TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan
Silvia De Toffoli (toffoli@math.tu-berlin.de)
www.math.tu-berlin.de/~sullivan/L/10W/Top/

Topology WS 10/11

Exercise Sheet 2

Due in tutorials on 3 November 2010

Exercise 1:

Let $U \subset \mathbb{R}^2$ be an open subset in the plane. Prove that a function $f : U \to \mathbb{R}$ is *locally constant* (i.e. each point has a neighborhood on which f is constant) if and only if f is constant on each connected component.

Exercise 2:

On which of the following open subsets $U \subset \mathbb{R}^2$ in the plane is ω_{θ} exact (i.e. there is a smooth angle function θ with $\omega_{\theta} = d\theta$ on U)? Motivate your answer.

- (a) The union of the upper half plane and the right half plane.
- (b) The complement of the negative *y*-axis.
- (c) The complement of the line segment joining P to 0, where $0 \neq P \in \mathbb{R}^2$.
- (d) The complement of the line through P and 0, where again $0 \neq P \in \mathbb{R}^2$.
- (e) An annulus centered at 0, that is, the set $\{(x, y) \in \mathbb{R}^2 \mid n < x^2 + y^2 < m\}$, for some 0 < n < m.

Exercise 3:

Let $P \in \mathbb{R}^2$, then ω_P will be the closed 1-form corresponding to " $d\theta$ " around P. If $P = (x_0, y_0)$ then we'll define it as follow on $\mathbb{R}^2 \setminus \{P\}$:

$$\omega_P := \frac{-(y-y_0)dx + (x-x_0)dy}{(x-x_0)^2 + (y-y_0)^2}$$

Given two distinct points $P, Q \in \mathbb{R}^2$ prove that $\omega_P - \omega_Q$ is not exact on $\mathbb{R}^2 \setminus \{P, Q\}$. Show, however, that it is exact on $\mathbb{R}^2 \setminus \overline{PQ}$, where \overline{PQ} denotes the line segment from P to Q.

Exercise 4:

Suppose $U \subset \mathbb{R}^2 \setminus \{0\}$ is a subset in which there exists a continuous angle function θ (for which $d\theta = \omega_{\theta}$). Suppose γ is a closed path in U. Show that the winding number $W(\gamma, 0)$ equals 0.