TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/ WS 11

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 2

(product manifolds, smooth maps, embeddings)

due 01.11.2011

Exercise 1

5 points

Let M and N be smooth manifolds of dimension m and n respectively. The topological product $M \times N$ is a topological (m + n) manifold. Let $(U_i, \varphi_i)_{i \in I}$ be a smooth atlas for M and $(V_j, \psi_j)_{i \in J}$ a smooth atlas for N.

Show that $(U_i \times V_j, \varphi_i \times \psi_j)_{(i,j) \in I \times J}$ is a smooth atlas for $M \times N$.

Here $\varphi_i \times \psi_j \colon U_i \times V_j \to \mathbb{R}^m \times \mathbb{R}^n$ with $(\varphi_i \times \psi_j)(x, y) = (\varphi_i(x), \psi_j(y)).$

Exercise 2

5 points

Let M_1, M_2 and N be smooth manifolds and $f: N \to M_1 \times M_2$ be a map. For $i \in \{1, 2\}$ we define on the projection on the i - th component:

 $\pi_i \colon M_1 \times M_2 \to M_i, \qquad \pi_i \left(x_1, x_2 \right) := x_i.$

Prove that f is smooth if and only if $\pi_1 \circ f$ and $\pi_2 \circ f$ are smooth.

Exercise 3

5 points

Let X, Y be Hausdorff spaces and $f: X \to Y$ a continuous map. Prove the equivalence of the following statements:

- i) For each $x \in X$ and every neighborhood U of x there is a neighborhood V of f(x) such that $f(X \setminus U) \cap V = \emptyset$.
- ii) f is a topological embedding, i.e. a continuous injection which is a homeomorphism onto its image.