

Topology WS 2006–07

Homework assignment 11, due 7. Feb. 2007

- (1) If $p: Y \to X$ is a covering, then the induced map on fundamental groups is injective. How about the induced map on H_1 ? Prove or give a counter-example.
- (2) Prove the strong form of the Five Lemma. (See Bredon IV.5.10 or our discussion on 31.Jan.) That is, show that if f_2 and f_4 are surjective and f_5 is injective, then f_3 is surjective. Symmetrically, if f_2 and f_4 are injective, and f_1 is surjective, then f_3 is injective.
- (3) Suppose that A is a nonempty subset of X and that A is acyclic. (Remember, this means that the reduced homology of A vanishes.) Show $H_p(X, A) \cong \tilde{H}_p(X)$.
- (4) Prove from the Eilenberg–Steenrod axioms that for any space X we have $H_p(X, X) = 0$ for all p.