TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Sullivan / Knöppel http://page.math.tu-berlin.de/~sullivan/L/11W/DG2/ WS 11

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 1

(Manifolds and examples)

due 26.10.2011

Exercise 1

5 points

5 points

Let X be a topological space, $x \in X$ and $n \ge 0$. Show that the following statements are equivalent:

- i) There is a neighborhood of x which is homeomorphic to \mathbb{R}^n .
- ii) There is a neighborhood of x which is homeomorphic to an open subset of \mathbb{R}^n .

Exercise 2

Let $n \ge 0$ and let $J = \{0, \ldots, n\}$. We define $\left(U_j^{\pm}, \varphi_j^{\pm}\right)_{j \in J}$ by

$$U_j^{\pm} := \{ x = (x_0, \dots, x_n) \in \mathbb{S}^n \mid \pm x_j > 0 \}$$

and

$$\varphi_j^{\pm} \colon U_j^{\pm} \to \mathbb{R}^n, \qquad (x_0, \dots, x_n) \mapsto (x_0, \dots, x_{j-1}, x_{j+1}, \dots, x_n).$$

Show that $(U_j^{\pm}, \varphi_j^{\pm})_{j \in J}$ is a C^{∞} atlas for \mathbb{S}^n .

Exercise 3

5 points

For $\theta \in \mathbb{R}$ we define $U_{\theta} := \mathbb{S}^1 \setminus \{(\cos \theta, \sin \theta)\} \subset \mathbb{S}^1$ and

$$\varphi_{\theta} \colon U_{\theta} \to (\theta, \theta + 2\pi) \subset \mathbb{R}, \qquad (\cos \rho, \sin \rho) \mapsto \rho.$$

- i) Explain why this is well-defined and show that $(U_{\theta}, \varphi_{\theta})_{\theta \in \mathbb{R}}$ is a C^{∞} atlas for \mathbb{S}^{1} .
- ii) Show that

$$\{(x_0, x_1) \in \mathbb{S}^1 \mid x_1 > 0\} \to \mathbb{R}, \qquad (x_0, x_1) \mapsto \frac{x_0}{x_1}$$

is another chart for \mathbb{S}^1 and decide whether it is in the C^{∞} structure defined by the atlas $(U_{\theta}, \varphi_{\theta})_{\theta \in \mathbb{R}}$.