

Topology WS 10/11

Exercise Sheet 5

Due in tutorials on 24 November 2010

Exercise 1 (6 pts):

A set $U \subset \mathbb{R}^2$ is called *star-shaped* from $p \in U$ if for every other point $q \in U$ the segment \overline{pq} lies entirely in U.

Show that if U is star-shaped (from some point) then $H_1(U) = 0$, that is, every 1-cycle is a 1-boundary.

Exercise 2 (7 pts):

Suppose $U = \mathbb{R}^2 \setminus \{p_1, \dots, p_n\}$. Consider the map:

$$C_1(U) \to \mathbb{Z}^n$$

$$\gamma \mapsto (W(\gamma, p_1), \dots, W(\gamma, p_n))$$

Show that it vanishes on boundaries and thus induces a map: $\phi : H_1(U) \to \mathbb{Z}^n$. Show that ϕ is an isomorphism.

Exercise 3 (7 pts):

Suppose U and V are open subset of \mathbb{R}^2 and $F: U \to V$ a continuous map. For a 1-chain $\gamma = \sum n_i \gamma_i$ in U we define,

$$F_*\gamma := \Sigma n_i (F \circ \gamma_i)$$

a 1-chain in V. Analogously we define for 0-chains: $F_* \Sigma n_i p_i := \Sigma n_i F(p_i)$. Show that $F_* \partial \gamma = \partial F_* \gamma$ for all 1-chains γ , and thus F_* maps 1-cycles to 1-cycles. Lastly, show that F_* maps 1-boundaries to 1-boundaries.