

Prof. Dr. John M. Sullivan
Silvia De Toffoli
www.math.tu-berlin.de/~sullivan/L/10W/Top/

Topology WS 10/11

Exercise Sheet 1

Due in tutorials on 27 October 2010

Exercise 1:

On any set X we can define the *cofinite topology* as follows. $C \subset X$ is closed if and only if C = X or C is finite. Prove that this topology is well defined. Is X with this topology Hausdorff?

Exercise 2:

Let $f : X \to Y$ be a continuous map between topological spaces. Prove that if X is compact, then f(X) is compact.

Exercise 3:

Give $\{0,1\}$ the discrete topology. On the product space $X := \mathbb{R} \times \{0,1\}$ we define the following relation:

 $(x,a) \sim (y,b) \iff (x,a) = (y,b) \text{ or } x = y < 0$

Prove that X/\sim is the union of two open sets homeomorphic to \mathbb{R} . Is it Hausdorff? (Motivate your answer.)

Exercise 4:

Let $f : X \to Y$ be a map between topological spaces. We say that f is *open* if for every open set $U \subset X$, f(U) is open in Y. Similarly, f is *closed* if for every closed set $V \subset X$, f(V) is closed in Y. For a continuous bijection $f : X \to Y$, prove that the following conditions are equivalent:

- 1. f is a homeomorphism
- 2. f is open
- 3. f is closed