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1 Definitions of tensor fields

We met a generalisation of the concept of co-vectorfields: C°°-covariant tensor
fields of order r (Def. V.5.3).

These can be defined in the following three equivalent ways:

e a) a function ® which assigns to each p € M an element ®, € T"(T,M)
and which has the following property: for any local chart (U,v) with
associated local frame F; the functions o, ;. = ®(Ey,..., E;.) (the
local coordinates for @) belong to C*°(U);

e b) a function ® which assigns to each p € M an element ®, € 7"(T,M)
and which has the property that for any choice Xi,... X, of elements in
X(M), ®(X1,...X,) € C=(M);

e b bis) a function ® which assigns to each p € M an element &, € 7"(T,M)
and which has the property that for any open subset U of M and any choice
X1,... X, of elements in X(U), ®(Xy,...X,) € C°(U);

e ¢) a C°(M)-linear function ® from X (M) x --- x X(M) to C*°(M).

Proof

a) = b). We must show that for any r-tuple r vector fields X1, ..., X,., ®(Xq,... X,) €
C>(M). It is sufficient to show this locally for any chart (U,+). Then the re-
strictions of the fields X; on U are linear combinations X; = >, 8;F; with
coefficients ; € C°°(U). This observation plus a) imply that ®(Xy,...X,), €
C>(U). As this is true for any choice of (U, 1), b) is proven.

b) = a). Let (U, %) be a local chart with local frame F;. We will show that for
any p € U the functions a;, .. ;. are C* in a neighbourhood of p. Choose an
open neighbourhood V' 5 p and a function f such that f = 1 on V and supp(f) C
U. Then fE; € X(M) are global vector fields, zero on M\U and coinciding with
E;on V. Thus o, ;. |, = ®(Es,...,Ei ), = ®(fE;,...,fE;)},. In the
last expression all fields belong to X' (M), therefore b) implies that «;, . ;. is
C*®onV.
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a) = b bis) Exactly as in a) = b).
b bis) = a) Exactly as in b) = a).
b) = ¢). Follows immediately by observing that each ®,, is R-multilinear.

¢) = b). The only non trivial fact we must show is that ® assigns an element
@, in 77(T,M) for each p € M, as this is not part of the hypothesis in ¢).

For any Xy, ... X, € T,(M) choose vector fields X; € X' (M) such that X; =
Xip, i.e. the value of the fields at the point p coincides with the above chosen
vectors. It is always possible to find such vector fields.

We must show that @, is well defined: suppose we choose another set of vec-
tor fields Y,...,Y, with the same property (X;;, = Y; ), then we must have
O(Xy,..., X, )(p) = ©(Y1,...,Y,)(p). It is suffiecient to prove the equality for
one variable at a time, i.e. ®(Xy,...,X;,..., X )(p) = O(X1,..., Vs, ..., X)) (p)-

As a first step, we notice that if X; = Y; not only for ¢ = p but for any

¢ in an open set U containing y, then the equality easily follows: we choose

f € C®(M) with supp(f) € U and f(p) = 1. Then fX; = fY;. Thus
O(Xy,...,.fXi... X)(p) = ®(X1,...,fY:, ... X;)(p). As ® is C°(M)-linear

by hypothesis, we have f(p)®(X1,..., X, ..., X)) (p) = f(p)@(Xy,..., Y, ... X)) (p).
As f(p) = 1, the equality follows.

Also notice that it is sufficient to show the following statement: for any Y;
such that Y = 0 it follows that ®(Xy,...,Y;,..., X;)(p) = 0. The general
statement follows by applying (multi) linearity to the field X; — Y;.

Choose a local chart (U, 1) containing p and choose a function h and an open
set V' C U containing p such that h =1 on V and supp(h) C U. Let Y; be any
vector field satisfying Y;, = 0. In the open neighbourhood U the restriction
of Y is equal to ), 5;E;, where E; are the elements of the frame associated
to the chart (U,+). The functions §; satisfy §;(p) = 0. Consider the field
h%2Y. We have Yy, = hZYZ-‘V =h*y, BiEy), . As supp(h) C U, we extend hE;
to vector fields defined on M, by letting them be 0 on M\U. Thus we have
O(Xy,...,Y:, ..., X)) (p) = ®(Xyq,...,h%Y;, ..., X,)(p)

These expressions are all zero, as we have 3;(p) = 0.

Remark. The equation ®(Xy,...,h%Y;, ..., X,)(p) = ®(X1,...,Y;, ..., X,)(p)
follows from the partial result found above, as h?Y; and Y; coincide not only on
thepoint p but on an open set.

It would have been incorrect to say that as Y; = Y. 3, E; and f3;(p) = 0 it follows
that @(Xl, ey Zi ﬂzEu .o 7XT)(p) = Zz ﬂz(p)q)(Xl, “ee 7Ei7 S ,XT)(p) = 0,
as the E; and §; are defined only on U. We know that ® is C'°°(M)-linear,
therefore we had to reduce the problem to one involving globally defined fields
and functions.



2 Some remarks on dual spaces

We saw that any finite dimensional (real) vector space V is non canonically
isomorphic to its dual space V*: it is easy to describe an isomorphism once we
have chosen a basis for V', and this isomorphism depends on the basis.

We can also consider the dual of the dual space V**, i.e. the space of linear
functionals on V*. In this case there is a canonical isomorphism between V' and
V**. Let v € V and let w € V* be any element of the dual space. Define ¢(v) €
V** as the linear functional on V* given by the expression ¢(v)(@w) := @w(v).

In other words, we can identify V and 71(V*), and use Def. V.6.1 and Theorem
V.6.2, simply by replacing V with V*. Thus for v,w € V we can make sense of
expressions like v ® w. And if e; is a basis for V, then {e;, ® - ®e; } is a basis
for T7(V*).

Recalling Definition V.5.1, we see that 77 (V*) (the space of r-times linear func-
tionals on V*) is the same as 7,.(V) (the space of contravariant tensors of order
r). More generally, a moment of thought shows that we have TT(V*) = T3(V).

We can extend definition V.6.1 and theorem V.6.2 for the case of mixed covari-
ant/contravariant tensors in a straightforward way. For example, let again e;
be a basis for V and let €; be its dual basis. Then {€;, ®---®€; Qe; Q... €}
is a basis for 7] (V).

All this carries on locally to the case of tensor fields. Let M be a differentiable
manifold and (U,v) a local chart. Let {E;} be the associated local frame of
vector fields and {w;} the associated coframe. Let ® € 77 (M) be a C™ r-
covariant s-contravariant tensor field on M. Then we have the following local
description of our tensor field:

Q= D Qi@ ®Qw, ®F;, @ ®F,
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3 Example: Boothby, exercise V.5.1

Let {e;} be a basis for V ans {¢;} the dual basis for V*.. For r = 2 T%(V),

{& ® €; is a basis (theorem V.6.2). Show that the following family of vectors

off 72(V) is a basis as well: {¢; ® &; +&; ® &;} with ¢ < j and {& A &;} with

i < j. The first group of Z(n + 1) vectors is a basis for £?(V) and the second
n(n—1)

group of ———= vectors is a basis for A (V).

Alternative proof Each element of 72(V) is sum of elements of the form v ® w,
with o, € TY(V). But 1@ w = $(0Q@w -0 ®0) + 3(0 @ W + © ® V),
i.e. a sum of an element of A*(V) and an elemnt of $2(V). In other words,
v@we A*(V)@® A*(V). This proves the assertion for r = 2.



Now consider the case r > 2. Consider the symmetrizing mapping S : 7" (V) —
77(V) and the alternating mapping A : 7"(V) — 77(V) introduced in Defini-
tion V.5.6. Check that their product is zero: SA = AS = 0.

Suppose that 77 (V) = X7 (V) ® A"(V). This means that any ¢ € 7"(V) is of
the form ¢+ + ¢~ with ¢+ € X7(V) (equivalently, Sp™ = ¢*) and o= € A"(V)
(equivalently, Ap~ = ¢~.)

Consider the tensor ¢ := ) _e; ANéx ® €s(3) @+ @ Ex(ry, Where the sum is over
all permutations ¢ involving only the last r — 2 terms and leaving the first two
fixed. Check that S¢ = 0, which implies ¢™ = 0. Likeweise, check that A¢ = 0,
which in turn imples ¢~ = 0. But ¢ is not zero, and we have just proven that

pg X (V)aN'(V).

4 Boothby, exercise V.5.2

We have seen that for any ¢ € 77(V) the following are equivalent:

e a) ¢ is antisymmetric;

o b) ¢(v1,...,v,) =0 whenever v; = v; for i # j;
e ¢) ¢(v1,...,v,) =0 whenever vy, ..., v, are linearly dependent.
a) = b) follows form ¢(v1,..., V.., ViyeeyUp) = —O(V1, 0o, Uiy vy Uiy e ooy Uy)

(where we have permutated v; and v; = v;.)
b) = c¢). Suppose that vq,...,v, are linearly dependent. Then, for example,
Vi = Y252 Bivj.

O(V1,y .oy Uy ey ) = Zj# Bjd(vi,...,v5,...,v,) =0, as each v; appears (at
least) twice.

¢) = b) obvious.

b) = a). We know that ¢(v1,...,v; +vj,...,v; +v;,...,v,) = 0. It follows,
by r-linearity, that ¢(vi,..., v ... 05, 00) + O(V1,. .., V5500, U4y, 0p) +

OV, s Ugs ey Uiy oo Up)F0(V1, Vg, Vg, Ur) = AU, Uy, Vg

d(V1s. 2505, ..., V450, 0p) = 0. Thus ¢ is antisymmetric.

Now, when r > dimV, it is obvious that any r-tuple of vectors is linearly
dependent, so any antisymmetric ¢ € A" (V) must always take value zero.

5 An example using partitions of unity (Boothby,
problem V.4.2)
Let N be an n-dimensional closed regular submanifold of an m-dimensional man-

ifold M. Show that a C* vector field X on N can be extend to a C°°-vector
field on M.



As a first step, let’s prove the local version of this statement. Choose a point p €
N and a preferred (in the sense of Boothby Definition I11.5.1)coordinate neigh-
bourhood (U, ¢) with coordinate functions 1, ..., T, and with Ey, ..., E,, the
associated coordinate frame, such that ¢ € N N U iff the last m — n coordinate
functions take value zero on ¢g. Denote by (UNN, ¢~)) the local chart for N given
by the restriction Z1,... on UNN of first n coordinate functions z1, ..., x, (cfr.
Boothby Lemma I11.5.2.) Analogously, denote by E\, ..., E, the restrictions of
the El,. .. 7En~

Any smooth vector field X on UNN is of the form ), &;F;, with &; € Cce(UN

N). In local coordinates these functions take the form &; 0(5_1 =a;(z1,...,2n).
Consider the field Xy := )", o F;, where o (21, ..., Zn, Tpt1,s .5 Tin)
= &(x1,...,oy). It is defined on all U and it is an extension of X. This

extension depends on the local chart.
Now let’s suppose we have a smooth field X defined on the whole of N.

Do the same procedure as above for every point p € N. This gives a covering
of N. Add to this covering the set M\ N, which is open as N is closed. Thus
we obtain an open covering of M. From Boothby Lemma V.4.1. we know that
we can find a countable locally finite refinement (U;, V;, ¢;) which is regular (in
the sense of remark 4.2). From Theorem V.4.4 we know that we can construct
a smooth partition of unit f; subordinate to this locally finite refinement. The
idea is to paste together the local extensions Xy, into a global extension using
the functions f;, i.e. multiplying each Xy, by f; and extending its domain of
definition to M by defyining it to be zero out of U; and finally considering the
sum » . fiXy,.

We have only a small problem. To pursue the above construction we need each
(Ui, Vi, ¢i) to be a preferred neighbourhhod, which is something which is not
assured from Lemma V.4.1. To be precise, we have two kinds of neighbourhoods:
those containing points of N (derived from the covering of N) and those which
don’t (derived from M\N). For these second kind of neighbourhoods sinply
define Xy, to be zero.

We have two choices: go through the proof of the lemma, and see that when
the original covering consists of subspaces associated to preffered charts, then
it is possible to choose the locally finite refinement U;, V;, ¢; with ¢ preferred as
well (I will not do this here, but it is not difficult). Second choice: remember
that each U; having non trivial intersection with N is contained in some U
corresponding to a preferred chart U, ¢ of the original covering. Simply forget
the ¢; given by the lemma, and define a new ¢; as the restriction of the original
¢ on U;. We are actually only interested in the existence of the f;, and we
don’t need all the properties of a regular covering. Now we can pursue the
construction stated above. Remark: the extension we found depends stronlgy
on everything we chose: local charts, refinement, partitions of unity.

A counterexample which shows why we asked N to be closed. Consider M :=
R3 N :={z,y,2 € R|22+y? = 22}\{(0,0,0)}, i.e. two cones without vertices



embedded in R3. Let X be, for example, \/mf+y2 8%, + \/ngryQ a% + % on the

upper cone and zero on the lower one. This field cannot be extended, as we
would have a singularity at the origin. In this example N is not closed, so M\ N
is not part of an open covering of M and the proof we gave above breaks down.



