
Differentialgeometrie II

Problems

Remark “Covector field” and “1-form” are synonymous.

1 Boothby, Ex. V.3.1

Using spherical coordinates (θ, φ) on the unit sphere ρ = 1 in R3, determine the components (gi,j) of
the Riemannian metric on the domain of the coordinates.

Sketch of solution We view R3 as a Remannian manifold with with its usual coordinates {x1, x2, x3}, as-
sociated frame { ∂

∂x1
, ∂

∂x2
, ∂

∂x3
} and coframe {dx1, dx2, dx3} and Ψ−1

∗ ( ∂
∂θ its standard metric Φ( ∂

∂xi |p
, ∂

∂xj |p
) =

gi,j = δi,j .

We consider spherical coordinates on R3, that is, a chart (U,Ψ), where U is R3 minus the x3-axis
and Ψ : U → R+ × (−π/2, π/2) × [0, 2π) is given by the coordinate functions {θ, φ, ρ}. We give the
expression for Ψ−1, which is what we will use in the following:

x1 = ρ cos(θ) cos(φ),

x2 = ρ cos(θ) sin(φ),

x3 = ρ sin(θ).

We now consider,on its domain of definition, the frame associated to these coordinates. It would be
correct (but uncomfortable) to denote these fields as Ψ−1

∗ ( ∂
∂θ ),Ψ−1

∗ ( ∂
∂φ ),Ψ−1

∗ ( ∂
∂ρ ). We will instead, as

costumary, simply write ∂
∂θ ,

∂
∂φ ,

∂
∂ρ .

Describe now ∂
∂θ ,

∂
∂φ ,

∂
∂ρ as C∞(R3)-linear combinations of the ∂

∂xi
. Remember that for an arbitrary

vector field X, its i−th component with respect to the standard frame is given by dxi(X).

Thus, for example, dx1( ∂
∂θ ) = ∂

∂θx1 = ∂
∂θ (ρ cos(θ) cos(φ) = − sin(θ) cos(φ)ρ.

The same for the other components gives ∂
∂θ = − sin(θ) cos(φ)ρ( ∂

∂x1
)−sin(θ) sin(φ)ρ( ∂

∂x2
)+cos(θ)ρ( ∂

∂x3
).

Compute Φ( ∂
∂θ ,

∂
∂ρ ) as well as the analogous expression for the remaining choices of pairs of fields.Remember

that Φ is C∞(R3)-bilinear, so you can reduce the computation to combinations of the Φ( ∂
∂xi

, ∂
∂xj

).

This will give you the expression of the (same) Remannian metric with repspect to the new coordinates.

2 Boothby, Ex. V.2.3

Let f1, . . . , fr, r ≤ n, be C∞ functions on an open set of an n-dimensional manifold M . Prove that
there are coordinates (V, ψ) in a neighbourhood of p such that f1, . . . , fr are among the coordinate
functions if and only if df1, . . . , dfr are linearly independent at p.
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Sketch of the proof. “If “ part. If the 1-forms are linearly independent at p, they will be linearly
independent on an open neighbourhood W of p as well. Consider the set of vector fields in {X ∈
X (W ) |dfi(X) = 0}, i.e. all those vector fields on which the dfi take value zero. Show that it is
a distribution of dimension n − r and that it is involutive, i.e. if dfi(X) = 0, dfi(Y ) = 0 then it
follows that dfi([X,Y ]) = 0. Use Frobenius’ theorem to conclude that there is a coordinate chart (V, φ)
with coordinates y1, . . . , yn such that the last n − r coordinates describe integral manifolds for the
distribution. The fi are constant on these integral manifolds, i.e. dfi( ∂

∂yi
) = 0 for i = n− r+ 1, . . . , n.

Thus the fi depend only on the first r variables : fi(y1, . . . , yr). By assumption the dfi are linearly
independent. With respect to the coframe ψ−1∗(dyj) their coordinates are given by the Jacobi matrix
∂fi

∂yj
, i, j ∈ (1, . . . , r), which thus must be invertible on V. So the fi determine a diffeomorphism (from

a subset of Rr described by (y1, . . . , yr) to a subset of Rr). The requested (V, ψ) is described by
coordinates (f1, . . . , fr, yr+1, . . . , yn).

3 Boothby, Ex. V.2.2

Sketch of solution We view G = GL(n,R) as a subset of Rn2
with coordinates xi,j and associated

coframe dxi,j . Thus a point X ∈ G is a matrix (xi,j). X−1 = Y = (yi,j). RA : G → G is the
diffeomorphism of G given by (xi,j) → (

∑
k xi,kak,j), where ai.j are the coefficients of the invertible

matrix A. Thus RA is determined by n2 real valued functions fi,j(xα,β) =
∑

k xi,kak,j .

The value of the form σi,j at the point X of the manifold is given by σi,jX
=

∑
k yi,kdxk,jX

, while the
value at RA(X) is given by σijRA(X)

=
∑

α,k(a−1)iαyα,kdxkjRA(X)
, where

∑
α(a−1)i,αyαk is the inverse

of XA.

We must show that R∗
A(σi,j) = σi,j , i.e. R∗

A(σi,jRA(X)
) = σi.jX

.

You may want to confront the formulas given in Boothby, Th. V.1.6, Cor. V.1.7. In our case
M = N = G, F = RA. As coordinates we have xi,j (instead of xi) and the fi,j introduced above play
the role of the yi in the book. The role of the ωi and ω̃i are played by the dxi,j in our case.

So we can write R∗
A(dxi,jRA(X)

) =
∑

α,β
∂fi,j

∂xα,β |X
dxα,βX

, with ∂fi,j

∂xα,β |X
= aβ,jδα,i.

Compute and check . . .

4 Boothby, Ex. V.1.6

Sketch of solution The first question should sound pretty obvious. The second question is almost, but
not exactly, what is proven in Boothby V.1.2. That is, let σ be a C∞(M)-linear mapping from X (M)
to C∞(M). It is not assumed that σ assigns an element of T ∗pM to each p ∈ M . This can be done
a posteriori: define σp(XP ) := σ(X)(p) for any X ∈ X (M) which takes the value Xp at p. You must
show that this definition is consistent, i.e. that for any other X ′ ∈ X (M) with X ′

p = Xp it follows that
σ(X)(p) = σ(X ′)(p), as well as all the other properties which characterise a C∞ covectorfield.

5 Question

Let M be an m-dimensional manifold and let N be an n-dimensional regular submanifold. Choose a
point p ∈ N and a regular coordinate neighbourhood (U, φ) of p with coordinates x1, . . . , xm such that
U ∩N is described by (x1, . . . , xn, 0, . . . ). Consider the associated frame Ei = φ−1

∗ ( ∂
∂xi

), i ∈ (1, . . . ,m).
So the generic element of Xp ∈ TPM can be described as Xp =

∑m
i=1 αiEip

and the generic vector
Yp in TpN as

∑n
i=1 βiEip

. Consider the following linear map π : TpM → TpN defined by π(Xp) =
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π(
∑m

i=1 αiEiP
) =

∑n
i=1 αiEip

, i.e. the last m − n components of the vector are cut out, leaving a
vector in TpN . Does this map depend on the choice of the regular neighbourhood?
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