of representative vectors γ̂ptq Ñ λptqγ̂ptq with a smooth non-vanishing
function λ,

§ Möbius transformations γ̂ptq Ñ Aγ̂ptq with A P Op3, 1q,
§ reparametrization γ̂ptq Ñ pγ̂ ˝ ϕqpsq with a smooth bijective function ϕ.

Remark 10.9.3. The properties stated in Proposition 10.9.2 are not specific to curves on
a quadric or Möbius geometry at all. They hold true for curves in a general projective
space if Möbius transformations is replaced by projective transformations.

Corollary 10.9.4. The osculating circle of a planar curve is Möbius invariant.

Remark 10.9.5. The circle represented by

P
´

spantγ̂, 9̂γ, :̂γu
¯

may also be obtained by considering the circle

P pspantγ̂pt1q, γptq, γpt2quq
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through three close point on the curve and taking the limit t1, t2 Ñ t.

10.9.2 Curvature line parametrized surfaces
Let

f : R2 Ą U Ñ R3

a smooth parametrized surface patch. We further assume that f is regular, i.e.,

fu :“ BfBu, fv :“ BfBv
are linearly independent at every point pu, vq P U . Thus, we can define the unit normal
field of f by

npu, vq :“ fu ˆ fv
}fu ˆ fv}

The first and second fundamental forms of f are given by

I “
ˆxfu, fuy xfu, fvy
xfu, fvy xfv, fvy

˙
, II “

ˆxfuu, ny xfuv, ny
xfuv, ny xfvv, ny

˙
“ ´

ˆxfu, nuy xfu, nvy
xfv, nuy xfv, nvy

˙
.

A parametrization is called orthogonal if the first fundamental form is diagonal, i.e.,

xfu, fvy “ 0

Proposition 10.9.6. The property of a parametrization to be orthogonal is Möbius
invariant.

Proof. Möbius transformations are conformal, i.e., preserve angles.

A parametrization is called conjugate if the second fundamental form is diagonal, i.e.,

xfuv, ny “ xfu, nvy “ xfv, nuy “ 0.

Proposition 10.9.7. A parametrization f : R2 Ą U Ñ R3 is conjugate if and only if
there exist two functions α, β : U Ñ R such that

fuv “ αfu ` βfv (10.2)
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228 Möbius geometry

Proof. Generally,
fuv “ αfu ` βfv ` γn.

with some functions α, β, γ. Thus,

xfuv, ny “ 0 ô γ “ 0.

Note that the condition (10.2) does not depend on the existence of a normal field
anymore. It may be used to define conjugate parametrizations in any dimension: Thus, a
parametrization f : R2 Ą U Ñ Rn, n ě 3 is called conjugate if it satisfies an equation of
the from (10.2).

Proposition 10.9.8. Let f : R2 Ą U Ñ Rn be a conjugate parametrization. Then an
arbitrary lift to homogeneous coordinates

f̂ :“ λ ¨ pf, 1q : U Ñ Rn`1

with a smooth non-vanishing function λ : U Ñ R, satisfies

f̂uv “ αf̂u ` βf̂v ` γf̂ (10.3)

with some functions α, β, γ.

Equation (10.3) states the linear dependence of four representative vectors, or equiva-
lently that four points lie in a plane. While the four points are not projectively well-defined
(the points defined by the derivatives are not invariant under scaling f̂ ) this property
is:

Proposition 10.9.9. Equation (10.3) is invariant under

§ scaling of representative vectors f̂pu, vq Ñ λpu, vqf̂pu, vq with a smooth non-
vanishing function λ,

§ projective transformations f̂pu, vq Ñ F f̂pu, vq with F P GLpn` 1,Rq,
§ reparametrization along the coordinate lines f̂pu, vq Ñ f̂pupũq, vpṽqq.

Corollary 10.9.10. The property of a parametrization to be conjugate is projectively
invariant.
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10.9 Curves and surfaces in Möbius geometry 229

Returning to parametrized surfaces in R3: A parametrization

f : R2 Ą U Ñ R3

is called curvature line parametrization if the first and second fundamental form are diag-
onal, or equivalently if it is orthogonal and conjugate, i.e.,

xfu, fvy “ 0, and fuv “ αfu ` βfv.

Proposition 10.9.11. Let f : R2 Ą U Ñ R3 be a parametrized surface and

f̂ :“ f ` e0 ` }f}2 e8
its lift to the Möbius quadric. Then f is a curvature line parametrization if and only if
rf̂ s is a conjugate parametrization.

Proof. For the derivatives of the lift we obtain

f̂u “ fu ` 2 xf, fuy e8,
f̂v “ fv ` 2 xf, fvy e8,
f̂uv “ fuv ` 2 pxf, fuvy ` xfu, fvyq e8.

Let f̂ be a curvature line parametrization. Then

f̂uv “ fuv ` 2 xf, fuvy e8 “ αfu ` βfv ` 2 pα xf, fuy ` β xf, fvyq e8 “ αf̂u ` βf̂v.
The reverse direction is shown similarly.
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Chapter 11

Laguerre geometry

Classically, Laguerre geometry is the geometry of oriented lines and oriented circles in the
Euclidean plane, and their oriented contact. More generally, it is the geometry of oriented
hyperplanes and oriented spheres in Euclidean space.

11.1 Models of Laguerre geometry
11.1.1 The Blaschke cylinder
Oriented hyperplanes A hyperplane in the n-dimensional Euclidean space is given by

Ppν,hq :“ tx P Rn | ν ¨ x` h “ 0u Ă Rn

with ν P Sn´1 and h P R. The vector ν serves as the unit normal vector of the hyperplane
and, by that, induces an orientation on the hyperplane. It distinguishes the two regions that
Euclidean space is separated into by Ppν,hq and points into the region

P`pν,hq :“ tx P Rn | ν ¨ x` h ą 0u Ă Rn.

The left-hand-side ν ¨x`d of the equation expresses the signed distance of the point x P Rn

to the hyperplane Ppν,hq. It is positive if the point lies in P`pν,hq. Finally, h is the signed
distance of the origin to Ppν,hq. The two tuples pν, hq and p´ν,´hq determine the same
hyperplane Ppν,hq, but with opposite orientation.

Definition 11.1.1. The oriented hyperplane in the n-dimensional Euclidean space with
unit normal vector ν P Sn´1 to which the origin has signed distance h P R is denoted
by tPpν,hq.

Oriented hyperplanes tPpν,hq in the Euclidean space Rn are in one-to-one correspondence
with points pν, hq on the Blaschke cylinder

Z “ tpν, hq P Rn ˆ R | |ν| “ 1u “ Sn´1 ˆ R Ă Rn`1.

231
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232 Laguerre geometry

Oriented hyperspheres A hypersphere in the n-dimensional Euclidean space is given by

Spc,rq :“  
x P Rn

ˇ̌ |x´ c|2 “ r2
( Ă Rn

with some center c P Rn and signed radius r P R. The sign of radius induces an orientation
on the hypersphere by assigning normal vectors that point towards the center if r ą 0 and
away from it if r ă 0. The two tuples pc, rq and pc,´rq describe the same hypersphere, but
with opposite orientation, where the special case of r “ 0 describes a point, also called a
null-sphere, and is non-oriented.

Definition 11.1.2. The oriented hypersphere in the n-dimensional Euclidean space
with center c P Rn and signed radius r P R is denoted by tSpν,hq.

x1

x2

h

c

´r
ν

Figure 11.1. An oriented circle and an oriented line in oriented contact in the Euclidean plane.

Oriented contact An oriented hyperplane and an oriented hypersphere are said to be in
oriented contact if the hyperplane is tangent to the circle and their normal vectors coincide
at the point (see Figure 11.1).

Proposition 11.1.3. An oriented hyperplane tPpν,hq, pν, hq P Z , and an oriented hyper-
sphere tSpc,rq, pc, rq P Rn`1, are in oriented contact if and only if

c ¨ ν ` h “ r. (11.1)

Equation (11.1) is linear in pν, hq and thus describes a plane.

Proposition 11.1.4.
(i) The oriented hyperplanes tPpν,hq in oriented contact with an oriented hypersphere

tSpc,rq correspond to the points of the hyperplanar section of the Blaschke cylinder

tpν, hq P Z | c ¨ ν ` h “ r.u
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11.1 Models of Laguerre geometry 233

(ii) Vice versa, a hyperplanar section of the Blaschke cylinder with a hyperplane non-
parallel to the axis corresponds to all oriented hyperplanes in oriented contact
with a fixed oriented hypersphere.

(iii) A hyperplanar section of the Blaschke cylinder with a hyperplane non-parallel to
the axis corresponds to all oriented hyperplanes through a point, i.e., describes
a null-sphere, if and only if the plane contains the origin.

Proof.

(i) Follows from Proposition 11.1.3.

(ii) A hyperplane non-parallel to the axis is given by

tpν, hq P Z | α ¨ ν ` β h “ γ.u
with α P Rn, β, γ P R, and β ‰ 0. Dividing by β yields an equation of the form
(11.1).

(iii) The hyperplane contains the origin if and only if r “ 0.

Z

Figure 11.2. The Blaschke cylinder model of 2-dimensional Euclidean Laguerre geometry.
An oriented line in the Euclidean plane is represented by a point on the Blaschke cylinder Z .
All oriented lines in oriented contact to an oriented circle correspond to the points of a planar
section of Z (non-parallel to the axis).
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234 Laguerre geometry

Thus, generally speaking, in theBlaschke cylindermodel of Laguerre geometry, oriented
hyperplanes correspond to points on the Blaschke cylinder and oriented hyperspheres
correspond to hyperplanes (non-parallel to the axis of the Blaschke cylinder).

Corollary 11.1.5. A section of the Blaschke cylinder with a k-dimensional plane non-
parallel to the axis corresponds to all oriented hyperplanes in oriented contact with k
fixed oriented hyperspheres.

In particular, sections with codimension 2 planes describe oriented right circular
cones.

What about the planar sections parallel to the axis of the Blaschke cylinder? These
contain straight line generators of the Blaschke cylinder.

Proposition 11.1.6.
(i) A generator of the Blaschke cylinder corresponds to a one-parameter family of

parallel oriented hyperplanes, where parallel means “with coinciding normal
vectors”.

(ii) A hyperplanar section of the Blaschke cylinder with a hyperplane parallel to the
axis corresponds to all oriented hyperplanes parallel to an oriented right circular
cone.

Proof.
(i) Generators of the Blaschke cylinder are of the form pν, hqhPR.
(ii) A hyperplane parallel to the axis is given by

tpν, hq P Z | α ¨ ν “ γ.u
with α P Rn, γ P R. The solution is given by all ν from a hyperplanar section of
Sn´1 and arbitrary h P R.

11.1.2 The cyclographic model
In the Blaschke cylinder model oriented hyperplanes are the primary objects and described
as points, while oriented hyperspheres are described as hyperplanes in the same space.
Taking oriented hyperspheres as the primary objects gives rise to the cyclographic model.

An oriented hypersphere with center c P Rn and signed radius r P R corresponds to
a tuple pc, rq P Rn`1. We embed the Euclidean space into the same Rn`1 by identifying
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11.1 Models of Laguerre geometry 235

it with the r “ 0 hyperplane, which is the hyperplane of null-spheres and called the base
plane.

E :“ tpc, rq P Rn ˆ R | r “ 0u – Rn.

Definition 11.1.7. For a point pc, rq P Rn`1 the cone

Cpc,rq :“  px̂, xn`1q P Rn ˆ R
ˇ̌ |x̂´ c|2 ´ pxn`1 ´ rq2 “ 0

(
.

“
#
px1, . . . , xn`1q P Rn`1

ˇ̌
ˇ̌
ˇ
nÿ

i“1

pxi ´ ciq2 ´ pxn`1 ´ rq2 “ 0

+
.

is called its isotropic cone.

Isotropic cones are right circular cones with an axis orthogonal to the base plane. Their
opening angle is π

2
and they intersect the base plane in a constant angle of π

4
. The intersection

of an isotropic cone Cpc,rq with the base plane yields the hypersphere represented by the
point pc, rq:

Spc,rq “ Cpc,rq X E,

while the orientation of tSpc,rq has to be inferred from the sign of r. The map

pc, rq ÞÑ tSpc,rq
is sometimes referred to as the cyclographic projection.

E

Spc,rq

pc, rq

Cpc,rq

Ppν,hq

Ipν,hq

tSpc,rq

tPpν,hq

E

Figure 11.3. The cyclographic model of 2-dimensional Euclidean Laguerre geometry. The
Euclidean plane is embedded as the base plane E. An oriented circle in the Euclidean plane is
represented by a point pc, rq P R3. All oriented circles in oriented contact to an oriented line
tPpν,hq correspond to points in an isotropic plane Ipν,hq.
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The tangent hyperplanes of an isotropic cone intersect the base plane at an angle of π
4
.

Such hyperplanes are called isotropic hyperplanes. Reviewing equation (11.1) we find that
it is linear in pc, rq, and describes an isotropic hyperplane.
Proposition 11.1.8.

(i) The oriented hyperspheres tSpc,rq in oriented contact with an oriented hyperplane
tPpν,hq correspond to the points on the isotropic plane

Ipν,hq :“ tpc, rq P Rn ˆ R | ν ¨ c´ r “ ´hu .

(ii) Vice versa, an isotropic hyperplane corresponds to all oriented hyperspheres in
oriented contact with a fixed oriented hyperplane.

Proof.
(i) Follows from Proposition 11.1.3.

(ii) An isotropic hyperplane is of the form

tpc, rq P Rn ˆ R | α ¨ c` β r “ γu
with α P Rn, β, γ, P R where |α| “ β2 ‰ 0.

The intersection of an isotropic hyperplane Ipν,hq with the base plane yields the hyperplane
represented by the point pν, dq:

Ppν,hq “ Ipν,hq X E,

while the orientation of tPpν,hq has to be inferred from the direction of ν.
Summarizing, in the cyclographic model of Laguerre geometry, oriented hyperspheres

correspond to points in Rn`1, or equivalently isotropic cones, and oriented hyperplanes
correspond to isotropic hyperplanes.

Tangential distance The appearance of isotropic cones and planes in the cyclographic
model makes it natural to introduce a Lorentz product

xx, yyn,1 “
nÿ

i“1

xiyi ´ xn`1yn`1,

and in particular the corresponding (squared) Minkowski distance

}x´ y}2n,1 “ xx´ y, x´ yyn,1 “
nÿ

i“1

pxi ´ yiq2 ´ pxn`1 ´ yn`1q2
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11.1 Models of Laguerre geometry 237

for x, y P Rn`1.
Then an isotropic cone with apex x P Rn`1 is given by

!
y P Rn`1

ˇ̌
ˇ }x´ y}2n,1 “ 0

)

and an isotropic plane by !
y P Rn`1

ˇ̌
ˇ xn, yyn,1 “ γ

)

with some n P Rn`1, }n}n,1 “ 0 and γ P R.

Proposition 11.1.9. For x, x̃ P Rn`1

}x´ x̃}2n,1 ą 0 ô tSx, tSx̃ have multiple hyperplanes in common oriented contact

}x´ x̃}2n,1 “ 0 ô tSx, tSx̃ are in oriented contact

}x´ x̃}2n,1 ă 0 ô tSx, tSx̃ have no hyperplanes in common oriented contact

If }x´ x̃}2n,1 ą 0, then the Minkowski distance }x´ x̃}n,1 is equal to the Euclidean
distance between the two touching points of any common oriented tangent hyperplane
of tSx and tSx̃.

Proof. With x “ pc, rq and x̃ “ px̃, r̃q we obtain
}x´ x̃}2n,1 “ |c´ c̃|2 ´ pr ´ r̃q2.

In the context of Laguerre geometry the (squared) Minkowski distance in the cyclo-
graphic model is also called the (squared) tangential distance.

Remark 11.1.10. If one of the two spheres is null-sphere, i.e., describes a point, then
the squared Minkowski distance becomes the power of that point with respect to the
hypersphere.
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126 Quadrics

7.4 Dual quadrics

Theorem 7.4.1. Let Q be a non-degenerate quadric in RPn. Then the set of tangent
hyperplanes to Q forms a non-degenerate quadric in the dual space pRPnq˚. This
quadric Q‹ is called the dual quadric of Q and has the same signature as Q.

Furthermore, let Q be a symmetric matrix representing Q in some basis of Rn`1.
Then

Q‹ :“ Q´1

is a symmetric matrix representing the dual quadric Q‹ in the dual basis of pRn`1q˚.

Proof. The set of tangent hyperplanes of Q is given by
 
XK Ă RPn

ˇ̌
X P Q(

.

Thus, the dual quadric is given by

Q‹ “  pXKq‹ P pRPnq‹ ˇ̌ X P Q(

“ trQxs P pRPnq‹ | rxs P RPn, xᵀQx “ 0u
“  rys P pRPnq‹ ˇ̌ yᵀQ´1y “ 0

(
,

which indeed is a quadric represented by the symmetric matrix Q´1. The signs of the
eigenvalues are the same forQ andQ´1. Thus,Q andQ‹ have the same signature.

Now consider a (possibly degenerate) quadricQ Ă RPn of signature pr, s, tq represented
by the symmetric bilinear form q. Let

V :“ ker q

and letW be any complementary linear subspace of V , i.e.,

Rn`1 “ V ‘W.
Thus, V :“ PpV q is the set of singular points of Q

RPn “ V _W , V XW “ ∅,

whereW :“ PpW q.
For a point X P QzV the tangent hyperplane of Q at X is given by its polar hyper-

plane XK. By duality each tangent hyperplane corresponds to a point in the dual space
pRPnq˚.
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Definition 7.4.2. For a quadric Q Ă RPn its dual quadric is given by

Q‹ :“  pXKq‹ P pRPnq˚ ˇ̌ X P QzV( .
where V is the set of singular points of Q.

The bilinear form q induces a linear map

Q : Rn`1 Ñ pRn`1q˚, x ÞÑ qpx, ¨q : y ÞÑ qpx, yq.
Note that V “ ker Q. For a point rxs P RPn the image rQxs represents the dual of the
polar hyperplane of rxs:

rxs‹ “ rQxs.
With this map the quadric Q can be written as

Q “ trxs | pQxqpxq “ 0u .
The dual of the tangent hyperplane at the point rxs P RPn is given by rQxs P pRPnq˚.
With the decomposition

x “ v ` w
where v P V and w P W this yields

rQxs “ rQws,
and thus the dual quadric of Q can be written as

Q‹ “ trQxs | rxs P QzVu “ trQws | rws P QXWu .

Theorem 7.4.3. LetQ Ă RPn be a (possibly degenerate) quadric of signature pr, s, tq
with singular points V “ PpV q. Then its dual quadric Q‹ Ă pRPnq˚ is entirely
contained in the projective subspace V‹ of dimension n´ t´ 1:

Q‹ Ă V‹.

In V‹ Ă pRPnq˚ the dual quadricQ‹ constitutes a non-degenerate quadric of signature
pr, sq.

Furthermore, letW “ PpW q Ă RPn be a complementary subspace of V , and QW

be a symmetric matrix representing Q in some basis ofW . Then

Q‹ :“ Q´1
W

is a symmetric matrix representing the dual quadric Q‹ in the dual basis of V ‹.
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Proof. The restriction of the map Q : Rn`1 Ñ pRn`1q˚ toW is a bijective map to V ‹

QW :“ Q
ˇ̌
W

: W Ñ V ‹.

In particular, this implies Q‹ Ă V .
Furthermore, for rws PW and α “ Qw we find

αpQ´1
W αq “ pQwqpQ´1

W Qwq “ pQwqpwq,
and thus

Q‹ “  rαs P V‹ ˇ̌ αpQ´1
W αq “ 0

(
.

A basis representation ofQW and the consideration of the signs of its eigenvalues yields
the remaining claims.
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11.1.3 The projective models and their duality
In the Blaschke cylinder model oriented hyperplanes correspond to (special) points and
oriented hyperspheres correspond to hyperplanes, while in the cyclographic the roles of
points and hyperplanes are reversed. Yet in both models the oriented contact is given by the
incidence of a point lying on a hyperplane. Embedding both models into projective space
will reveal that they are related by duality.

The Blaschke cylinder Let x¨, ¨y be the standard degenerate symmetric bilinear form of
signature pn, 1, 1q, i.e.,

xx, yy “ x1y1 ` . . .` xnyn ´ xn`1yn`1

for x, y P Rn`2, and

Z :“  rxs P RPn`1
ˇ̌ xx, xy “ 0

( Ă RPn`1

the corresponding quadric in RPn`1, which we call the (projectivization of the) Blaschke
cylinder. Projectively Z is a cone with apex

q “ ren`2s “ r0, . . . , 0, 1s.
The Blaschke cylinder as described in Section 11.1.1 is recovered by introducing affine
coordinates xn`1 “ 1.

Thus, an oriented hyperplane tPpν,hq in the n-dimensional Euclidean space with unit
normal vector ν P Sn´1 and signed distance h P R corresponds to the point

rν, 1, hs P Z Ă RPn`1.

The only point not captured in the affine picture is the apex q of the Blaschke cylinder. It
can be interpreted as the (non-oriented) hyperplane at infinity.

Orientation reversion tPpν,hq ÞÑ tPp´ν,´hq is given by the projective involution

σ : RPn`2 Ñ RPn`2, rx1, . . . , xn, xn`1, xn`2s ÞÑ rx1, . . . , xn,´xn`1, xn`2s.
It preserves Z and fixes the point

p “ ren`1s “ r0, . . . , 0, 1, 0s
and all points on its polar hyperplane.

An oriented hypersphere tSpc,rq in the n-dimensional Euclidean space with center c P Rn

and signed radius r P R corresponds to the intersection of the Blaschke cylinder with the
hyperplane

rc,´r, 1s‹ Ă RPn`1.

It is a null-sphere if and only if it contains the point p. The hyperplanes of RPn`1 that,
in the affine picture (xn`1 “ 1), appear as hyperplanes parallel to the axis of the Blaschke
cylinder, are exactly the hyperplanes that contain the point q.
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The cyclographic model Dually, an oriented hypersphere tSpc,rq is represented by the
point

rc,´r, 1s P pRPn`1q˚.
Thus, wemay identify the points of the cycligraphicmodel with the points of pRPn`1q˚ upon
introducing affine coordinates xn`2 “ 1 and reversing the sign of the pn ` 1q-coordinate.
The base plane of the cyclographic model is then embedded as

E “ p‹ “  rxs P pRPn`1q˚ ˇ̌ xn`1 “ 0
(
.

The Blaschke cylinder Z is a degenerate quadric of signature pn, 1, 1q. Its singular
points consist exactly of the apex q. By Theorem 7.4.3, its dual quadric is given by

Z‹ “  rxs P pRPn`1q˚ ˇ̌ x2
1 ` ¨ ¨ ¨ ` x2

n ´ x2
n`1 “ 0, xn`2 “ 0

(
.

It is contained in the hyperplane

q‹ “  rxs P pRPn`1q˚ ˇ̌ xn`2 “ 0
(
,

which, in affine coordinates xn`2 “ 1, is the hyperplane at infinity. In this hyperplane, Z‹
constitutes a quadric of signature pn, 1q.

The dual of a point on the Blaschke cylinder is a hyperplane in pRPn`1q˚ that touches
the dual quadric Z‹. Now the following proposition establishes the correspondence of the
dual of the Blaschke cylinder model and the cyclographic model.

Proposition 11.1.11. Upon introducing affine coordinates xn`2 “ 1 on the dual space
pRPn`1q˚, which contains the dual of the Blaschke cylinder Z‹ and the base plane E,
the following correspondence holds:

(i) A hyperplane in pRPn`1q˚ is an isotropic hyperplane of the cyclographic model
if and only if it touches Z‹.

(ii) A cone in pRPn`1q˚ is an isotropic cone of the cyclographic model if and only if
it contains Z‹.

Proof.
(i) A plane Π “ rN s‹ Ă pRPn`1q˚ touches Z‹ if and only if rN s P Z , i.e.

xN,Ny “ N2
1 ` ¨ ¨ ¨N2

n ´N2
n`1 “ 0

On the other hand, in affine coordinates xn`2 “ 1, the angle between the
normal vector Ñ “ pN1, . . . , Nn`1q of the plane Π and the normal vector
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P̃ “ p0, . . . , 0, 1q of the base plane E is equal to γ “ π
4
if and only if

1

2
pN1

1 ` ¨ ¨ ¨ `N2
n`1q “

ˇ̌
ˇÑ

ˇ̌
ˇ
2

cos2 γ “ pÑ ¨ P̃ q2 “ N2
n`1

ô xN,Ny “ 0.

(ii) A cone containingZ‹ consists of all lines through its apex and points onZ‹. For
a line with point rv1, . . . , vn`1, 0s at infinity the vector pv1, . . . , vn`1q gives the
direction of the line in affine coordinates xn`2 “ 1. Thus, a line contains a point
of Z‹ if and only if it direction vector satisfies

v2
1 ` ¨ ¨ ¨ v2

n ´ v2
n`1 “ 0.

Yet, by a similar argument as above, this is equivalent to the line intersecting the
base plane in an angle of π

4
.

Thus, the dual of the Blaschke cylinder model yields the cyclographic model.
Note that orientation reversion acts on the dual space as

σ˚ : pRPn`1q˚ Ñ pRPn`1q˚, rx1, . . . , xn, xn`1, xn`2s ÞÑ rx1, . . . , xn,´xn`1, xn`2s.

In particular, it preserves the base plane

E “ p‹ “  rxs P pRPn`1q˚ ˇ̌ xn`1 “ 0
(
,

which we identified with the base plane.

The tangential distance How do we recover the tangential distance in the projective
version of the cyclographic model?

Wefirst note that in the hyperplane q‹, the quadricZ‹ is described by the Lorentz product
x¨, ¨yn,1, which we used to describe the tangential distance. For two oriented hyperspheres
tSpc,rq, tSpc̃,r̃q the two corresponding points rc,´r, 1s, rc̃,´r̃, 1s Ă RPn`1 span a line, which
intersects the hyperplane at infinity in a point with representative vector

pc,´r, 1q ´ pc̃,´r̃, 1q “ pc´ c̃,´r ` r̃, 0q

For this point at infinity, we can use the Lortentz product to obtain the tangential distance
of tSpc,rq and tSpc̃,r̃q:

}pc´ c̃,´r ` r̃, 0q}n,1 .
But the result depends on the representative vectors chosen for the two oriented hyper-
spheres.
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In the cyclographic model, the hyperplane at infinity is given by

q‹ “  rxs P pRPn`1q˚ ˇ̌ αpxq “ xn`2 “ 0
(

where α : pRn`2q˚ Ñ R is a corresponding linear functional on pRn`2q˚. The quadric
Z‹ Ă q‹ is given by this functional and the Lorentz product x¨, ¨yn,1:

Z‹ “
!
rxs P pRPn`1q˚

ˇ̌
ˇ αpxq “ 0, xx, xyn,1 “ 0

)
.

For two points rxs, rys P pRPn`1q˚zq‹ we recovered the tangential distance as
››› x
αpxq ´ y

αpyq
›››
n,1
.

It is invariant under rescaling x Ñ λx with λ ‰ 0, and also invariant under rescaling
y Ñ λy, but not invariant under rescaling α Ñ λα. Yet for three points rxs, rys, rzs P
pRPn`1q˚zq‹ the quotient of tangential distances

››› x
αpxq ´ y

αpyq
›››
n,1››› x

αpxq ´ z
αpzq

›››
n,1

.

is invariant under rescaling αÑ λα. Thus, it is a well-defined quantity in pRPn`1q˚, which
is entirely determined by Z‹.
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242 Laguerre geometry

11.2 Miquel’s theorem in Laguerre geometry
Theorem 7.6.2 yields a Laguerre geometric version of Miquel’s theorem (Theorem 10.8.2).

Theorem 11.2.1 (Miquel’s theorem in Laguerre geometry).
Let `1, `2, `3, `4,m1,m2,m3,m4 be eight oriented lines in Euclidean plane. If the
five quadrilaterals p`1, `2,m1,m2q, p`1, `2,m3,m4q, p`3, `4,m1,m2q, p`3, `4,m3,m4q,
p`2, `3,m2,m3q are circumscribed (each quadruple of lines touches a common oriented
circle), then so is the quadrilateral p`1, `4,m1,m4q (cf. Figure 11.11).

`1 `2 `3 `4

m1

m2

m3

m4

m1

m2

`1

`4

m4

`2 m3

`3

Figure 11.4. Combinatorial pictures on Miquel’s theorem in Laguerre geometry. Left: The
eight oriented lines and six incircles in the plane. Right: The eight corresponding points on
the Blaschke cylinder and how to associate them with the vertices of a cube.

Proof. The eight oriented lines correspond to eight points on the Blaschke cylinder.
Associate them with the vertices of a combinatorial cube (see Figure 11.11). Copla-
narity of the bottom and side faces corresponds to the assumed circumscribility. By
Theorem 10.8.2 the top face is planar as well.

Remark 11.2.2. Under duality the cube in the Blaschke cylinder with planar faces
becomes an octahedron in the cyclographic model with isotropic face planes.
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Week 6: Dual projective transformations, Laguerre
transformations
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4.2 Dual projective transformations 65

4.2 Dual projective transformations
A projective transformation maps hyperplanes to hyperplanes. Thus it induces a corre-
sponding map on the dual spaces.

Definition 4.2.1. Let f : PpV q Ñ PpW q be a projective transformation. Then the map

f ‹ : PpV q˚ Ñ PpW q˚, Y ÞÑ fpY ‹q‹.
is called the dual transformation of f .

Theorem 4.2.2. The dual transformation is a projective transformation. In particular,
it satisfies

f ‹pK‹q “ fpKq‹
for every projective subspace K Ă PpV q.

Proof. The dual map is invertible with inverse Z ÞÑ f´1pZ‹q‹, and maps k-planes
to k-planes as shown in the following. Let X1, . . . , Xk`1 P PpV q such that K “
X1 _ . . ._Xk`1. Then K‹ “ X‹

1 X . . .XX‹
k`1 and

fpK‹q‹ “ `
fpX‹

1 q X . . .X fpX‹
k`1q

˘‹

“ fpX‹
1 q‹ _ . . ._ fpX‹

k`1q‹
“ f ‹pX1q _ . . ._ f ‹pXk`1q
“ f ‹pX1 _ . . ._Xk`1q
“ f ‹pKq
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Proposition 4.2.3. If the projective transformation f : PpV q Ñ PpW q is represented
by a matrix F with respect to some chosen bases of V andW , then the dual projective
transformation f ‹ is represented by the matrix

F ‹ “ F´ᵀ.

with respect to the corresponding dual bases of V ˚ andW ˚.

Proof. Let rys P pRPnq˚ with y P Rn`1 the representative vector in the chosen dual
basis. Then

f ‹prysq “ fprys‹q‹
“ f ptrxs P RPn | yᵀx “ 0uq‹
“ trFxs P RPn | yᵀx “ 0u‹
“  rx̃s ˇ̌ yᵀF´1x̃ “ 0

(‹

“ rF´ᵀys.

Remark 4.2.4. In a basis-free way, this proposition may be formulated as: The dual
map is represented by the inverse of the adjoint map.
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11.3 Laguerre transformations 243

11.3 Laguerre transformations
The transformation group of Laguerre geometry of the n-dimensional Euclidean space con-
sists of all transformations that map oriented hyperplanes to oriented hyperplanes, oriented
hyperspheres to oriented hyperspheres, while preserving their oriented contact. Thus, in the
Blaschke cylinder model, Laguerre transformations are given by transformations of RPn`1

that preserve the Blaschke cylinder Z and map hyperplanes to hyperplanes.

Definition 11.3.1. The group of projective transformations RPn`1 Ñ RPn`1 that
preserve the Blaschke cylinder Z

POpn, 1, 1q
is also called the group of Laguerre transformations.

In Laguerre geometry points of the n-dimensional Euclidean space are described as special
hyperspheres, namely null-spheres. Thus, points are not generally mapped to points by a
Laguerre transformations, but to hyperspheres.

Proposition 11.3.2. Laguerre transformations map parallel oriented hyperplanes to
parallel oriented hyperplanes.

Proof. Parallel oriented hyperplanes are described by points on the Blaschke cylin-
der contained in the same generator. As projective transformations that preserve the
Blaschke cylinder Laguerre transformations map straight line generators to straight line
generators.
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244 Laguerre geometry

Theorem 11.3.3.
(i) Every Laguerre transformation f P POpn, 1, 1q in the Blaschke cylinder model

is of the form

f “
„
A 0
cᵀ d



with some A P Opn, 1q, c P Rn`1, and d ‰ 0.

(ii) Dually, every Laguerre transformation f ‹ P POpn, 1, 1q‹ in the cyclographic
model is of the form

f ‹ “
„
Ã b̃

0 d̃



with some Ã P Opn, 1q, b̃ P Rn`1, and d̃ ‰ 0.

Proof.
(i) Let f “ rF s, F P GLpn` 2,Rq, A P GLpn` 1,Rq, b, c P Rn`1, d P R with

F “
ˆ
A b
cᵀ d

˙
.

Furthermore, let

Z :“
ˆ
Z̃ 0
0 0

˙
, Z :“ diagp1, . . . , 1,´1q P Rpn`1qˆpn`1q

denote the Gram matrix of the Blaschke cylinder. Then,

F ᵀZF “
ˆ
Aᵀ c
bᵀ d

˙ˆ
Z̃ 0
0 0

˙ˆ
A b
cᵀ d

˙
“
ˆ
AᵀZ̃A AᵀZ̃b
bᵀZ̃A bᵀZ̃b

˙

Thus, F ᵀZF “ Z is equivalent to A P Opn, 1q and b “ 0. To ensure F P
GLpn` 2,Rq this further implies d ‰ 0.

(ii) We find that

F´ᵀ “
ˆ
A´ᵀ ´1

d
A´ᵀc

0 1
d

˙
“:

ˆ
Ã b̃

0 d̃

˙

where A P Opn, 1q ô Ã P Opn, 1q, c P Rn`1 ô b̃ P Rn`1, d ‰ 0 ô d̃ ‰ 0.
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11.3 Laguerre transformations 245

We found that, in the cyclographic model, Laguerre transformations are special affine
transformations. In affine coordinates xn`2 “ 1 a Laguerre transformation f ‹ P POpn, 1, 1q
takes the form

g : Rn`1 Ñ Rn`1, x “ px1, . . . , xn`1q ÞÑ λAx` b
with some A P Opn, 1q, b P Rn`1, and λ ‰ 0.

Thus, it preserves the ratios of tangential distances

}gpxq ´ gpx̃q}2n,1 “ λ2 }x´ x̃}2n,1 ,
similar to similarity transformations preserving the ratios of Euclidean distances.

Corollary 11.3.4. Laguerre transformations in the cyclographic model are exactly the
affine transformations preserving ratios of the tangential distance.

To better understand the group of Laguerre transformations we first establish that it
contains the group of similarity transformations.

Proposition 11.3.5. A Laguerre transformation f P POpn, 1, 1q is a similarity trans-
formation if and only if it fixes the point

p “ ren`1s “ r0, ¨ ¨ ¨ , 0, 1, 0s.

Proof. Dually, this means that a Laguerre transformation f ‹ P POpn, 1, 1q‹ is a simi-
larity transformation if and only if it preserves the base plane

E “ p‹ “  rxs P pRPn`1q˚ ˇ̌ xn`1 “ 0
(
,

Thus, if and only if it maps points of the Euclidean space to points, which is certainly
a necessary requirement for a similarity transformation.

In affine coordinates xn`2 “ 1, the condition gpEq “ E on the transformation

g : x “ px1, . . . , xn`1q ÞÑ λAx` b
reads

λan`1,1x1 ` λan`1,nxn ` bn`1 “ 0

for all x1, . . . , xn P R, which yields

bn`1 “ an`1,1 “ ¨ ¨ ¨ “ an`1,n “ 0.
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246 Laguerre geometry

Since A P Opn, 1q this implies

a1,n`1 “ ¨ ¨ ¨ “ an,n`1 “ 0,

and further
an`1,n`1 “ 1.

Thus, we obtain

A “
ˆ
R 0
0 1

˙
, b “

˜ b1
...
bn
0

¸
P Rn`1, λ ‰ 0

with R P Opnq, which describes a similarity transformation on E.

As examples of Laguerre transformations which are not similarity transformations we
introduce the following two families of transformations:

Laguerre offset Consider the family of Laguerre transformations

St “
„
I 0
0 1 0

t 1


, t P R

with I “ diagp1, ¨ ¨ ¨ , 1q P Rnˆn. Note that St preserves the line p_q “ spanten`1, en`2u,
and maps p to any point on this line except q.

It acts on an oriented hyperplane tPpν,hq by

St

”
ν
1
h

ı
“
”

ν
1
h`t

ı

and thus maps every oriented hyperplane to a parallel oriented hyperplane at distance t.
Dually, in the cyclographic model, this family is described by

S‹t “
„
I 0
0 1 ´t

0 1


, t P R.

It acts on an oriented hypersphere tSpc,rq by

S‹t
”

c´r
1

ı
“
”

c´r´t
1

ı

and thusmaps every oriented hypersphere with radius r to a concentric oriented hypersphere
with radius r ` t.
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11.3 Laguerre transformations 247

Laguerre boost Consider the family of Laguerre transformations

Tt “
«
I 0

0
cosh t sinh t 0
sinh t cosh t 0

0 0 1

ff
, t P R,

with I “ diagp1, ¨ ¨ ¨ , 1q P Rpn´1qˆpn´1q. It preserves the line spanten, en`1u, which
intersects the Blaschke cylinder in the two points

ren ˘ en`1s “ r0, ¨ ¨ ¨ , 0, 1,˘1, 0s,
and it maps p to any point on this line inside the Blaschke cylinder.

Dually, in the cyclographic model, this family is described by

T ‹t “
«
I 0

0
cosh t ´ sinh t 0
´ sinh t cosh t 0

0 0 1

ff
, t P R,

It maps the base plane E “ p‹ to any space-like hyperplane in the pencil of hyperplanes
spanned together with ren ˘ en`1s‹.

It turns out, that up to similarity transformations a Laguerre transformation is a either a
Laguerre offset or a Laguerre boost.

Theorem 11.3.6. Let f P POpn, 1, 1q be a Laguerre transformation. Then there exist
two similarity transformations Φ,Ψ P POpn, 1, 1q such that either

f “ Φ ˝ St “ St ˝Ψ

for some t P R, or
f “ Φ ˝ Tt ˝Ψ

for some t P R.

Proof. Consider the line L “ p_ fppq.
§ If L contains the point q, let t P R such that Stppq “ fppq. Then Φ “ S´1

t ˝ f fixes
the point p and thus is a similarity transformation.

§ If L does not contain the point q, it is a line of signature p`´q and intersects the
Blaschke cylinder Z in two points. Let Ψ be a similarity transformation that maps
r :“ ren ` en`1s to one of the intersection points L X Z . Then it maps the line
L̃ “ p_r to the lineL, and thus p̃ “ Ψ´1˝fppq P L̃. Let t P R such that Ttppq “ p̃.
Then Φ “ T´1

t ˝Ψ´1 ˝ f fixes the point p and thus is a similarity transformation.
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11.4 Curves in Laguerre geometry
Let

γ : ra, bs Ñ R2

be a smooth regular curve in the Euclidean plane. Its unit tangent and normal vector are
given by

T ptq :“ 9γ
}γ} , Nptq :“ JT ptq, where J :“ p 0 ´1

1 0 q .

Then the tangent line at the point γptq is given by
PpNptq,hptqq

 
x P R2

ˇ̌
Nptq ¨ x` hptq “ 0

(
, hptq :“ ´Nptq ¨ γptq.

The oriented tangent lines tPpNptq,hptqq yield a curve on the Blaschke cylinder. We have seen
this in the example of circles which correspond to curves on the Blaschke cylinder given
by planar sections. On the other hand, the curve γ can be uniquely reconstructed from its
tangent lines as the envelope.

Proposition 11.4.1. Let γ be a smooth regular curve in R2. Then

γ̂ptq :“ pNptq, 1, hptqq, hptq :“ ´Nptq ¨ γptq
defines a curve on the Blaschke cylinder. The corresponding oriented lines are the
oriented tangent lines of γ, i.e.,

N ¨ γ ` h “ 0,

N ¨ 9γ “ 0.

Furthermore, the curve γ is the envelope of those lines, i.e.,

N ¨ γ ` h “ 0,

9N ¨ γ ` 9h “ 0.
(11.2)

Vice versa, given a smooth regular curve t ÞÑ pNpnq, 1, hptqq on the Blaschke cylinder
not tangent to a generator, equations (11.2) determine a unique curve as the envelope
of the corresponding oriented lines in the plane.
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11.4.1 Osculating circle of planar curves
The osculating circle of the planar curve γ at the point γptq is the circle tSpcptq,rptqq with
center

cptq :“ γptq ` 1

κptqNptq
and radius

rptq :“ 1

κptq
where κptq is the curvature at γptq.

Proposition 11.4.2. Let γ a smooth regular curve in R2. Let

γ̂ptq “ pNptq, 1, hptqq
be its lift to the Blaschke cylinder, and let

ĉptq :“ pcptq,´rptq, 1q
be the lift of its osculating circle to the cyclographic model. Then

rĉptqs‹ “ P
´

spantγ̂, 9̂γ, :̂γu
¯
.

Proof. Show that
ĉᵀγ̂ “ ĉᵀ 9̂γ “ ĉᵀ:̂γ “ 0

where one uses :N ¨N “ ´ 9N ¨ 9N and 9N “ ´κ 9γ.

To apply a Laguerre transformation to a curve it is applied to its oriented tangent lines. Then
the image curve is reconstructed as the envelope of the image tangent lines.

Corollary 11.4.3. The osculating circle of a planar curve is Laguerre invariant.
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11.4 Curves in Laguerre geometry 251

11.4.2 Conics and hypercycles

We will now study which curves on the Blaschke cylinder correspond to conics (more
precisely ellipses and hyperbolas).

By means of a rotation and a translation (which constitute special Laguerre transforma-
tions) an ellipse or a hyperbola may be brought into the form

C “
"
px, yq P R2

ˇ̌
ˇ̌ x

2

a
` y2

b
“ 1

*
(11.3)

with some a, b ‰ 0. The case a ą 0, b ą 0 corresponds to an ellipse and the case ab ă 0 to
a hyperbola.

Proposition 11.4.4. The curve on the Blaschke cylinderZ corresponding to the tangent
lines (with both orientations) of the conic C is given by the intersection of Z with the
cone

C “  rx1, x2, x3, x4s P RP3
ˇ̌
ax2

1 ` bx2
2 ´ x2

4 “ 0
(
. (11.4)

Proof. The tangent line to C at a point px0, y0q P C is given by
!
px, yq P R2

ˇ̌
ˇ xx0

a
` yy0

b
“ 1

)
,

and its two lifts to the Blaschke cylinder by
«
x0

a
,
y0

b
,˘

c
x2

0

a2
` y2

0

b2
,´1

ff
“
„
x0h

a
,
y0h

b
,˘1, h


P Z

where
h :“ 1b

x20
a2
` y20

b2

.

In particular, we found that the curve on the Blaschke cylinder corresponding to an
ellipse or hyperbola is given by the intersection with a quadric.
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Figure 11.5. Hypercycle base curves corresponding to an ellipse and hyperbola respectively.

Definition 11.4.5. The intersection curve of the Blaschke cylinder Z with another
quadric Q is called a hypercycle base curve. The envelope of the corresponding lines
in the plane is called a hypercycle.

Corollary 11.4.6. Conics (considered with both orientations) are hypercycles.

The hypercycle base curve is the base curve of the pencil of quadrics spanned by Z and
Q. The intersection of any quadric from this pencil with the Blaschke cylinder yields the
same curve Z XQ.

Figure 11.6. A conic under Laguerre transformations.
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11.5 Gingham incircular nets

Definition 11.5.1. Two families p`iqiPZ, pmjqjPZ of oriented lines in the Euclidean
plane are called a gingham incircular net if for every even i, j P Z the four lines
`i, `i`1,mj,mj`1 touch a common oriented circle.

Figure 11.7. Left: Gingham fabric. Right: A piece of a gingham incircular net.

Theorem 11.5.2. All lines of a generic gingham incircular net are in oriented contact
with a common hypercycle.

Moreover, let p`iqiPZ, pmjqjPZ be the points on the Blaschke cylinder Z Ă RP3 that
correspond to the oriented lines of the gingham incircular net. Consider the lines

Li :“ `i _ `i`1, Mj :“ mj _mj`1.

Then, all lines L2k,M2l lie on a common hyperboloid H Ă RP3, which intersects the
Blaschke cylinder in the hypercycle base curve. The lines L2k are contained in one of
the two families of rulings ofH while the linesM2l are contained in the other family of
rulings ofH.

Proof. The existence of the incircles in a gingham incircular nets is equivalent to every
line L2k intersecting every lineM2l, and vice versa. Thus, all lines L2k,M2l generically
lie on a common hyperboloidH.

Furthermore, this implies that all points p`iqiPZ, pmjqjPZ lie in the intersection of
the Blaschke cylinder and H. Thus, the corresponding oriented lines touch a common
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hypercycle.

`0 `1 `2 `3 `4 `5

m0

m1

m2

m3

m4

m5

L0 L2 L4

M0

M2

M4

HH

`0`0

`1

`2

`3`3

m0m0

m1

m2

m3m3

Figure 11.8. Gingham incircular net on the Blaschke cylinder. The lines L2k,M2k are rulings
of the hyperboloidH.

This result yields the following construction for gingham incircular nets:

§ Choose a hyperboloid H Ă RP3 that intersects the Blaschke cylinder Z . This corre-
sponds to choosing a hypercycle to be the envelope of the gingham incircular net.

§ Distinguish the two families of rulings ofH as the L-family and theM -family.

§ Choose two arbitrary points `0 andm0 on the hypercycle base curveH X Z .

§ Let L0 be the ruling in the L-family that contains the point `0 and define `1 as the second
intersection point of L0 with Z . Similarly, let M0 be the ruling in the M -family that
contains the pointm0 and definem1 as the second intersection point ofM0 with Z .

§ Choose two arbitrary points `2 andm2 on the hypercycle base curveHXZ , and continue
in the same manner.

Remark 11.5.3. A special case of gingham incircular nets is given by checkerboard
incircular nets. Here all lines lines `i, `i`1,mj,mj`1 with i, j P Z where i` j is even
touch a common oriented circle.
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Figure 11.9. Left: Piece of a checkerboard incircular net touching a hypercycle. Right:
Periodic checkerboard incircular net touching an ellipse.
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4.3 Dual representation of surfaces
Let

f : R2 Ą U Ñ R3

be a smooth regular parametrized surface patch,
Instead of describing the surface f as a two-parameter family of points, we can equiva-

lently describe it as the envelope of its two-parameter family of tangent planes.
Let

n : U Ñ R3

be an arbitrary smooth normal field of f , i.e.,

n ¨ fu “ 0,

n ¨ fv “ 0

The tangent plane of f at the point pu, vq P U is given by
 
x P R3

ˇ̌
npu, vq ¨ x` hpu, vq “ 0

(

with some function h : U Ñ R. Thus, the tangent planes of f described by the tuple pn, hq
(uniquely up to a common scalar multiple) is determined by the set of equations

n ¨ fu “ 0,

n ¨ fv “ 0,

n ¨ f ` h “ 0.

(4.1)

Differentiating the last equation with respect to u and v, respectively, we find that (4.1) is
equivalent to

f ¨ nu ` hu “ 0,

f ¨ nv ` hv “ 0,

f ¨ n` h “ 0.

(4.2)

Note that if we consider the lifts
f̂ :“ pf, 1q,
n̂ :“ pn, hq

to homogeneous coordinates of RP3 and pRP3q˚, respectively, then equations (4.1) and
(4.2) become the duality relations for tangent planes of the respective surfaces rf̂ s and
rn̂s.

Definition 4.3.1. Let rf̂ s : R2 Ą U Ñ RP3 be a smooth regular parametrized surface
in RP3. Then

rn̂s :“ prf̂ s _ rf̂us _ rf̂vsq‹ : U Ñ pRP3q˚
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is called the dual surface of f .

In homogeneous coordinates the dual surface is determined by the three linearly independent
equations

n̂ ¨ f̂u “ 0,

n̂ ¨ f̂v “ 0,

n̂ ¨ f̂ “ 0,

(4.3)

and satisfies
f̂ ¨ n̂u “ 0,

f̂ ¨ n̂v “ 0,

f̂ ¨ n̂ “ 0.

(4.4)

These equations are completely symmetric in f̂ and n̂.

Proposition 4.3.2. If the dual surface of a smooth regular parametrized surface f in
RP3 is itself regular, then the dual surface of a the dual surface is f .

Remark 4.3.3. The primal surface is regular if it is locally not a curve. The dual surface
is regular if the primal surface is locally not developable.

We have established in Section 2.7 that conjugate line parametrizations are a notion of
projective geometry.

Theorem 4.3.4. A smooth regular parametrized surface rf̂ s : R2 Ą U Ñ RP3 is a
conjugate line parametrization if and only if its dual surface rn̂s : U Ñ pRP3q˚ is a
conjugate line parametrization.

Proof. rf̂ s is a conjugate line parametrization if f̂ satisfies an equation in homogeneous
coordinates of the form

f̂uv “ αf̂u ` βf̂v ` γf̂ ,
which is equivalent to

f̂uv ¨ n̂ “ 0.

From equations (4.3), or equivalently, equations (4.4), we find that this is equivalent to
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either of the three equations
f̂u ¨ n̂v “ 0,

f̂v ¨ n̂u “ 0,

f̂ ¨ n̂uv “ 0,

(4.5)

and thus in turn to
n̂uv “ α̃n̂u ` β̃n̂v ` γ̃n̂,

Remark 4.3.5. The first two equations of (4.5) state, respectively, that

rf̂ s _ rf̂us “ prn̂s _ rn̂vsq‹,
rf̂ s _ rf̂vs “ prn̂s _ rn̂usq‹.
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11.6 Surfaces in Laguerre geometry
Let

f : R2 Ą U Ñ R3

be a smooth regular parametrized surface patch. Let

n : U Ñ R3

be an arbitrary smooth normal field of f such that at every point pu, vq P U
n “ λpfu ˆ fvq

with some positive scalar λ ą 0, and let

σ :“ }n} ą 0

denote the norm of n. Furthermore, let h be such that

n ¨ f ` h “ 0.

Then the lift of f to the Blaschke cylinder is given by

f̂ :“ pn, σ, hq.
Recall that f is a curvature line parametrization if and only if f is orthogonal and

conjugate. In Section 4.3 we have established that f is conjugate if and only if its dual
surface rn, hs is conjugate. Thus, to describe curvature line parametrizations in Laguerre
geometry we should determine how to express the orthogonality in the homogeneous
coordinates pn, σ, hq.
Lemma 11.6.1. For a parametrized surface f the lift to the Blaschke cylinder pn, σ, hq
satisfies

σ2 “ n ¨ n,
σσu “ n ¨ nu,
σσv “ n ¨ nv,

σσuv ` σuσv “ n ¨ nuv ` nu ¨ nv.
(11.5)

Lemma 11.6.2. A parametrized surface f is orthogonal if and only if its lift to the Blaschke
cylinder pn, σ, hq satisfies

σσuv “ n ¨ nuv.
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Proof. Since fu is proportional to nv ˆ n and fv is proportional to nˆ nu, the orthog-
onality condition

fu ¨ fv “ 0

is equivalent to
pnv ˆ nq ¨ pnˆ nuq “ 0

ô pn ¨ nuqpn ¨ nvq “ pn ¨ nqpnu ¨ nvq
ô σuσv “ nu ¨ nv
ô σσuv “ n ¨ nuv,

where we used Lemma 11.6.1.

Theorem 11.6.3. Let f : R2 Ą U Ñ R3 be a parametrized surface and

f̂ :“ pn, σ, hq
a lift to the Blaschke cylinder. Then f is a curvature line parametrization if and only if
rf̂ s is a conjugate parametrization.

Proof. f is a conjugate line parametrization if and only if rn, hs is a conjugate line
parametrization, i.e., if

nuv “ αnu ` βnv ` γn,
huv “ αhu ` βhv ` γh
.

with some functions α, β, γ : U Ñ R.
Now if f is orthogonal, then by Lemma 11.6.1 and Lemma 11.6.2

σσuv “ nuv ¨ n “ αnu ¨ n` βnv ¨ n` γn, n¨ “ ασσu ` βσσv ` γσ2

and thus
σuv ` ασu ` βσv ` γσ.

Vice versa, if σ satisfies the previous equation, the argument may be reversed.
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Chapter 12

Lie geometry

The basic objects fromMöbius geometry and Laguerre geometry may all be seen as special
cases of oriented spheres.

Figure 12.1. The Möbius quadric S Ă RPn`1 (depicted in the case n “ 2) and two oriented
hyperspheres in oriented contact.

12.1 Oriented hyperspheres of Sn

We first give an informal description of Lie (sphere) geometry as the geometry of oriented
hyperspheres of the n-dimensional sphere Sn and their oriented contact.

Thus, let
Sn “  

y P Rn`1
ˇ̌
y ¨ y “ 1

( Ă Rn`1,

where y ¨ y denotes the standard scalar product on Rn`1. An oriented hypersphere of Sn
can be represented by its center c P Sn and its signed spherical radius r P R (see Figure

257
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12.1). Tuples pc, rq P Sn ˆ R represent the same oriented hypersphere if they are related
by a sequence of the transformations

ρ1 : pc, rq ÞÑ pc, r ` 2πq, ρ2 : pc, rq ÞÑ p´c, r ´ πq. (12.1)

The corresponding hypersphere as a set of points is given by

ty P Sn | c ¨ y “ cos ru , (12.2)

while its orientation is obtained in the following way: The hypersphere separates the sphere
Sn into two regions. For r P r0, πq consider the region which contains the center c to be the
“inside” of the hypersphere, and endow the hypersphere with an orientation by assigning
normal vectors pointing towards this region. The orientation of the hypersphere for other
values of r is then obtained by (12.1).

Definition 12.1.1. We call

~S :“ pSn ˆ Rqätρ1, ρ2u.

the space of oriented hyperspheres of Sn.

Remark 12.1.2. Orientation reversion defines an involution on ~S , which is given by

ρ : pc, rq ÞÑ pc,´rq.
Thus, the space of (non-oriented) hyperspheres of Sn may be represented by

S :“ ~S äρ “ pS
n ˆ Rqätρ, ρ1, ρ2u.

Two oriented hyperspheres pc1, r1q and pc2, r2q are in oriented contact if (see Figure 12.1)
c1 ¨ c2 “ cospr1 ´ r2q, (12.3)

which is a well-defined relation on ~S . Upon using the cosine addition formula, this is
equivalent to

c1 ¨ c2 ´ cos r1 cos r2 ´ sin r1 sin r2 “ 0, (12.4)
which is a bilinear relation in pci, cos ri, sin riq, i “ 1, 2. This gives rise to a projective
model of Lie geometry as described in the following.

Definition 12.1.3.
(i) The quadric

L Ă RPn`2
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12.1 Oriented hyperspheres of Sn 259

corresponding to the standard bilinear form of signature pn` 1, 2q

xx, yy :“
n`1ÿ

i“1

xiyi ´ xn`2yn`2 ´ xn`3yn`3

for x, y P Rn`3, is called the Lie quadric.

(ii) Two points rs1s, rs2s P L on the Lie quadric are called Lie orthogonal if xs1, s2y “
0, or equivalently if the line rs1s _ rs2s is isotropic, i.e. is contained in L. An
isotropic line is called a contact element.

(iii) The projective transformations of RPn`2 that preserve the Lie quadric L

Lie :“ POpn` 1, 2q.
are called Lie transformations.

Proposition 12.1.4. The set of oriented hyperspheres ~S of Sn is in one-to-one corre-
spondence with the Lie quadric L by the map

~S : ~S Ñ L, pc, rq ÞÑ pc, cos r, sin rq
such that two oriented hyperspheres are in oriented contact if and only if their corre-
sponding points on the Lie quadric are Lie orthogonal.

Proof. A point s P L can always be represented by s “ rc, cos r, sin rs with c P Sn,
r P R. The transformations (12.1) act on s “ pc, cos r, sin rq as

pc, cos r, sin rq ÞÑ pc, cospr ` 2πq, sinpr ` 2πqq “ pc, cos r, sin rq,
pc, cos r, sin rq ÞÑ p´c, cospr ´ πq, sinpr ´ πqq “ ´pc, cos r, sin rq. (12.5)

and the oriented contact becomes the bilinear relation (12.4).
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spherical geometry Lie geometry

point x̂ P Sn rx̂, 1, 0s P L
oriented hypersphere

with center ŝ P Rn and signed radius r P R rŝ, cos r, sin rs P L

Table 12.1. Correspondence of hyperspheres of the n-sphere Sn and points on the Lie quadric

L “  
x “ px1, . . . , xn`3q P Rn`1,2

ˇ̌ xx, xy “ 0
( Ă RPn`2.

This correspondence leads to an embedding of Sn into the Lie quadric in the following
way. Among all oriented hyperspheres the map ~S distinguishes the set of “points”, or
null-spheres, as the set of oriented hyperspheres with radius r “ 0. It turns out that

!
~Spc, 0q

ˇ̌
ˇ c P Sn

)
“ tx P L | xn`3 “ 0u “ LX pK,

where
p :“ ren`3s “ r0, . . . , 0, 1s P RPn`2.
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12.2 The projective model of Lie geometry

Definition 12.2.1.
(i) The quadric

L Ă RPn`2

corresponding to the standard bilinear form of signature pn` 1, 2q

xx, yy :“
n`1ÿ

i“1

xiyi ´ xn`2yn`2 ´ xn`3yn`3

for x, y P Rn`3, is called the Lie quadric.

(ii) The projective transformations of RPn`2 that preserve the Lie quadric L

Lie :“ POpn` 1, 2q.
are called Lie transformations.

Proposition 12.2.2. The set of oriented hyperspheres ~S of Sn is in one-to-one corre-
spondence with the Lie quadric L by the map

Φ : ~S Ñ L, pc, rq ÞÑ pc, cos r, sin rq
such that two oriented hyperspheres pc1, r1q, pc2, r2qare in oriented contact if and only
if their corresponding points on the Lie quadric satisfy

xΦpc1, r1q,Φpc2, r2qy “ 0

Proof. A point s P L can always be represented by s “ rc, cos r, sin rs with c P Sn,
r P R. The transformations (12.1) act on s “ pc, cos r, sin rq as

pc, cos r, sin rq ÞÑ pc, cospr ` 2πq, sinpr ` 2πqq “ pc, cos r, sin rq,
pc, cos r, sin rq ÞÑ p´c, cospr ´ πq, sinpr ´ πqq “ ´pc, cos r, sin rq. (12.5)

and the oriented contact becomes the bilinear relation (12.4).
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spherical geometry Lie geometry

point x̂ P Sn rx̂, 1, 0s P L
oriented hypersphere

with center ŝ P Rn and signed radius r P R rŝ, cos r, sin rs P L

Table 12.1. Correspondence of hyperspheres of the n-sphere Sn and points on the Lie quadric

L “  rxs P RPn`2
ˇ̌ xx, xy “ 0

(
.

p

pK

L

S

s1

s2

RPn`2

Figure 12.2. The Lie quadric L Ă RPn`2 and the Möbius quadric S “ LX pK as a section.

This correspondence leads to an embedding of Sn into the Lie quadric in the following
way. Among all oriented hyperspheres the map Φ distinguishes the set of “points”, or
null-spheres, as the set of oriented hyperspheres with radius r “ 0. It turns out that

tΦpc, 0q | c P Snu “ tx P L | xn`3 “ 0u “ LX pK,
where

p :“ ren`3s “ r0, . . . , 0, 1s P RPn`2.

The quadric LXpK has signature pn`1, 1q and may be identified with the Möbius quadric.
In the projection

πp : LÑ pK, rx1, . . . , xn`3s ÞÑ rx1, . . . , xn`2, 0s
The points on the Lie quadric LzpK are mapped to the outside of LX pK.
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12.2 The projective model of Lie geometry 277

Theorem 12.2.3. Möbius geometry is a subgeometry of Lie geometry in the following
sense: If the quadric

S :“ LX pK
is identifiedwith theMöbius quadric, then the group of Lie transformations that preserve
the hyperplane pK (or equivalently that fixes the point p) acts on pK as the group of
Möbius transformations.

Proof. The Lie transformations that preserve the hyperplane pK build a group whose
action can be restricted to pK. In pK they preserve the quadric L X pK and thus act as
Möbius transformations.

Vice versa, a Möbius transformation on pK represented by

A P Opn` 1, 1q
can be lifted to a Lie transformation as

„
A 0
0 ˘1


.

Remark 12.2.4. The group of Lie transformations that fixes the point p is a double cover
of the group of Möbius transformations.
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A relation between the Euclidean and the projective model of Möbius geometry has
been established by stereographic projection, or equivalently, by introducing

e0 :“ 1
2
pen`2 ´ en`1q, e8 :“ 1

2
pen`2 ` en`1q,

which satisfy
xe0, e0y “ xe8, e8y “ 0, xe0, e8y “ ´1

2
.

Theorem 12.2.5. The identification of points on the Lie quadric L and oriented hyper-
spheres (including points and oriented hyperplanes) of (to one point compactification
of) the n-dimensional Euclidean space Rn Y t8u

ŝ “ c` e0 ` p}c}2 ´ r2qe8 ` ren`3 Ø oriented hypersphere with center c P Rn

and signed radius r ą 0,

ŝ “ ν ` 2pν ¨ aqe8 ` en`3 Ø hyperplane through a P Rn

with normal vector ν P Sn.
ŝ “ x` e0 ` }x}2 e8 Ø point x P Rn

ŝ “ e8 Ø point at infinity8
is one-to-one and such that for rŝ1s, rŝ2s P L

xŝ1, ŝ2y “ 0

if and only the oriented hyperspheres corresponding to rs1s and rs2s are in oriented
contact.

Proof. We first check that a point

ŝ “ c` e0 ` p}c}2 ´ r2qe8 ` ren`3

lies on the Lie quadric:

xŝ, ŝy “ }c}2 ´ p}c}2 ´ r2q ´ r2 “ 0.

Now for two points

ŝi “ ci ` e0 ` p}ci}2 ´ r2
i qe8 ` rien`3, i “ 1, 2
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we find

xŝ1, ŝ2y “ c1 ¨ c2 ´ 1
2
p}c1}2 ´ r2

1q ´ 1
2
p}c2}2 ´ r2

2q ´ r1r2

“ ´1
2
}c1 ´ c2}2 ` 1

2
pr1 ´ r2q2

“ 0

ô }c1 ´ c2}2 “ pr1 ´ r2q2.
The remaining claims are left to the reader.

Proposition 12.2.6. In the correspondence of Thereom 12.2.5:

(i) rŝs P L corresponds to a point if and only if rŝs P pK (no en`3-component), where
p “ ren`3s.

(ii) rŝs P L corresponds to a hyperplane if and only if rŝs P qK (no e0-component),
where q “ re8s.

Theorem 12.2.7. Laguerre geometry is a subgeometry of Lie geometry in the following
sense: If the quadric

Z :“ LX qK
is identified with the Blaschke cylinder, then the group of Lie transformations that
preserve the hyperplane qK (or equivalently that fixes the point q) acts on qK as the
group of Laguerre transformations.

Proof. The hyperplane qK can be spanned by

qK “ spante1, . . . , en, e8, en`3u,
and thus is a hyperplane of signature pn` 1, 1, 1q.

Now show that every Laguerre transformation on qK can be lifted to a Lie transfor-
mation.

Two oriented hyperspheres which are in oriented contact span an isotropic line in the
Lie quadric.

Definition 12.2.8. The one-parameter family of oriented hyperspheres corresponding
to an isotropic line in the Lie quadric is called a contact element.
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Each isotropic line (not contained in qK) intersects pK and qK in exactly one point respec-
tively. Thus, a contact element can always be thought of being spanned by a point and an
oriented hyperplane through this point.
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Week 10: Sphere complexes and signed inversive dis-
tance
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12.3 Sphere complexes and signed inversive distance
Any hyperplane in RPn`2 can equivalently be described by its polar point with respect to
the Lie quadric.

Definition 12.3.1. For a point z P RPn`2 the set of points

LX zK

on the Lie quadric as well as the n-parameter family of oriented hyperspheres cor-
responding to these points is called a (linear) sphere complex. A sphere complex is
further called

§ elliptic if xẑ, ẑy ą 0,

§ hyperbolic if xẑ, ẑy ă 0,

§ parabolic if xẑ, ẑy “ 0,

where z “ rẑs

Two points in RPn`2 can be mapped to each other by a Lie transformation if and only if
they have the same signature. Thus, any two sphere complexes of the same signature are
Lie equivalent.

Example 12.3.2.
(i) The point p “ ren`3s defines a hyperbolic sphere complex, which contains all

null-spheres and is called the point complex.

(ii) The point r0,´ sinR, cosRs defines a hyperbolic sphere complex, which contains
all oriented hyperspheres of Sn with spherical radius R.

(iii) The point r´2Re8` en`3s defines a hyperbolic sphere complex, which contains
all oriented hyperspheres of Rn with (Euclidean) radius R.

(iv) The point rν ´ 2he8s defines an elliptic sphere complex, which contains all
oriented hyperspheres ofRn which are orthogonal to the hyperplane ν ¨x`h “ 0.

(v) The point q “ re8s defines a parabolic sphere complex, which contains all
oriented hyperplanes of Rn and is called the plane complex.
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A point z P RPn`2zL not on the Lie quadric and its polar hyperplane zK together
induce an involution σz P Lie that fixes the point z, every point on zK, and preserves the
Lie quadric L:

σzpxq :“
„
x̂´ 2

xẑ, x̂y
xẑ, ẑy ẑ


.

Thus, every non-parabolic sphere complex comes with an involution that fixes the sphere
complex.

Example 12.3.3. For the point complex defined by the point p, the corresponding
involution

rx1, . . . , xn`2, xn`3s ÞÑ rx1, . . . , xn`2,´xn`3s
describes the orientation reversion of hyperspheres. Note that it preserves the plane
complex.

Furthermore, a non-parabolic sphere complex induces an invariant for pairs of oriented
hyperspheres. This invariant will eventually allow for a more general geometric description
of the different types of sphere complexes.

Definition 12.3.4. Let z “ rẑs P RPn`2zL. Then we define

Izpx, yq :“ 1´ xx̂, ŷy xẑ, ẑyxx̂, ẑy xŷ, ẑy
for any two points x “ rx̂s, y “ rŷs P L.

The invariant Iz is projectively well-defined, in the sense that it does not depend on the
choice of homogeneous coordinate vectors for the points x, y, and z, and it is invariant
under Lie transformations that fix the point z.

Remark 12.3.5. Althoughwe are interested in this invariant for points on the Lie quadric,
it can be extended to all of RPn`2zzK. It then satisfies

p1´ Izpx, yqq2
p1´ Izpx, xqqp1´ Izpy, yqq “

xx̂, ŷy2
xx̂, x̂y xŷ, ŷy

for x “ rx̂s, y “ rŷs P RPn`2zpLY zKq.

Applying the involution σz to one of the arguments of Iz results in a change of sign.
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Proposition 12.3.6. Let z P RPn`2zL. Then
Izpσzpxq, yq “ Izpx, σzpyqq “ ´Izpx, yq.

for all x, y P L.

Proof. We compute

Izpσzpxq, yq “ 1´ xx̂, ŷy xẑ, ẑy ´ 2 xx̂, ẑy xŷ, ẑy
´ xx̂, ẑy xŷ, ẑy

“ xx̂, ŷy xẑ, ẑyxx̂, ẑy xŷ, ẑy ´ 1 “ ´Izpx, yq.

We now consider the specific example of the invariant Ip corresponding to the point com-
plex. It is invariant under all Lie transformations that fix the point p, i.e., all Möbius
transformations, and turns out to be a signed version of the inversive distance from Möbius
geometry.

Theorem 12.3.7. For two oriented hyperspheres represented by

ŝi “ ci ` e0 ` p|ci|2 ´ r2
i qe8 ` rien`3, i “ 1, 2

with Euclidean centers c1, c2 P Rn and signed radii r1, r2 ‰ 0 the point complex
invariant is given by

Ipprŝ1s, rŝ2sq “ r2
1 ` r2

2 ´ |c1 ´ c2|2
2r1r2

.

It further satisfies:

§ Ip P p´1, 1q ô the two oriented hyperspheres intersect. In this case Ip “ cosϕ
where ϕ P r0, πs is the angle between the two oriented hyperspheres.

§ Ip “ 1ô the two oriented hyperspheres touch with matching orientation (oriented
contact).

§ Ip “ ´1ô the two oriented hyperspheres touch with opposite orientation.

§ Ip P p8,´1q Y p1,8q ô the two oriented hyperspheres are disjoint.
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Proof. With the given representation of the hyperspheres we find

Ipprŝ1s, rŝ2sq “ 1´ xŝ1, ŝ2y xen`3, en`3y
xŝ1, en`3y xŝ2, en`3y “

r2
1 ` r2

2 ´ |c1 ´ c2|2
2r1r2

.

We now use the inversive distance to give a geometric interpretation for most sphere
complexes in Lie geometry.

Theorem 12.3.8. Let z P RPn`2, z ‰ p such that the line p _ z intersects the Lie
quadric in two points, i.e. has signature p`´q. Denote by

tz`, z´u :“ pp_ zq X L

the two intersection points (the two oriented hyperspheres corresponding to z` and z´
only differ by their orientation).

Then the sphere complex corresponding to the point z is given by the set of oriented
hyperspheres that have some fixed constant inversive distance Ip to the oriented hyper-
sphere corresponding to z`, or equivalently, fixed constant inversive distance ´Ip to
the oriented hypersphere corresponding to z´.

Furthermore, in this case the sphere complex is

§ elliptic if Ip P p´1, 1q,
§ hyperbolic if Ip P p´8,´1q Y p1,8q,
§ parabolic if Ip P t´1, 1u.

Proof. The two points z˘ may be represented by

ẑ˘ “ z̃ ` e0 `
`|z̃|2 ´R2

˘
e8 ˘Ren`3,

with some R ‰ 0, where we assumed that the e0-component of ẑ does not vanish.
The case with xẑ, e8y “ 0, which corresponds to z˘ being planes, may be treated
analogously.

Now the point z can be represented by

ẑ “ z̃ ` e0 `
`|z̃|2 ´R2

˘
e8 ` κen`3
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with some κ P R, and for any point s P L represented by

ŝ “ s̃` e0 `
`|s̃|2 ´ r2

˘
e8 ` ren`3,

we find that the condition for it to lie on the sphere complex is given by

xẑ, ŝy “ 0 ô xẑ, ŝyp “ rκ,

where x¨, ¨yp is the Lie scalar product of the projection from p. Thus, the signed
inversive distance of z` and s is given by

Ippz`, sq “ 1´ xẑ`, ŝy xen`3, en`3y
xẑ`, en`3y xŝ, en`3y “

xŝ, ẑyp
rR

“ κ

R
.

The change z` Ñ z´ is equivalent to RÑ ´R which leads to I Ñ ´I .
The distinction of the three types of sphere complexes in terms of the value of the

inversive distance is obtained by observing that

xẑ, ẑy ą 0, if κ2 ă R2,

xẑ, ẑy ă 0, if κ2 ą R2,

xẑ, ẑy “ 0, if κ2 “ R2.

Examples 12.3.9.
(i) For an elliptic sphere complex the line p _ z always has signature p`´q. Fur-

thermore, in this case we have Ip P p´1, 1q. Thus, any elliptic sphere complex
is given by all oriented hyperspheres with constant angle to some fixed oriented
hypersphere.

(ii) For hyperbolic sphere complexes the line p_z can have signature p`´q, p´´q, or
p´0q. Only the first case is captured by Theorem 12.3.8. In Example 12.3.2 (ii),
the line has signature p´´q, while in Example 12.3.2 (iii) it has signature p´0q.

(iii) Parabolic sphere complexes are captured by Theorem 12.3.8 if and only if z R pK.
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12.4 Planar curves in Lie geometry
Let

γ : ra, bs Ñ R2

be a smooth regular curve in the Euclidean plane. Its unit tangent and normal vector are
given by

T ptq :“ 9γ
}γ} , Nptq :“ JT ptq, where J :“ p 0 ´11 0 q .

We can lift the points of the curve as well as the oriented tangent lines to the Lie quadric.

spptq :“ γptq ` e0 ` }γptq}2 e8,
sqptq :“ Nptq ´ 2hptqe8 ` e5.

Neither a point nor an oriented line are Lie invariant objects, yet together they span a
contact element (an isotropic line in the Lie quadric). Thus, we can lift the curve γ to a
one-parameter family of lines (a ruled surface) in the Lie quadric:

`ptq :“ rspptqs _ rsqptqs
The condition for the oriented lines to be the tangent lines of the curve becomes

x 9sp, sqy “ 9γ ¨N “ 0, (12.6)

or equivalently
xsp, 9sqy “ γ ¨ 9N ` 9h “ 0.

Proposition 12.4.1. Let

`ptq :“ rs1ptqs _ rs2ptqs Ă L Ă RP4

be a smooth regular one-parameter family of lines in the Lie quadric that satisfies

x 9s1, s2y “ 0, (12.7)

or equivalently,
xs1, 9s2y “ 0. (12.8)

Then its sections with the point complex and plane (line) complex

rspptqs :“ `ptq X pK,
rsqptqs :“ `ptq X qK

define a planar curve in the Euclidean plane together with its oriented tangent lines.
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Proof. Firstly, note that equations (12.7)and (12.8) are equivalent since

xs1, s2y “ 0

implies
x 9s1, s2y ` xs1, 9s2y “ 0.

Secondly, this condition is invariant under a change of choice of points spanning the
lines `. Indeed, for

s̃1 :“ λ1s1 ` λ2s2,
s̃2 :“ µ1s1 ` µ2s2

with smooth λ1, λ2, µ1, µ2, we find
A

9̃s1, s̃2
E
“
A

9λ1s1 ` λ1 9s1 ` 9λ2s2 ` λ2 9s2, µ1s1 ` µ2s2

E
“ 0.

Thus, in particular
x 9sp, sqy “ 0

which by (12.6) is equivalent to the claimed tangency condition.

Lemma 12.4.2. Let
`ptq :“ rs1ptqs _ rs2ptqs Ă L Ă RP4

be a smooth regular one-parameter family of lines in the Lie quadric. Then the following
are equivalent:

(i) x 9s1, s2y “ 0.

(ii) xs1, 9s2y “ 0.

(iii) rs1s, rs2s, r 9s1s, r 9s2s span a plane.

(iv) There exists a unique curve sptq “ λ1ptqs1ptq ` λ2ptqs2ptq such that

rss _ r 9ss “ `.

The curve rss is called the edge of regression of `.

Remark 12.4.3.
§ Conditions (iii) and (iv) are also equivalent for a general ruled surface in a projective
space (not necessarily contained in a quadric). A ruled surface satisfying condition
(iii) or (iv) is called a developable surface. The edge of regression is a curve tangent
to its rulings.
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§ The equivalence (iii) and (iv) to (i) and (ii) only holds for a ruled surface contained
in the Lie quadric in RP4.

Proposition 12.4.4. Let γ a smooth regular curve in R2. Let

`ptq :“ rspptqs _ rsqptqs
with

spptq :“ γptq ` e0 ` }γptq}2 e8,
sqptq :“ Nptq ´ 2hptqe8 ` e5.

be its lift to the Lie quadric L Ă RP4, and let

sptq :“ cptq ` e0 ` p}cptq}2 ´ rptq2qe8 ` rptqe5
be the lift of its osculating circles. Then rsptqs is the edge of regression of the developable
surface `ptq, i.e.

rss _ r 9ss “ `.

Proof. We first check that
s “ sp ` rsq

and thus rss P `.
As a linear combination of sp and sq the curve s satsifies

x 9s, spy “ x 9s, sqy “ 0,

and thus r 9ss P `K. We check that furthermore, r 9ss P L, and thus r 9ss P `. Indeed, with
9s “ 9c` 2p 9c ¨ c´ 9rrqe8 ` 9re5

we find
x 9s, 9sy “ } 9c}2 ´ p 9rq2 “

››› 9γ ` 9rN ` r 9N
›››
2 ´ p 9rq2 “ 0,

where we used }N}2 “ 1 and 9γ “ ´r 9N .

Corollary 12.4.5. The osculating circles of a planar curve are Lie invariant.
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12.5 Surfaces in Lie geometry
Let

f : R2 Ą U Ñ R3

be a smooth regular parametrized surface patch. Let

n : U Ñ S2

be the unit normal field of f such that at every point pu, vq P U

n “ fu ˆ fv
}fu ˆ fv} .

Furthermore, let h be such that
n ¨ f ` h “ 0.

At each point of the surface this point together with the oriented tangent plane defines a
contact element. The lift of f to the Lie quadric is given by the two-parameter family of
isotropic lines representing these contact elements:

`pu, vq :“ rsppu, vqs _ rsqpu, vqs
where

sppu, vq :“ fpu, vq ` e0 ` }fpu, vq}2 e8,
sqpu, vq :“ npu, vq ´ 2hpu, vqe8 ` e6.

The conditions for oriented planes to be tangent planes of the surface becomes

xBusp, sqy “ fu ¨ n “ 0,

xBvsp, sqy “ fv ¨ n “ 0,

or equivalently,
xsp, Busqy “ xsp, Bvsqy “ 0.

Proposition 12.5.1. Let

`pu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă L Ă RP5

be a smooth regular two-parameter family of lines in the Lie quadric that satisfies

xBus1, s2y “ xBvs1, s2y “ 0, (12.9)

or equivalently,
xs1, Bus2y “ xs1, Bvs2y “ 0, (12.10)
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Then its sections with the point complex and plane complex

rsppu, vqs :“ `pu, vq X pK,
rsqpu, vqs :“ `pu, vq X qK

define a smooth regular surface in Euclidean spaceR3 together with its oriented tangent
planes.

Definition 12.5.2. Let

`pu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă RPn

be a smooth regular two-parameter family of lines in a projective space RPn. Then `
is called a (torsal) line congruence if the two ruled surfaces given by u ÞÑ `pu, vq and
v ÞÑ `pu, vq are developable, i.e.,

rs1s, rs2s, rBus1s, rBus2s span a plane, and
rs1s, rs2s, rBvs1s, rBvs2s span a plane.

Theorem 12.5.3. Let f : R2 Ą U Ñ R3 be a parametrized surface and

`pu, vq :“ rsppu, vqs _ rsqpu, vqs
be its lift to the Lie quadric L Ă RP5, where

sppu, vq :“ fpu, vq ` e0 ` }fpu, vq}2 e8,
sqpu, vq :“ npu, vq ´ 2hpu, vqe8 ` e6.

If f is a curvature line parametrization then ` is a (torsal) line congruence.
Vice versa, let

`pu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă L Ă RP5

be a (torsal) line congruence in the Lie quadric. Then its section with the point complex

rsppu, vqs :“ `pu, vq X pK

is a curvature line parametrization.
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Proof. Let f be a parametrized surface. Then

Busp “ fu ` 2pfu ¨ fqe8,
Bvsq “ nu ´ 2hue8 “ nu ` 2pf ¨ nuqe8.

Thus,
0 ¨ sp ` 0 ¨ sq ` κ1Busp ´ Bvsq “ 0,

where we used nu “ κ1fu for some κ1, since f is a curvature line parametrization.
Similarly, for the v direction.

Now let ` be a (torsal) line congruence. We first need to check that conditions
(12.9) are satisfied, so that the ` actually defines a surface. Indeed, since ` is a (torsal)
line congruence there exist α, β, γ such that

Bus2 “ αs1 ` βs2 ` γBus1.
Thus,

xs1, Bus2y “ 0.

Similarly,
xs1, Bvs2y “ 0.

By Lemma 12.5.4 the points

rs1s, rs2s, rBus1s, rBus2s, rBvs1s, rBvs2s, rBuBvs1s, rBuBvs2s
lie in a 3-dimensional space Π, which here is given by

Π “ prs1s _ rs2sqK.
Thus, the four points

rss, rBuss, rBvss, rBuBvss P Π

lie in Π for any linear combination s “ λ1s1 ` λ2s2 such as sp. On the other hand rsps
lies in the hyperplane pK. The intersection Π X pK is 2-dimensional. Thus, the four
points

rsps, rBusps, rBvsps, rBuBvsps P ΠX pK
lie in a plane, i.e., the parametrization rsps is conjugate. But a conjugate parametrization
in the Möbius quadric represents a curvature line parametrization in R3.

Lemma 12.5.4. Let
`pu, vq :“ rs1pu, vqs _ rs2pu, vqs Ă RPn

be a (torsal) line congruence. Then

rs1s, rs2s, rBus1s, rBus2s, rBvs1s, rBvs2s, rBuBvs1s, rBuBvs2s
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span a 3-dimensional subspace.

Proof. By the condition for a (torsal) line congruence the points

rs1s, rs2s, rBus1s, rBus2s, rBvs1s, rBvs2s
lie in a 3-dimensional subspace Π. Thus, we need to show rBuBvs1s, rBuBvs1s P Π.

There exist α, β, γ, α̃, β̃, γ̃ such that

Bus2 “ αs1βs2γBus1,
Bvs2 “ αs1βs2γBvs1.

Cross-differentiation leads to

BuBvs2 “ Bvαs1 ` Bvβs2 ` αBvs1 ` βBvs2 ` BvγBus1 ` γBuBvs1,
BuBvs2 “ Buα̃s1 ` Buβ̃s2 ` α̃Bus1 ` β̃Bus2 ` Buγ̃Bvs1 ` γ̃BuBvs1,

which shows that rBuBvs1s P Π. Similarly, rBuBvs2s P Π.

Corollary 12.5.5. Curvature line parametrizations are Lie invariant.
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Chapter 13

Plücker geometry

Plücker geometry is the geometry of lines in the 3-dimensional real projective space RP3

and their incidences. From the fundamental theorem of projective geometry we know that
the bijective transformations of RP3 that map lines to lines and preserve their incidences
are the projective transformations. Yet Plücker geometry comes with a different model of
projective geometry in which the lines instead of the points (or by duality the planes) are
the fundamental objects. This model is based on exterior calculus, which we introduce in
arbitrary dimensions, andwhichmay be used to generally describe k-dimensional projective
subspaces in an n-dimensional projective space.

13.1 Exterior calculus
A vector a P V (an element of a vector space V ) may be thought of representing a weighted
version of the 1-dimensional linear subspace that it spans. The weight can be interpreted
as a length on that line compared to some unit length. Then a vector space contains some
weighted 1-dimensional linear subspaces and all of its linear combinations.

The exterior product a^ b of two linearly independent vectors a, b P V may be thought
of a weighted version of the 2-dimensional linear subspace they span. The weight can be
interpreted as an area in that plane compared to some unit area. The exterior products of
all vectors of a vector space together with its linear combinations constitute a vector space
themselves

Źk
V .

This construction can be formalized by the following definition. As in the case of vector
spaces, more important than the definition of the exterior powers of a vector space are its
properties, which allow for the given interpretation.

Definition 13.1.1. Let V be a vector space over the field F “ R or F “ C, then a
multilinear map

m : V ˆ ¨ ¨ ¨ ˆ Vloooooomoooooon
k

Ñ F

295
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296 Plücker geometry

that satisfies

mpv1, . . . , vi, . . . , vj, . . . , vkq “ ´mpv1, . . . , vj, . . . , vi, . . . , vkq
for all v1, . . . , vk P V is called an alternating multilinear form of degree k (or an
alternating k-form) on V .

Example 13.1.2. On the vector space Fn the determinant

detpv1 ¨ ¨ ¨ vnq
is an alternating n-form.

The set of alternating multilinear forms of degree k on V is a vector space of dimen-
sion

`
n
k

˘
. If b1, . . . , bn is a basis of V , then an alternating multilinear form m is uniquely

determined by the values

mpbi1 , . . . , bikq, ti1, . . . , iku Ă t1, . . . , nu with i1 ă i2 ă ¨ ¨ ¨ ă ik.

Alternating 1-forms are just linear forms and thus constitute the dual vector space of V .
Alternating 0-forms may be identified with elements from the field F.

Definition 13.1.3. Let V be a finite dimensional vector space. Then the dual space of
the vector space of alternating k-forms on V is called the k-th exterior power of V and
denoted by Źk

V.

Elements of
Źk
V are called k-vectors.

In particular
Ź0
V “ F,

Ź1
V “ V , and

dim
Źk
V “

ˆ
n

k

˙
.

Definition 13.1.4. Let v1, ¨ ¨ ¨ , vk P V . Then their exterior product (or wedge product)
v1 ^ ¨ ¨ ¨ ^ vk P

Źk
V is defined by

pv1 ^ ¨ ¨ ¨ ^ vkqpmq :“ mpv1, . . . , vkq
for any alternating k-formm on V .
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The exterior product has the following characterizing properties. The map

V ˆ ¨ ¨ ¨ ˆ Vloooooomoooooon
k

Ñ Źk
V, pv1, . . . , vkq ÞÑ v1 ^ ¨ ¨ ¨ ^ vk

is linear in every variable, and alternating.
Furthermore, if b1, . . . , bn is a basis of V , then the set of

bi1 ^ ¨ ¨ ¨ ^ bik
for ti1, . . . , iku Ă t1, . . . , nu with i1 ă ¨ ¨ ¨ ă ik is a basis of

Źk
V .

Example 13.1.5.
(i) V “ R2. Let e1, e2 P R2 be the canonical basis.

§
Ź0R2 “ R with basis 1.

§
Ź1R2 “ R2 with basis e1, e2.

§ dim
Ź2R2 “ 1 with basis e1 ^ e2 “ ´e2 ^ e1.

Let a “ a1e1 ` a2e2, b “ b1e1 ` b2e2 P R2 be two vectors. Then

a^ b “ pa1e1 ` a2e2q ^ pb1e1 ` b2e2q
“ a1b1e1 ^ e1 ` a1b2e1 ^ e2 ` a2b1e2 ^ e1 ` a2b2e2 ^ e2
“ pa1b2 ´ a2b1qe1 ^ e2
“ det

`
a1 b1
a2 b2

˘
e1 ^ e2.

The coefficient are the area of the parallelogram spanned by a and b.

(ii) V “ R3. Let e1, e2, e3 P R3 be the canonical basis.

§
Ź0R3 “ R with basis 1.

§
Ź1R3 “ R3 with basis e1, e2, e3.

§ dim
Ź2R3 “ 3 with basis e1 ^ e2, e2 ^ e3, e3 ^ e1

§ dim
Ź2R3 “ 1 with basis e1 ^ e2 ^ e3.

Let a “ a1e1 ` a2e2 ` a3e3, b “ b1e1 ` b2e2 ` b3e3 P R3 be two vectors. Then

a^ b “ pa1e1 ` a2e2 ` a3e3q ^ pb1e1 ` b2e2 ` b3e3q
“ pa1b2 ´ a2b1qe1 ^ e2 ` pa2b3 ´ a3b2qe2 ^ e3 ` pa3b1 ´ a1b3qe3 ^ e1,
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The coefficients are areas of the projections of the parallelogram spanned by a
and b to the coordinate planes. With c “ c1e1 ` c2e2 ` c3e3 P R3 we obtain

a^ b^ c “ det
´

a1 b1 c1
a2 b2 c2
a3 b3 c3

¯
e1 ^ e2 ^ e3

The coefficient is the volume of the parallelepiped spanned by a, b, and c.

The exterior product vanishes if any two entries are the same.

Example 13.1.6. Let a, b P Rn, and ã :“ a` 1
2
b.

ã^ b “ pa` 1
2
bq ^ b “ a^ b` 1

2
b^ b “ a^ b.

Note that the two parallelgrams spanned by a, b and by ã, b have the same area.

Thus, we can always add a linear combination of, say v2, . . . , vk to v1 without changing the
exterior product:

pv1 ` λ2v2 ` ¨ ¨ ¨ ` λkvkq ^ v2 ^ ¨ ¨ ¨ ^ vk “ v1 ^ v2 ^ ¨ ¨ ¨ ^ vk.
More generally:

Proposition 13.1.7. Let v1, . . . , vk P V . Then

v1 ^ ¨ ¨ ¨ ^ vk “ 0 ô v1, . . . , vk linearly dependent.

Proof. Let v1, . . . , vk be linearly dependent. Then there exists an i P t1, . . . , ku such
that

vi “
ÿ

j‰i
λjvj,

and thus,

v1 ^ ¨ ¨ ¨ ^ vi ^ ¨ ¨ ¨ ^ vk “
ÿ

j‰i
λj v1 ^ ¨ ¨ ¨ ^ vj ^ ¨ ¨ ¨ ^ vj ^ ¨ ¨ ¨ vklooooooooooooooooooomooooooooooooooooooon

“0

“ 0.

Vice versa, let v1, . . . , vk be linearly independent. Then they can be extended to a
basis of V , and thus

v1 ^ ¨ ¨ ¨ ^ vk
is a basis vector of

Źk
V , which cannot be 0.
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Definition 13.1.8. A k-vector a P Źk
V that can be expressed as the wedge product of

k 1-vectors, i.e., there exists v1, . . . , vk P V such that

a “ v1 ^ ¨ ¨ ¨ ^ vk
is called decomposable, or a k-blade.

Not every k-vector a P Źk
V is decomposable. If a P Źk

V is decomposable, then certainly

a^ a “ 0.

Starting at dimension n “ dimV “ 4 we can create a 2-vector which does not satisfy this
property:

Example 13.1.9. Let v1, v2, v3, v4 P V be linearly independent. Then

a :“ v1 ^ v2 ` v3 ^ v4
satisfies

a^ a “ 2v1 ^ v2 ^ v3 ^ v4 ‰ 0,

and therefore is not decomposable.

We can easily extend the exterior product to multi-vectors which are decomposable: For
a p-blade a “ v1 ^ ¨ ¨ ¨ ^ vp P

Źp
V and a q-blade b “ w1 ^ ¨ ¨ ¨ ^ wq P

Źq
V the exterior

product a^ b P Źp`q
V is defined in the obvious way

a^ b :“ v1 ^ ¨ ¨ ¨ vp ^ w1 ^ ¨ ¨ ¨ ^ wq.

From there it can be extended to arbitrary multi-vectors a P Źp
V, b P Źq

V by linearity. If
b1, . . . , bn P V is a basis, then

a “
ÿ

i1ă¨¨¨ăip
λi1...ipbi1 ^ ¨ ¨ ¨ ^ bip

for some λi1...ip P F and

b “
ÿ

j1ă¨¨¨ăjq
µj1...jqbj1 ^ ¨ ¨ ¨ ^ bjq

for some µj1...jq P F. We define a^Źp`q
V by

a^ b :“
ÿ

i1ă¨¨¨ăip

ÿ

j1ă¨¨¨ăqq
λi1...ipµj1...jqbi1 ^ ¨ ¨ ¨ bip ^ bj1 ^ ¨ ¨ ¨ ^ bjq ,
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which does not depend on the chosen basis. The resulting general exterior product is still
linear by definition.

For 1-vectors the exterior product is alternating. Thus, for a p-blade a “ v1^¨ ¨ ¨^ vp PŹp
V and a q-blade b “ w1 ^ ¨ ¨ ¨ ^ wq P

Źq
V this leads to

a^ b “ v1 ^ ¨ ¨ ¨ ^ vp ^ w1 ^ ¨ ¨ ¨ ^ wq

“ p´1qpw1 ^ v1 ^ ¨ ¨ ¨ ^ vp ^ w2 ^ ¨ ¨ ¨ ^ wq

...
“ p´1qpq w1 ^ ¨ ¨ ¨ ^ wq ^ v1 ^ ¨ ¨ ¨ ^ vp
“ p´1qpq b^ a,

which again extends to general multi-vectors by linearity.
Thus, we have obtained the following general properties of the exterior product:

Proposition 13.1.10. The exterior product

^ :
Źp
V ˆŹq

V Ñ Źp`q
V

satisfies the following properties:

(i) For a P Źp
V , b P Źq

V , b P Źr
V

a^ pb^ cq “ pa^ bq ^ c.

(ii) For a P Źp
V , b, c P Źq

V

a^ pb` cq “ a^ b` a^ c
.

(iii) For a P Źp
V , b, c P Źq

V

a^ b “ p´1qpq b^ a.

Example 13.1.11 (Cramer’s rule). Let a, b P R2 linearly independent, and

x “ αa` βb P R2.
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To determine the coefficients we take the exterior products

x^ a “ βb^ a
x^ b “ αa^ b.

Since the 2-blades appearing on both sides are linearly dependent their quotient is well
defined, and we obtain

α “ x^ b
a^ b “

det
`
x1 b1
x2 b2

˘

det
`
a1 b1
a2 b2

˘ , α “ a^ x
a^ b “

det p a1 x1
a2 x2 q

det
`
a1 b1
a2 b2

˘ ,

which is Cramer’s rule for solving the linear system
ˆ
a1 b1
a2 b2

˙ˆ
α
β

˙
“
ˆ
x1
x2

˙
,

and, thus, leads to a geometric interpretation of it.

Remark 13.1.12. The direct sum
Ź0
V ‘Ź1

V ‘ ¨ ¨ ¨ ‘Źn
V

is called the Grassmann algebra of V and constitutes a vector space of dimension 2n.
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13.2 Grassmannians and the Plücker embedding
The projective subspaces of a projective space PpV q are represented by the linear subspaces
of the underlying vector space V .

Definition 13.2.1. Let V be a vector space, k P N. Then the Grassmannian Grpk, V q
is the set of all k-dimensional linear subspaces of V .

In particular,
Grp1, V q “ PpV q.

We can now take the decomposable vectors of th k-th exterior power of V to represent
k-dimensional linear subspaces of V : LetU P Grpk, V q be a k-dimensional linear subspace
of V Then there always exist k vectors v1, . . . , vk P V such that

U “ spantv1, . . . , vku.
Furthermore, v1, . . . , vk are linearly independent. Now let ṽ1, . . . , ṽk be another k vectors
such that

U “ spantṽ1, . . . , ṽku.
Since v1, . . . , vk are a basis in U , we have

ṽi “
kÿ

j“1
αijvj

for some αij P R. With A :“ pαijqi,j“1,...k we find
0 ‰ ṽ1 ^ ¨ ¨ ¨ ^ ṽk “ detAv1 ^ ¨ ¨ ¨ ^ vk

where detA ‰ 0 since ṽ1 ^ ¨ ¨ ¨ ^ ṽk ‰ 0. Thus,

rṽ1 ^ ¨ ¨ ¨ ^ ṽks “ rv1 ^ ¨ ¨ ¨ ^ vks P Pp
Źk
V q,

and the following map is well defined.

Definition 13.2.2. The map

ι : Grpk, V q Ñ PpŹkV q, spantv1, . . . , vku ÞÑ rv1 ^ ¨ ¨ ¨ ^ vks
is called the Plücker embedding.
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Proposition 13.2.3. The Plücker embedding is injective, and surjective onto the subset
represented by decomposable k-vectors.

13.2.1 Decomposable 2-vectors
Let V be a finite dimensional vector space. We have seen that a necessary condition for a
k-vector a P Źk

V to be decomposable is

a^ a “ 0 P Ź2k
V.

In the case k “ 2, this condition is also sufficient.
We start with the case dimV “ 3, in which all 2-vectors are decomposable.

Lemma 13.2.4. Let dimV “ 3. Then every 2-vector a P Ź2
V is decomposable.

Proof. Let a P Ź2
V . Consider the linear map

A : V Ñ Ź3
V, v ÞÑ a^ v.

Since dim
Ź3
V “ 1, we have dimkerA ě 2. Let v1, v2 P kerA linearly independent

and extend them to a basis v1, v2, v3 P V . Then

a “ a1v2 ^ v3 ` a2v3 ^ v1 ` a3v1 ^ v2.
Now

0 “ Apv1q “ a1 v1 ^ v2 ^ v3looooomooooon
‰0

,

and thus a1 “ 0. Similarly, a2 “ 0. Therefore,

a “ a3v1 ^ v2,
which is decomposable.

Theorem 13.2.5.
a P Ź2

V decomposable ô a^ a “ 0 P Ź4
V.
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Proof.
(ñ) Let a P Ź2

V be decomposable, i.e.,

a “ v1 ^ v2
with v1, v2 P V . Then

a^ a “ v1 ^ v2 ^ v1 ^ v2 “ 0.

(ð) Let a P Ź2
V with a^ a “ 0.

In the cases dimV “ 0 and dimV “ 1, we have dim
Ź2
V “ 0.

In the case dimV “ 2, we have dim
Ź2
V “ 1. If v1, v2 P V is a basis, then

0 ‰ v1 ^ v2 P
Ź2
V and thus all 2-vectores are demposable.

The case dimV “ 3 has been treated separately in Lemma 13.2.4.
We continue by induction in the dimension ofV . Assume the statement is true for all
dimensions dimV ď n, and consider the case dimV “ n`1. Let v1, . . . , vn`1 P V
be a basis. Then

a “
ÿ

iďiăjďn`1
aijvi ^ vj

“
˜

nÿ

i“1
a1,n`1vi

¸

looooooomooooooon
“:u

^vn`1 `
ÿ

iďiăjďn
aijvi ^ vj

looooooooomooooooooon
ã

“ u^ vn`1 ` ã

where u P U and ã P Ź2
U with U :“ spantv1, . . . , vnu, dimU “ n.

Now
0 “ a^ a
“ pu^ vn`1 ` ãq ^ pu^ vn`1 ` ãq
“ u^ vn`1 ^ u^ vn`1looooooooooomooooooooooon

“0
`2ã^ u^ vn`1 ` ã^ ã

The vector vn`1 does neither appear in the expansion of ã ^ u nor ã ^ ã, thus we
obtain

ã^ u “ 0, ã^ ã “ 0.

By induction ã^ ã “ 0 implies

a “ u1 ^ u2
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with some u1, u2 P V . Then the first equation becomes

u1 ^ u2 ^ u “ 0.

Thus, by Proposition 13.1.7, u1, u2, u are linearly dependent, i.e.,

λ1u1 ` λ2u2 ` λu “ 0

with some λ1, λ2, λ P F which are not all 0.
If λ “ 0, then u1, u2 are linearly dependent, and thus ã “ u1 ^ u2 “ 0. Then

a “ u^ vn`1,
which is decomposable.
If λ ‰ 0 we can write

u “ µ1u1 ` µ2u2

and thus
a “ µ1u1 ^ vn`1 ` µ2u2 ^ vn`1 ` u1 ^ u2.

This is the 3-dimensional case, which by induction, or by Lemma 13.2.4, is always
decomposable.

13.3 The Klein-Plücker quadric
We now look at the Plücker embedding in the case V “ R4. A line ` Ă RP3 is represented
by a 2-dimensional linear subspace U P Grp2,R4q, ` “ PpUq. By means of the Plücker
embedding, this subspace, in turn, is represented by a decomposable 2-vector a P Ź2R4.

Let e1, e2, e3, e4 P R4 be the canonical basis. Then

a “ λ12e1 ^ e2 ` λ13e1 ^ e3 ` λ14e1 ^ e4 ` λ34e3 ^ e4 ` λ42e4 ^ e2 ` λ23e3 ^ e4,
and

a^ a “ 2pλ12λ34 ` λ13λ42 ` λ14λ23qloooooooooooooooomoooooooooooooooon
“:xa,ay

e1 ^ e2 ^ e3 ^ e4.

where x¨, ¨y is a quadratic form on the 6-dimensional vector space
Ź2R4. Thus, the decom-

posable 2-vectors of R4 are given by the kernel of the quadratic form x¨, ¨y:
a^ a “ 0 ô xa, ay “ 0.
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Definition 13.3.1. The Klein-Plücker quadric is the quadric

Q :“
!
ras P PpŹ2R4q

ˇ̌
ˇ xa, ay “ 0

)
Ă PpŹ2R4q – RP5.

In the homogeneous coordinates rλ12, λ34, λ13, λ42, λ14, λ23s the Gram-matrix of the Plücker
quadric takes the form ¨

˚̊
˚̊
˚̊
˝

0 1
1 0

0 1
1 0

0 1
1 0

˛
‹‹‹‹‹‹‚

from which we see thatQ is a quadric of neutral signature p```´´´q, and thus contains
isotropic lines and planes.

Theorem 13.3.2. By the Plücker embedding, lines in RP3 are in one-to-one corre-
spondence with points on the Plücker quadric Q Ă PpŹ2R4q, such that two lines
`1, `2 Ă RP3 intersect if and only if the line through their two corresponding points
ra1s, ra2s P Q is isotropic. i.e.,

xa1, a2y “ 0.

Proof. The one-to-one correspondence follows from the previous discussions and
Proposition 13.2.3.

Let `1, `2 Ă RP3 be two lines that intersect in the point rus P RP3. Let ru1s, ru2s P
RP3 such that

`1 “ rus _ ru1s, `2 “ rus _ ru2s.
Then the line ra1s _ ra2s Ă PpŹ2R4q is spanned by u ^ u1 and u ^ u2. Thus, a point
rxs P ra1s _ ra2s is of the form

x “ λ1u^ u1 ` λ2u^ u2 “ u^ pλ1u1 ` λ2u2q,
which is decomposable. Therefore, rxs P Q.

Let `1, `2 Ă RP3 be two lines that do not intersect. Then RP3 “ `1 _ `2 and there
exists a basis u1, u2, u3, u4 P R4 such that

`1 “ ru1s _ ru2s, `2 “ ru3s _ ru4s.
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Now a point rxs P ra1s _ ra2s is represented by
x “ λu1 ^ u2 ` µu3 ^ u4,

and thus
x^ x “ 2λµu1 ^ u2 ^ u3 ^ u4looooooooomooooooooon

‰0
.

This only vanishes for λ “ 0 or µ “ 0. Therefore, the line ra1s_ra2s intersects quadric
Q in exactly two points, and thus, is not isotropic.

Corollary 13.3.3. A non-degenerate non-empty planar section of the Plücker quadric
corresponds to one of the two one-parameter families of rulings of a one-sheeted
hyperboloid in RP3.

The intersection with its polar plane corresponds to the other one-parameter family
of rulings.

Remark 13.3.4.
§ All lines in RP3 that lie in a common plane and intersect in a common plane
correspond to an isotropic line in the Plücker quadric.

§ All lines in RP3 through a common point correspond to an isotropic plane in the
Plücker quadric. Such isotropic plane are called α-planes. Two α-planes always
intersect in a point.

§ By duality, all lines in RP3 through that lie in a common plane correspond also
correspond to an isotropic plane in the Plücker quadric. Such isotropic plane are
called β-planes. Two β-planes always intersect in a point.

§ Each isotropic plane in the Plücker quadric is either an α-plane or a β-plane. Gener-
ically, an α-plane and a β-plane intersect. The special case in which they intersect
(which is always in an isotropic line), occurs when the point that corresponds to the
α-plane lies in the plane corresponding to the β-plane.
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