Differentialgeometrie II Übungsblatt 2

Due 5 November 2008

Remark: The notes available on the course webpage might be useful. In particular, the second set of notes contains hints for problem 2.

1 Aufgabe

(a) Show that S^1 , viewed as the set of points $\{x, y \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ is regularly embedded in \mathbb{R}^2 .

(b) Consider $M_2(\mathbb{R})$ (the set of 2×2 real matrices) as a differentiable manifold with atlas given by a single chart: the natural identification with \mathbb{R}^4 . Show that $\mathcal{SO}(2,\mathbb{R})$ (the subset of orthogonal 2×2 matrices with determinant 1) is homeomorphic to S^1 .

(c) Show that $\mathcal{SO}(2,\mathbb{R}) \subset M_2(\mathbb{R})$ has the 1-submanifold property (in in the sense of Boothby, def III.5.1). Hint: write down the three relations among the coefficients that determine $\mathcal{SO}(2,\mathbb{R})$ and think of them as a smooth map $F : \mathbb{R}^4 \to \mathbb{R}^3$ that attains a specific value on $\mathcal{SO}(2,\mathbb{R})$; use the rank theorem.

2 Aufgabe

Consider the closed unit disc $D_1^2 \subset \mathbb{R}^2$ (as a topological space). On D_1^2 define an equivalence relation $(x, y) \sim (x', y')$ if (x, y) = (x', y') or $x^2 + y^2 = x'^2 + y'^2 = 1$, i.e., we identify all the points on the boundary of the disc. Let $M := D_1^2 / \sim$ be the quotient space and $\pi : D_1^2 \to M$ the quotient map.

(a) Show that M is Hausdorff and second countable (with its quotient topology).

(b) Define on M the structure of a smooth manifold diffeomorphic to S^2 .

Suggested strategy: remember from last week the diffeomorphism $\phi: B_1^2 \to \mathbb{R}^2$ defined by

$$\phi((x_1, x_2)) = \left(\frac{x_1}{\sqrt{1 - x_1^2 - x_2^2}}, \frac{x_2}{\sqrt{1 - x_1^2 - x_2^2}}\right)$$

Use it to build the following atlas:

$$\tilde{\phi}_1 := \phi \circ \pi^{-1} : U_1 \to \mathbb{R}^2, \qquad U_1 := \pi(B_1^2),$$
$$\tilde{\phi}_2 := \sigma \circ \phi \circ \pi^{-1} : U_2 \to \mathbb{R}^2, \qquad U_2 := M \setminus \{\pi(0,0)\})$$

where σ is the map $\sigma : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}$ given by $\sigma(x,y) := (\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2})$. (Note that σ is a diffeomorphism, and $\sigma^{-1} = \sigma$.) Strictly speaking, $\sigma \circ \phi \circ \pi^{-1}$ is defined only as map between $\pi(B_1^2 \setminus \{(0,0)\})$ and $\mathbb{R}^2 \setminus \{(0,0)\}$ but you can (and must!) extend it (uniquely) to a homeomorphism from $M \setminus \{\pi(0,0)\}$ to \mathbb{R}^2 . Explain why it is necessary and possible to do so. (Which point of M is mapped to (0,0)?)

3 Aufgabe

Let M be a (smooth) n-manifold and $\{(\psi_{\alpha}, U_{\alpha}), \alpha \in I\}$ an atlas for M. Denote $\psi_{\alpha}(U_{\alpha}) =: V_{\alpha} \subset \mathbb{R}^{n}$. Consider the disjoint union $V := \coprod_{\alpha \in I} V_{\alpha}$. (If we give the index set I the discrete topology, this can be defined as $\{(x, \alpha) \in \mathbb{R}^{n} \times I \mid x \in V_{\alpha}\}$, but we usually write a point in V simply as $x_{\alpha} \in V_{\alpha}$.)

Define a relation on V as follows: For $x_{\alpha} \in V_{\alpha}$, $x_{\beta} \in V_{\beta}$, we say $x_{\alpha} \sim x_{\beta}$ if there exists $x \in U_{\alpha} \cap U_{\beta}$ such that $\psi_{\alpha}(x) = x_{\alpha}$ and $\psi_{\beta}(x) = x_{\beta}$.

(a) Show that this relation \sim is an equivalence relation.

(b) Let $N := V/\sim$ denote the quotient space. Consider the map $\phi: V \to M$ defined by $\phi(x_{\alpha}) = \psi_{\alpha}^{-1}(x_{\alpha})$ for $x_{\alpha} \in V_{\alpha}$. Show that this descends to a well-defined map $\bar{\phi}: N \to M$.

(c) Show that $\bar{\phi}$ is actually a homeomorphism. Use this homeomorphism to define a differentiable structure on N and conclude that M and N are diffeomorphic.