Differentialgeometrie II Übungsblatt 1

October 22, 2008

1. Let M and N be C^{∞} manifolds of dimensions m and n. Show that $M \times N$ is a C^{∞} manifold of dimension m + n with coordinate charts of the form $\{U \times V, \phi \times \psi\}$, where (U, ϕ) and (V, ψ) are coordinate charts for M and N, respectively, and $\phi \times \psi(p, q) = (\phi(p), \psi(q))$ in \mathbb{R}^{m+n} .

(Boothby, theorem III.1.1)

- 2. Let M be a smooth manifold and $U \subset M$ open. Let $\phi : U \to \mathbb{R}^n$. Then (U, ϕ) is a coordinate chart if and only if ϕ is a diffeomorphism onto an open subset $W \subset \mathbb{R}^n$. Analogously, let $W \subset \mathbb{R}^n$ be open, $\psi : W \to M$ a dippheomorphism onto an open subset $U \subset M$, then (U, ψ^{-1}) is a local chart.
- 3. View the two-dimensional torus as $S^1 \times S^1$, i.e. the product of two circles (considered as smooth one-dimensional manifolds). Use problem 1) to define a smooth structure on $S^1 \times S^1$.
- 4. Consider $\phi: \mathcal{B}_1^2 \to \mathbb{R}^2$, a map from the unit open ball $\mathcal{B}_1^2 \subset \mathbb{R}^2$ to \mathbb{R}^2 , defined by $\phi((x_1, x_2)) = (\frac{x_1}{\sqrt{1-x_1^2-x_2^2}}, \frac{x_2}{\sqrt{1-x_1^2-x_2^2}})$. Show that ϕ is (at least) a C^1 -diffeomorphism. Hint: $\phi^{-1}((y_1, y_2)) = (\frac{y_1}{\sqrt{1+y_1^2+y_2^2}}, \frac{y_2}{\sqrt{1+y_1^2+y_2^2}})$. If you can, prove that it is actually C^∞ .