1 Solution to problem 3 of the 2nd Übungsblatt

(a) Show that the relation \sim is an equivalence.

Reflexivity $(x_{\alpha} \sim x_{\alpha})$ and symmetry $(x_{\alpha} \sim x_{\beta} \Rightarrow x_{\beta} \sim x_{\alpha})$ are obvious. Let $x_{\alpha} \sim x_{\beta}, x_{\beta} \sim x_{\gamma}$ with $x_{\alpha} \in V_{\alpha}, x_{\beta} \in V_{\beta}, x_{\gamma} \in V_{\gamma}$. Then $\exists x_1 \in V_{\alpha} \cap V_{\beta} \subset M | \psi_{\alpha}(x_1) = x_{\alpha}, \psi_{\beta}(x_1) = x_{\beta}$ and $\exists x_2 \in V_{\beta} \cap V_{\gamma} \subset M | \psi_{\beta}(x_2) = x_{\beta}, \psi_{\gamma}(x_2) = x_{\gamma}$. But $x_1 = x_2$, as we have both $\psi_{\beta}(x_1) = x_{\beta}$ and $\psi_{\beta}(x_2) = x_{\beta}$ and ψ_{β} is bijective.

So it follows that $x_1 = x_2 \in V_\alpha \cap V_\beta \cap V_\gamma \subset V_\alpha \cap V_\gamma$ and $\psi_\alpha(x_1) = x_\alpha \in V_\alpha$, $\psi_\gamma(x_1) = x_\gamma \in V_\gamma$. Thus transitivity is verified.

Interlude Now we consider the disjoint union $V := \coprod_{\alpha \in I} V_{\alpha}$. As mentioned in the text, one should denote elements of this set as $(x, \alpha) \in \coprod_{\alpha \in I} V_{\alpha}$, where $x \in V_{\alpha}$, but often one simple writes x_{α} instead. This simplifies the notation, but may create some confusion. For example, it might happen that $V_{\alpha} \cap V_{\beta} \neq \emptyset$ as subsets of \mathbb{R}^n and that $x_{\alpha} = x_{\beta}$, where we are thinking of x_{α}, x_{β} as elements of \mathbb{R}^n . But when viewed as elements in the disjoint union, they are distinct, i.e. $(x_{\alpha}, \alpha) \neq (x_{\beta}, \beta)$ even if $x_{\alpha} = x_{\beta}$.

We could denote by $\iota_{\alpha} : V_{\alpha} \to V$ the injection sending the space V_{α} into V, then, for example, $x_{\alpha} \in V_{\alpha}$ and $\iota_{\alpha}(x_{\alpha}) \in V$.

The topology of V is briefly described in the text: first consder $I \times \mathbb{R}^n$ with the product topology (discrete topology for I, i.e. any subset of I is open, and the usual topology for \mathbb{R}^n). Then V inherits the subset topology, as $V \subset I \times \mathbb{R}^n$.

Equivalently, a subset $O \subset V$ is open, iff $\iota_{\alpha}^{-1}(O) \subset V_{\alpha}$ is open for each ι_{α} . To make a short story even shorter, a set $O \subset V$ is open if and only if it is of the form $\coprod_{\alpha \in I} O_{\alpha}$, with each O_{α} open in V_{α} .

(b) consider $N := V/ \sim$ (the quotient space with quotient topology). We have to show that the map $\phi : V \to M$ descends to a map $\bar{\phi} : N \to M$. This just amounts to checking that ϕ is constant on equivalence classes, i.e. $\forall x_{\alpha} \in V_{\alpha}, x_{\beta} \in V_{\beta}$ such that $x_{\alpha} \sim x_{\beta}, \phi(x_{\alpha}) = \phi(x_{\beta})$. But this property is obvious, it is a restatement of the equivalence condition given above: $x_{\alpha} \sim x_{\beta}$ precisely when $\exists x \in M \mid \psi_{\alpha}^{-1}(x_{\alpha}) = x = \psi_{\beta}^{-1}(x_{\beta})$.

Thus we can define $\bar{\phi}([x_{\alpha}]) : \phi(x_{\alpha})$, as the result does not depend on the choice of representative x_{α} of the class $[x_{\alpha}]$ (x_{α} viewed as element of V here!)

Remark. Let $(U_{\beta}, \psi_{\beta})$ be a chart of the atlas. Then the inverse $\bar{\phi}^{-1}$ does not restrict to a homeomorphism between U_{β} and V_{β} ! In fact, $\bar{\phi}^{-1}(U_{\beta}) = \pi(\coprod_{\alpha \in I} \psi_{\alpha}(U_{\alpha} \cap U_{\beta}))$, where $\pi : V \to N$ is, as usual, the quotient map.

(c) $\bar{\phi}$ is a homeomorphism:

- Surjectivity. For any point $x \in M$ we can find a chart $(U_{\alpha}, \psi_{\alpha})$ with $x \in U$. Then $\psi_{\alpha}(x) \in V$ and $\bar{\phi}([\psi_{\alpha}(x)]) = x$.
- Injectivity. Let $[x_{\alpha}], [x_{\beta}] \in N$ and suppose $\bar{\phi}([x_{\alpha}]) = \bar{\phi}([x_{\beta}])$. This means $\psi_{\alpha}^{-1}(x_{\alpha}) = \psi_{\beta}^{-1}(x_{\beta}) = x$ for some $x \in M$. But this is precisely the equivalence relation.
- $\bar{\phi}$ is continuous. Let $O \subset M$ be an open subset. Then $\bar{\phi}^{-1}(O) = \pi(\coprod_{\alpha \in I} \psi_{\alpha}(U_{\alpha} \cap O))$. $\bar{\phi}^{-1}(O)$ os open in N iff $\pi^{-1}(\bar{\phi}^{-1}(O))$ is open in V. $\pi^{-1}(\bar{\phi}^{-1}(O)) = \coprod_{\alpha \in I} \psi_{\alpha}(U_{\alpha} \cap O)$ and this is an open set (in V), as each $\psi_{\alpha}(U_{\alpha} \cap O) \subset V_{\alpha}$ is open.
- $\bar{\phi}$ is open. Let $E \subset N$ be open. Then $\pi^{-1}(E) \subset V$ is open, i.e. $\pi^{-1}(E) = \coprod_{\alpha \in I} E_{\alpha}$, with each $E_{\alpha} \subset V_{\alpha}$ open. Then $\bar{\phi}(E) = \bigcup_{\alpha \in I} \phi_{\alpha}(E_{\alpha}) \subset M$ which, as a union of open sets, is open.