Due: Tutorial on 27.05.10

TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan **Geometry II** Dott. Matteo Petrera http://www.math.tu-berlin.de/~sullivan/L/10S/Geo2/

Exercise Sheet 4

Exercise 1: Distortion of an infinite polygon.

Given $\epsilon > 0$ find an "infinite polygon" $p = (p_1, p_2, ...)$ in \mathbb{R}^2 with $p_n \to (0, 0)$ such that $TC(p) = \infty$ and $\delta(p) < 1 + \epsilon$.

(Hint: Let the vertices alternate between two nearby rays out of (0, 0)).

Exercise 2: Schur's Theorem.

Let $\gamma \subset \mathbb{R}^d$ be an arc with length $2a, a < \pi$. Suppose γ has curvature $\kappa \leq 1$. Use Schur's Theorem to show that the distortion of γ is at most $a / \sin a$.

(Note: The condition $\kappa \leq 1$ should be interpreted as saying that the total curvature of any subarc is at most its length. For a C^2 curve, this is equivalent to saying that the ordinary curvature $\kappa := |T'|$ is bounded by 1.)

Exercise 3: Distortion of a comet shaped curve.

Let $\gamma: S^1 \to \mathbb{R}^2$ be the closed curve in the figure, consisting of a semicircle A and a polygonal section, consisting of two line segments P_1 and P_2 with the same length. Let ϕ be the exterior angle. Compute the distortion $\delta(\gamma)$.

(6 pts)

(6 pts)

SS 10

(4 pts)