
Differentialgeometrie II

December 18 2008 Notes

1 Definitions of tensor fields

We met a generalisation of the concept of co-vectorfields: C∞-covariant tensor
fields of order r (Def. V.5.3).

These can be defined in the following three equivalent ways:

• a) a function Φ which assigns to each p ∈ M an element Φp ∈ T r(TpM)
and which has the following property: for any local chart (U,ψ) with
associated local frame Ei the functions αi1,...,ir := Φ(Ei1 , . . . , Eir ) (the
local coordinates for Φ) belong to C∞(U);

• b) a function Φ which assigns to each p ∈ M an element Φp ∈ T r(TpM)
and which has the property that for any choice X1, . . . Xr of elements in
X (M), Φ(X1, . . . Xr) ∈ C∞(M);

• b bis) a function Φ which assigns to each p ∈M an element Φp ∈ T r(TpM)
and which has the property that for any open subset U ofM and any choice
X1, . . . Xr of elements in X (U), Φ(X1, . . . Xr) ∈ C∞(U);

• c) a C∞(M)-linear function Φ from X (M)× · · · × X (M) to C∞(M).

Proof

a) ⇒ b).We must show that for any r-tuple r vector fieldsX1, . . . , Xr, Φ(X1, . . . Xr) ∈
C∞(M). It is sufficient to show this locally for any chart (U,ψ). Then the re-
strictions of the fields Xi on U are linear combinations Xi =

∑
i βiEi with

coefficients βi ∈ C∞(U). This observation plus a) imply that Φ(X1, . . . Xr)|U ∈
C∞(U). As this is true for any choice of (U,ψ), b) is proven.

b) ⇒ a). Let (U,ψ) be a local chart with local frame Ei. We will show that for
any p ∈ U the functions αi1,...,ir

are C∞ in a neighbourhood of p. Choose an
open neighbourhood V 3 p and a function f such that f = 1 on V and supp(f) ⊂
U . Then fEi ∈ X (M) are global vector fields, zero on M\U and coinciding with
Ei on V . Thus αi1,...,ir|V := Φ(Ei1 , . . . , Eir

)|V = Φ(fEi1 , . . . , fEir
)|V . In the

last expression all fields belong to X (M), therefore b) implies that αi1,...,ir
is

C∞ on V .
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a) ⇒ b bis) Exactly as in a) ⇒ b).

b bis) ⇒ a) Exactly as in b) ⇒ a).

b) ⇒ c). Follows immediately by observing that each Φp is R-multilinear.

c) ⇒ b). The only non trivial fact we must show is that Φ assigns an element
Φp in T r(TpM) for each p ∈M , as this is not part of the hypothesis in c).

For any X1p, . . . Xrp ∈ Tp(M) choose vector fields Xi ∈ X (M) such that Xi|p =
Xip, i.e. the value of the fields at the point p coincides with the above chosen
vectors. It is always possible to find such vector fields.

We must show that Φp is well defined: suppose we choose another set of vec-
tor fields Y1, . . . , Yr with the same property (Xip = Yi|p), then we must have
Φ(X1, . . . , Xr)(p) = Φ(Y1, . . . , Yr)(p). It is suffiecient to prove the equality for
one variable at a time, i.e. Φ(X1, . . . , Xi, . . . , Xr)(p) = Φ(X1, . . . , Yi, . . . , Xr)(p).

As a first step, we notice that if Xi|q = Yi|q not only for q = p but for any
q in an open set U containing y, then the equality easily follows: we choose
f ∈ C∞(M) with supp(f) ⊂ U and f(p) = 1. Then fXi = fYi. Thus
Φ(X1, . . . , fXi, . . . Xr)(p) = Φ(X1, . . . , fYi, . . . Xr)(p). As Φ is C∞(M)-linear
by hypothesis, we have f(p)Φ(X1, . . . , Xi, . . . , Xr)(p) = f(p)Φ(X1, . . . , Yi, . . . Xr)(p).
As f(p) = 1, the equality follows.

Also notice that it is sufficient to show the following statement: for any Yi

such that Yi|p = 0 it follows that Φ(X1, . . . , Yi, . . . , Xr)(p) = 0. The general
statement follows by applying (multi) linearity to the field Xi − Yi.

Choose a local chart (U,ψ) containing p and choose a function h and an open
set V ⊂ U containing p such that h = 1 on V and supp(h) ⊂ U. Let Yi be any
vector field satisfying Yi|p = 0. In the open neighbourhood U the restriction
of Y is equal to

∑
i βiEi, where Ei are the elements of the frame associated

to the chart (U,ψ). The functions βi satisfy βi(p) = 0. Consider the field
h2Y . We have Yi|V = h2Yi|V = h2

∑
i βiEi|V . As supp(h) ⊂ U , we extend hEi

to vector fields defined on M , by letting them be 0 on M\U. Thus we have
Φ(X1, . . . , Yi, . . . , Xr)(p) = Φ(X1, . . . , h

2Yi, . . . , Xr)(p)

= Φ(X1, . . . , h
2
∑

i βiEi, . . . , Xr)(p) = h(p)
∑

i βi(p)Φ(X1, . . . , hEi, . . . , Xr)(p).

These expressions are all zero, as we have βi(p) = 0.

Remark. The equation Φ(X1, . . . , h
2Yi, . . . , Xr)(p) = Φ(X1, . . . , Yi, . . . , Xr)(p)

follows from the partial result found above, as h2Yi and Yi coincide not only on
thepoint p but on an open set.

It would have been incorrect to say that as Yi =
∑

i βiEi and βi(p) = 0 it follows
that Φ(X1, . . . ,

∑
i βiEi, . . . , Xr)(p) =

∑
i βi(p)Φ(X1, . . . , Ei, . . . , Xr)(p) = 0,

as the Ei and βi are defined only on U . We know that Φ is C∞(M)-linear,
therefore we had to reduce the problem to one involving globally defined fields
and functions.
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2 Some remarks on dual spaces

We saw that any finite dimensional (real) vector space V is non canonically
isomorphic to its dual space V ∗: it is easy to describe an isomorphism once we
have chosen a basis for V , and this isomorphism depends on the basis.

We can also consider the dual of the dual space V ∗∗, i.e. the space of linear
functionals on V ∗. In this case there is a canonical isomorphism between V and
V ∗∗. Let v ∈ V and let w̄ ∈ V ∗ be any element of the dual space. Define ι(v) ∈
V ∗∗ as the linear functional on V ∗ given by the expression ι(v)(w̄) := w̄(v).

In other words, we can identify V and T 1(V ∗), and use Def. V.6.1 and Theorem
V.6.2, simply by replacing V with V ∗. Thus for v, w ∈ V we can make sense of
expressions like v⊗w. And if ei is a basis for V , then {ei1 ⊗ · · · ⊗ eir} is a basis
for T r(V ∗).

Recalling Definition V.5.1, we see that T r(V ∗) (the space of r-times linear func-
tionals on V ∗) is the same as Tr(V ) (the space of contravariant tensors of order
r). More generally, a moment of thought shows that we have T r

s (V ∗) = T s
r (V ).

We can extend definition V.6.1 and theorem V.6.2 for the case of mixed covari-
ant/contravariant tensors in a straightforward way. For example, let again ei

be a basis for V and let ēj be its dual basis. Then {ēj1 ⊗· · ·⊗ ējr ⊗ ei1 ⊗ . . . eis}
is a basis for T r

s (V ).

All this carries on locally to the case of tensor fields. Let M be a differentiable
manifold and (U,ψ) a local chart. Let {Ei} be the associated local frame of
vector fields and {ωi} the associated coframe. Let Φ ∈ T r

s (M) be a C∞ r-
covariant s-contravariant tensor field on M . Then we have the following local
description of our tensor field:

Φ|U =
∑

i1,...,ir,j1,...,js

αi1,...,ir,j1,...,js
ωi1 ⊗ · · · ⊗ ωir

⊗ Ej1 ⊗ · · · ⊗ Ejs

where the αi1,...,ir,j1,...,js
belong to C∞(U).

3 Example: Boothby, exercise V.5.1

Let {ei} be a basis for V ans {ēi} the dual basis for V ∗.. For r = 2 T 2(V ),
{ēi ⊗ ēj is a basis (theorem V.6.2). Show that the following family of vectors
off T 2(V ) is a basis as well: {ēi ⊗ ēj + ēj ⊗ ēi} with i ≤ j and {ēi ∧ ēj} with
i < j. The first group of n

2 (n + 1) vectors is a basis for Σ2(V ) and the second
group of n(n−1)

2 vectors is a basis for
∧2(V ).

Alternative proof Each element of T 2(V ) is sum of elements of the form v̄ ⊗ w̄,
with v̄, w̄ ∈ T 1(V ). But v̄ ⊗ w̄ = 1

2 (v̄ ⊗ w̄ − w̄ ⊗ v̄) + 1
2 (v̄ ⊗ w̄ + w̄ ⊗ v̄),

i.e. a sum of an element of
∧2(V ) and an elemnt of Σ2(V ). In other words,

v̄ ⊗ w̄ ∈
∧2(V )⊕

∧2(V ). This proves the assertion for r = 2.
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Now consider the case r > 2. Consider the symmetrizing mapping S : T r(V ) →
T r(V ) and the alternating mapping A : T r(V ) → T r(V ) introduced in Defini-
tion V.5.6. Check that their product is zero: SA = AS = 0.

Suppose that T r(V ) = Σr(V ) ⊕
∧r(V ). This means that any φ ∈ T r(V ) is of

the form φ+ + φ− with φ+ ∈ Σr(V ) (equivalently, Sφ+ = φ+) and φ− ∈
∧r(V )

(equivalently, Aφ− = φ−.)

Consider the tensor φ :=
∑

σ ē1 ∧ ē2 ⊗ ēσ(3) ⊗ · · · ⊗ ēσ(r), where the sum is over
all permutations σ involving only the last r − 2 terms and leaving the first two
fixed. Check that Sφ = 0, which implies φ+ = 0. Likeweise, check that Aφ = 0,
which in turn imples φ− = 0. But φ is not zero, and we have just proven that
φ /∈ Σr(V )⊕

∧r(V ).

4 Boothby, exercise V.5.2

We have seen that for any φ ∈ T r(V ) the following are equivalent:

• a) φ is antisymmetric;

• b) φ(v1, . . . , vr) = 0 whenever vi = vj for i 6= j;

• c) φ(v1, . . . , vr) = 0 whenever v1, . . . , vr are linearly dependent.

a) ⇒ b) follows form φ(v1, . . . , vi, . . . , vi, . . . , vr) = −φ(v1, . . . , vi, . . . , vi, . . . , vr)
(where we have permutated vi and vj = vi.)

b) ⇒ c). Suppose that v1, . . . , vr are linearly dependent. Then, for example,
vi =

∑
j 6=i βjvj .

φ(v1, . . . , vi, . . . , vr) =
∑

j 6=i βjφ(v1, . . . , vj , . . . , vr) = 0, as each vj appears (at
least) twice.

c) ⇒ b) obvious.

b) ⇒ a). We know that φ(v1, . . . , vi + vj , . . . , vi + vj , . . . , vr) = 0. It follows,
by r-linearity, that φ(v1, . . . , vi, . . . , vi, . . . , vr) + φ(v1, . . . , vj , . . . , vi, . . . , vr) +
φ(v1, . . . , vj , . . . , vi, . . . , vr)+φ(v1, . . . , vj , . . . , vj , . . . , vr) = φ(v1, . . . , vi, . . . , vj , . . . , vr)+
φ(v1, . . . , vj , . . . , vi, . . . , vr) = 0. Thus φ is antisymmetric.

Now, when r > dimV , it is obvious that any r-tuple of vectors is linearly
dependent, so any antisymmetric φ ∈

∧r(V ) must always take value zero.

5 An example using partitions of unity (Boothby,
problem V.4.2)

Let N be an n-dimensional closed regular submanifold of an m-dimensional man-
ifold M . Show that a C∞ vector field X on N can be extend to a C∞-vector
field on M .
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As a first step, let’s prove the local version of this statement. Choose a point p ∈
N and a preferred (in the sense of Boothby Definition III.5.1)coordinate neigh-
bourhood (U, φ) with coordinate functions x1, . . . , xm, and with E1, . . . , Em the
associated coordinate frame, such that q ∈ N ∩ U iff the last m− n coordinate
functions take value zero on q. Denote by (U ∩N, φ̃) the local chart for N given
by the restriction x̃1, . . . on U ∩N of first n coordinate functions x1, . . . , xn (cfr.
Boothby Lemma III.5.2.) Analogously, denote by Ẽ1, . . . , Ẽn the restrictions of
the E1, . . . , En.

Any smooth vector field X on U ∩N is of the form
∑

i α̃iẼi, with α̃i ∈ C∞(U ∩
N). In local coordinates these functions take the form α̃i ◦ φ̃−1 = α̃i(x1, . . . , xn).

Consider the field XU :=
∑

i αiEi, where αi(x1, . . . , xn, xn+1, . . . , xm)

:= α̃(x1, . . . , xn). It is defined on all U and it is an extension of X. This
extension depends on the local chart.

Now let’s suppose we have a smooth field X defined on the whole of N .

Do the same procedure as above for every point p ∈ N . This gives a covering
of N. Add to this covering the set M\N , which is open as N is closed. Thus
we obtain an open covering of M . From Boothby Lemma V.4.1. we know that
we can find a countable locally finite refinement (Ui, Vi, φi) which is regular (in
the sense of remark 4.2). From Theorem V.4.4 we know that we can construct
a smooth partition of unit fi subordinate to this locally finite refinement. The
idea is to paste together the local extensions XUi

into a global extension using
the functions fi, i.e. multiplying each XUi

by fi and extending its domain of
definition to M by defyining it to be zero out of Ui and finally considering the
sum

∑
i fiXUi .

We have only a small problem. To pursue the above construction we need each
(Ui, Vi, φi) to be a preferred neighbourhhod, which is something which is not
assured from Lemma V.4.1. To be precise, we have two kinds of neighbourhoods:
those containing points of N (derived from the covering of N) and those which
don’t (derived from M\N). For these second kind of neighbourhoods sinply
define XUi

to be zero.

We have two choices: go through the proof of the lemma, and see that when
the original covering consists of subspaces associated to preffered charts, then
it is possible to choose the locally finite refinement Ui, Vi, φi with φ preferred as
well (I will not do this here, but it is not difficult). Second choice: remember
that each Ui having non trivial intersection with N is contained in some U
corresponding to a preferred chart U, φ of the original covering. Simply forget
the φi given by the lemma, and define a new φi as the restriction of the original
φ on Ui. We are actually only interested in the existence of the fi, and we
don’t need all the properties of a regular covering. Now we can pursue the
construction stated above. Remark: the extension we found depends stronlgy
on everything we chose: local charts, refinement, partitions of unity.

A counterexample which shows why we asked N to be closed. Consider M :=
R3, N := {x, y, z ∈ R | x2 +y2 = z2}\{(0, 0, 0)}, i.e. two cones without vertices
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embedded in R3. Let X be, for example, x√
x2+y2

∂
∂x + y√

x2+y2

∂
∂y + ∂

∂z on the

upper cone and zero on the lower one. This field cannot be extended, as we
would have a singularity at the origin. In this example N is not closed, so M\N
is not part of an open covering of M and the proof we gave above breaks down.
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