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Abstract. Singular diffusion equations such as total variation (TV) and
balanced forward–backward (BFB) diffusion are appealing: They have
a finite extinction time, and experiments show that piecewise constant
structures evolve. Unfortunately, their implementation is awkward. The
goal of this paper is to introduce a novel class of numerical methods for
these equations in the 2D case. They are simple to implement, absolutely
stable and do not require any regularisation in order to make the diffusiv-
ity bounded. Our schemes are based on analytical solutions for 2×2-pixel
images which are combined by means of an additive operator splitting
(AOS). We show that they may also be regarded as iterated 2D Haar
wavelet shrinkage. Experiments demonstrate the favourable performance
of our numerical algorithm.

1 Introduction

Nonlinear diffusion filters [15, 21] constitute an important class of image en-
hancement methods. Let Ω ⊂ IR2 denote our two-dimensional image domain
and f : Ω → IR an initial greyscale image. Then the idea behind nonlinear
diffusion filtering is to consider f(x) as initial condition

u(x, 0) = f(x) on Ω (1)

of a nonlinear diffusion process

∂tu = div (g(|∇u|) ∇u) on Ω × (0,∞) (2)

with suitable boundary conditions, e.g. the reflecting (homogeneous Neumann)
boundary conditions

∂nu = 0 on ∂Ω × (0,∞). (3)
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Here ∇ = (∂x1 , ∂x2)
� denotes the spatial nabla operator and n is the outer

normal vector on the image boundary ∂Ω. The resulting solution u(x, t) creates a
scale-space family {u(x, t) | t ≥ 0} of processed images, where the diffusion time t
serves as scale parameter: Larger values of t give more simplified images u(x, t).
In order to preserve (or even enhance) edges and to simultaneously smooth
within more homogeneous regions, the diffusivity function g(|∇u|) is chosen as
a decreasing nonnegative function.

While early proposals for nonlinear diffusion filters use bounded diffusivities
[15, 6], more recently there has been a growing interest in unbounded diffusiv-
ities that become singular in zero [2, 9, 10, 11, 16]. Experimentally one observes
that singular diffusion filters lead to piecewise constant images. This is also in
accordance with theoretical results by Nikolova [14] who showed that related
discrete variational approaches allow piecewise constant solutions if and only if
the regulariser is nondifferentiable in zero.

As a prototype for a class of singular diffusivities we consider the family

g(|∇u|) =
1

|∇u|p (p ≥ 0). (4)

These diffusivities offer the advantage that they do not require to tune any
image specific contrast parameters. Moreover, they lead to scale invariant filters
[1], for which even some analytical results have been established [20].

For p = 1 one obtains the total variation (TV) diffusion [2, 9], the diffusion fil-
ter that corresponds to TV minimisation [18] with a penaliser Ψ(|∇u|2) = 2 |∇u|.
TV diffusion offers a number of interesting properties such as finite extinction
time [3], shape-preserving qualities [4], and equivalence to TV regularisation in
1-D [5, 17]. For p > 1 the diffusion not only preserves edges but even enhances
them. A diffusivity with p = 2 has been considered in [11] for the so-called
balanced forward–backward (BFB) diffusion filtering.1

Although singular diffusion equations have very attractive properties, their nu-
merical implementation is difficult. Explicit finite difference schemes are only sta-
ble for time step sizes that are inversely proportional to an upper bound for the
diffusivity, while absolutely stable implicit or semi-implicit schemes lead to linear
systems of equations with condition numbers that are increasing functions of this
bound. As a result, iterative numerical schemes may reveal slow convergence, and
in general numerical errors can be amplified. In order to limit all these problems,
it is common to regularise the diffusivity function by replacing it by the bounded
diffusivity

g(|∇u|) =
1

(|∇u|2 + ε2)
p/2 . (5)

In this case, however, one observes that blurring artifacts are introduced and
some of the nice theoretical properties of singular nonlinear diffusion filters do
no longer hold.

1 While a complete well-posedness theory exists for p ≤ 1, some theoretical questions
are a topic of ongoing research for the edge-enhancing case p > 1.
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The goal of the present paper is to address these problems by introducing a
novel class of numerical schemes for singular diffusion equations. They are based
on an analysis of the dynamical system that results from a space discretisation
of singular diffusion filters for images with 2 × 2 pixels. For this scenario we are
able to derive an analytical solution. It serves as a building block in a numerical
scheme for general 2-D images, since we can assemble these local analytical
solutions by means of an additive operator splitting (AOS) [12, 22] to a global
numerical approximation. Our scheme is very simple, it is absolutely stable and
reveals good rotation invariance. It does not require regularised diffusivities of
type (5). Interestingly, it can also be related to a recently introduced family of
shift invariant wavelet shrinkage methods with coupled shrinkage functions [13].

Our paper is organised as follows. In Section 2 we analyse space-discrete
singular diffusion filters for 2 × 2 images, derive their analytical solutions, and
relate them to Haar wavelet shrinkage of 2 × 2 images. These analytical solu-
tions are used in Section 3 for constructing numerical schemes for 2-D images of
arbitrary size. We analyse their stability and consistency properties, and show
their equivalence to suitable shift invariant wavelet shrinkages. Numerical exper-
iments are presented in Section 4, and the paper is concluded with a summary
in Section 5.

Related Work. Relations between one-dimensional discrete TV diffusion, TV
regularisation and Haar wavelet shrinkage were investigated in [19]. A main
instrument in studying one-dimensional total variation methods were consider-
ations of two-pixel signals. Based on the two-pixel dynamics, a novel scheme for
N -pixel TV diffusion could be established. We may regard our present work as
a two-dimensional extension. The two-dimensional situation, however, turns out
to be significantly more complicated than the one-dimensional scenario. With
respect to TV-diminishing flows along the directions of Haar wavelets, our work
can also be related to a paper by Coifman and Sowa [8]. A regularisation-free
approach to TV regularisation has been proposed by Chambolle [7]. It should
be noted that in our paper we consider the parabolic diffusion case instead of
the elliptic regularisation setting. Moreover, we do not restrict ourselves to the
TV case: Our results hold for any arbitrary singular diffusivity of type (4).

2 Analytical Results for 2 × 2-Pixel Images

We start by examining the simplest nontrivial 2-D images, namely those having
only 2 × 2 pixels. This will provide the basis of our new numerical scheme for
solving singular diffusion equations on N × M -pixel images.

2.1 Nonlinear Diffusion

We consider the diffusion equation (2) for 2 × 2-pixel images u = (ui,j)
2
i,j=1

with periodic boundary conditions and initial image f = (fi,j)
2
i,j=1. Due to the

periodic boundary conditions every 2 × 2 cell in the extended image
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u2,2 u2,1 u2,2 u2,1

u1,2 u1,1 u1,2 u1,1
u2,2 u2,1 u2,2 u2,1

u1,2 u1,1 u1,2 u1,1

contains exactly the same pixels. This is not true for other boundary conditions,
e.g., reflecting boundary conditions.

We want to find an appropriate space discretisation of (2) that results in an
ordinary system of four differential equations which can be solved analytically.
First we notice that in our 2 × 2 cell there is one distinguished location where
the diffusivity can be optimally approximated, namely the midpoint of the cell.
Therefore we use only the midpoint diffusivity g := g(D(u)) within the whole
image, where

D(u) :=
1
2

(
(u1,1 − u1,2)2 + (u2,1 − u2,2)2 + (u1,1 − u2,1)2 + (u1,2 − u2,2)2

+ (u1,1 − u2,2)2 + (u1,2 − u2,1)2
)1/2

(6)

denotes the discretisation of |∇u| in the midpoint of the cell, if the grid size h := 1
is chosen in both directions. This disretisation is just the average of the two finite
difference discretisations of |∇u| with respect to the usual directions x = (1, 0)T,
y = (0, 1)T and with respect to the 45◦ diagonal directions ξ = 1√

2
(1, 1)T,

η = 1√
2
(1,−1)T, respectively. Next, we discretise the remaining gradient and

divergence of the right-hand side of ∂tu = div(g∇u) with respect to the same
directions.

With the uniform midpoint diffusivity g := g(D(u)), the discretisation related
to x and y leads for i, j = 1, 2 to

u̇i,j = g · (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j),

where the dot denotes time differentiation, and by our boundary conditions to

u̇1,1 = 2g · (u1,2 + u2,1 − 2u1,1) , u̇1,2 = 2g · (u1,1 + u2,2 − 2u1,2) ,

u̇2,1 = 2g · (u1,1 + u2,2 − 2u2,1) , u̇2,2 = 2g · (u1,2 + u2,1 − 2u2,2) .

The discretisation with respect to ξ and η results for i, j = 1, 2 in

u̇i,j = g · 1
2 (ui+1,j+1 + ui−1,j−1 + ui+1,j−1 + ui−1,j+1 − 4ui,j)

and by applying the boundary conditions in

u̇1,1 = 2g · (u2,2 − u1,1), u̇1,2 = 2g · (u2,1 − u1,2),
u̇2,1 = 2g · (u1,2 − u2,1), u̇2,2 = 2g · (u1,1 − u2,2).

Weighted averaging of both discretisations with weights α ∈ [0, 1] and 1−α gives
the ordinary system of differential equations
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u̇1,1 = 2g · (−(1 + α)u1,1 + αu1,2 + αu2,1 + (1 − α)u2,2) ,

u̇1,2 = 2g · (αu1,1 − (1 + α)u1,2 + (1 − α)u2,1 + αu2,2) ,

u̇2,1 = 2g · (αu1,1 + (1 − α)u1,2 − (1 + α)u2,1 + αu2,2) ,

u̇2,2 = 2g · ((1 − α)u1,1 + αu1,2 + αu2,1 − (1 + α)u2,2)

(7)

with initial conditions ui,j(0) = fi,j , i, j = 1, 2. From u̇1,1 + u̇1,2 + u̇2,1 + u̇2,2 = 0
we see that the average grey value µ := 1

4 (f1,1 + f1,2 + f2,1 + f2,2) is preserved
during the diffusion process.

In this paper, we are mainly interested in the case α = 1/2, where system
(7) further simplifies to

u̇i,j = 4g · (µ − ui,j), i, j = 1, 2, (8)

which is a dynamical system with discontinuous right hand side. It is not difficult
to verify that this system possesses the unique analytical solution

ui,j(t) =
{

µ + (1 − 4p (D(f))−p t)1/p (fi,j − µ), 0 ≤ t < (D(f))p/(4p),
µ t ≥ (D(f))p/(4p).

(9)

For p = 1, particularly, (2) is the TV diffusion equation ∂tu = div (∇u/|∇u|).
The analytical solution of our 2 × 2-pixel version

ui,j(t) =
{

µ + (1 − 4t/D(f)) (fi,j − µ), 0 ≤ t < D(f)/4,
µ, t ≥ D(f)/4 (10)

shows a linear evolution which can be written in a slightly different form as

ui,j(t) = fi,j + (4t/D(f)) · (µ − fi,j) min{1, D(f)/(4t)}, i, j = 1, 2. (11)

For p = 2, we obtain the BFB diffusion ∂tu = div
(∇u/|∇u|2). The analytical

solution in the 2 × 2 setting reads

ui,j(t) =
{

µ +
√

1 − 8t/(D(f))2 (fi,j − µ), 0 ≤ t < (D(f))2/8,
µ, t ≥ (D(f))2/8.

(12)

2.2 Haar Wavelet Shrinkage

In [19], it was shown that one-dimensional nonlinear diffusion on two-pixel signals
coincides with Haar wavelet shrinkage if the shrinkage function is chosen in accor-
dance with the diffusivity and the threshold parameter is equal to the diffusion
time. The two-dimensional Haar wavelet transform acts naturally on subsequent
2×2-pixel tiles of an image. Let us choose one such tile, say f := (fi,j)

2
i,j=1, and

explain how it changes under two-dimensional Haar wavelet shrinkage. One cycle
of Haar wavelet shrinkage consists of three steps. In the first step, the analysis
step, the low and high pass Haar filters are applied to the rows and columns of
f . More precisely, f is multiplied from the left and the right by the orthogonal

matrix W := 1√
2

(
1 1
1 −1

)
. This results in an image c := (ci,j)

2
i,j=1 with
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c1,1 = 1
2 (f1,1 + f1,2 + f2,1 + f2,2), c1,2 = 1

2 (f1,1 − f1,2 + f2,1 − f2,2),

c2,1 = 1
2 (f1,1 + f1,2 − f2,1 − f2,2), c2,2 = 1

2 (f1,1 − f1,2 − f2,1 + f2,2).

In the second step, the shrinkage step, we modify the high-pass coefficients by
reducing the absolute values of some or all of them. To this end, we apply a
shrinkage function Sθ depending on a threshold parameter θ to the high-pass
filtered coefficients, i.e. we compute Sθ(c1,2), Sθ(c2,1), Sθ(c2,2) and leave the
low-pass coefficient c1,1 as it is. In the third step, the synthesis step, we perform
just the inverse transform of step 1 on the shrunken image, i.e., since W−1 = W ,
we multiply again from the left and the right by W and obtain

v1,1 = µ + 1
2 (Sθ(c1,2) + Sθ(c2,1) + Sθ(c2,2)) ,

v1,2 = µ + 1
2 (−Sθ(c1,2) + Sθ(c2,1) − Sθ(c2,2)) ,

v2,1 = µ + 1
2 (Sθ(c1,2) − Sθ(c2,1) − Sθ(c2,2)) ,

v2,2 = µ + 1
2 (−Sθ(c1,2) − Sθ(c2,1) + Sθ(c2,2)) .

In [13], the authors proposed to choose a diffusion inspired shrinkage function
that simultaneously depends on c1,2, c2,1 and c2,2. In contrast to the classical
wavelet shrinkage, this results in an improved rotation invariance of the resulting
image. We use this knowledge and define our shrinkage function in dependence on

D(f) =
(
c2
1,2 + c2

2,1 + c2
2,2

)1/2
.

It is straightforward to check that the value D(f) indeed coincides with the one
defined in (6). Applying the shrinkage function

Sθ(s; D(f)) :=

{
(1 − 4p (D(f))−p θ)1/p

s, D(f) ≥ (4p θ)1/p,
0 D(f) < (4p θ)1/p.

(13)

our Haar wavelet shrinkage produces for i, j = 1, 2 the values

vi,j =

{
µ + (1 − 4p (D(f))−p θ)1/p (fi,j − µ), D(f) ≥ (4p θ)1/p,
µ, D(f) < (4p θ)1/p.

(14)

Comparing this equation with (9) we observe that on 2 × 2 pixels our Haar
wavelet shrinkage with shrinkage function (13) coincides with the solution of the
nonlinear diffusion equation with diffusivity (4), where the shrinkage parameter
θ plays the same role as the diffusion time t.

3 A Numerical Scheme for Images of Arbitrary Size

Now we consider arbitrary N × M -pixel images u := (ui,j)
N,M
i,j=1 which are ex-

tended to the full planar grid by, e.g., reflecting boundary conditions.
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3.1 Numerical Scheme for Nonlinear Diffusion

We discretise the diffusion equation (2) in space again with respect to the x–y
and ξ–η directions. Approximating gradient and divergence by finite differences
in x and y directions leads to

div (g(|∇u|)∇u)i,j ≈ gi+ 1
2 ,j · (ui+1,j − ui,j) − gi− 1

2 ,j · (ui,j − ui−1,j)

+ gi,j+ 1
2

· (ui,j+1 − ui,j) − gi,j− 1
2

· (ui,j − ui,j−1) .

Again we only want to work with the diffusivities at the midpoints (i+ 1
2 , j + 1

2 )
of the grid cells. Therefore we approximate gi± 1

2 ,j and gi,j± 1
2

by averaging the
values of the neighbouring cell centers, e.g., gi+ 1

2 ,j ≈ 1
2 (gi+ 1

2 ,j+ 1
2

+ gi+ 1
2 ,j− 1

2
).

We arrive at

div (g(|∇u|)∇u)i,j ≈ 1
2

(
gi+ 1

2 ,j+ 1
2

· (ui+1,j + ui,j+1 − 2ui,j)

+ gi+ 1
2 ,j− 1

2
· (ui+1,j + ui,j−1 − 2ui,j)

+ gi− 1
2 ,j+ 1

2
· (ui−1,j + ui,j+1 − 2ui,j)

+ gi− 1
2 ,j− 1

2
· (ui−1,j + ui,j−1 − 2ui,j)

)
.

(15)

On the other hand, approximation of both gradient and divergence with respect
to diagonal directions ξ, η leads to

div (g(|∇u|)∇u)i,j

≈ 1
2

(
gi+ 1

2 ,j+ 1
2

· (ui+1,j+1 − ui,j) + gi+ 1
2 ,j− 1

2
· (ui+1,j−1 − ui,j)

+ gi− 1
2 ,j+ 1

2
· (ui−1,j+1 − ui,j) + gi− 1

2 ,j− 1
2

· (ui−1,j−1 − ui,j)
)

.

(16)

Weighted averaging of both approximations results in

div (g(|∇u|)∇u)i,j

≈ 1
2

(
gi+ 1

2 ,j+ 1
2

· (αui+1,j + αui,j+1 + (1 − α)ui+1,j+1 − (1 + α)ui,j)

+ gi+ 1
2 ,j− 1

2
· (αui+1,j + αui,j−1 + (1 − α)ui+1,j−1 − (1 + α)ui,j)

+ gi− 1
2 ,j+ 1

2
· (αui−1,j + αui,j+1 + (1 − α)ui−1,j+1 − (1 + α)ui,j)

+ gi− 1
2 ,j− 1

2
· (αui−1,j + αui,j−1 + (1 − α)ui−1,j−1 − (1 + α)ui,j)

)
.

(17)

In the following, we consider diffusivities g defined by (4) and α = 1/2. We set

µk
i,j,++ := 1

4 (uk
i+1,j + uk

i,j+1 + uk
i+1,j+1 + uk

i,j) ,

µk
i,j,+− := 1

4 (uk
i+1,j + uk

i,j−1 + uk
i+1,j−1 + uk

i,j) ,

µk
i,j,−+ := 1

4 (uk
i−1,j + uk

i,j+1 + uk
i−1,j+1 + uk

i,j) ,

µk
i,j,−− := 1

4 (uk
i−1,j + uk

i,j−1 + uk
i−1,j−1 + uk

i,j) .
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Time discretisation via an explicit Euler scheme would yield as fully discretisa-
tion of (2) the naive scheme

uk+1
i,j = uk

i,j + τgi+ 1
2 ,j+ 1

2
· (µk

i,j,++ − uk
i,j) + τgi+ 1

2 ,j− 1
2

· (µk
i,j,+− − uk

i,j)

+ τgi− 1
2 ,j+ 1

2
· (µk

i,j,−+ − uk
i,j) + τgi− 1

2 ,j− 1
2

· (µk
i,j,−− − uk

i,j).
(18)

Here τ denotes the time step size and uk = (uk
i,j)i,j the approximate solution at

pixel (i, j) and time kτ . Unfortunately, due to the singularity of g at zero, this
scheme becomes instable with respect to the maximum-minimum principle for
arbitrary small time steps if neighbouring pixel values become arbitrary close.
We use therefore a different approximation.

The right-hand side of (17) is exactly the average of the four approximations
of div(g∇u) in the 2 × 2-pixel cells that pixel (i, j) belongs to. This inspires the
following simple algorithm to compute one time step of a numerical scheme:

For each pixel (∗) with coordinates (i, j):

• Consider the four cells

∗

(−−)

∗

(+−)

∗

(−+)

∗

(++)

.

• Compute the analytical solutions according to (9).

This gives four approximations

uk+1
i,j,−−, uk+1

i,j,+−, uk+1
i,j,−+, uk+1

i,j,++ .

• Average:

uk+1
i,j = 1

4 (uk+1
i,j,−− + uk+1

i,j,+− + uk+1
i,j,−+ + uk+1

i,j,++) .

(19)

It is worth noting that this averaging scheme is similar to an additive operator
splitting (AOS) scheme [12, 22]. One way to look at a usual AOS scheme is
that it splits e.g. a two-dimensional dynamical system into two one-dimensional
systems, modeling interactions in x and y directions, for which efficient numerical
schemes exist. These numerical schemes are then averaged to approximate the
2D solution. Here, we split the dynamical system with right-hand side (17) into
four dynamical systems belonging to four-pixel cells each of which can even be
solved exactly. Again, an approximation for the solution of the full system is
obtained by averaging.

Stability Analysis. The values of the analytical solution (9) at arbitrary times
t ≥ 0 are convex combinations of its initial values. By its construction from the
analytical solution (9) the novel scheme (19) therefore satisfies the maximum–
minimum principle. Consequently, it is absolutely stable for each τ .
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Consistency Analysis. To analyse consistency, let us for simplicity focus on
the TV flow, i.e., p = 1. Then, by (11) our final scheme reads

uk+1
i,j = uk

i,j + τgi+ 1
2 ,j+ 1

2
· (µk

i,j,++ − uk
i,j) min{1, 1/(4τgi+ 1

2 ,j+ 1
2
)}

+ τgi+ 1
2 ,j− 1

2
· (µk

i,j,+− − uk
i,j) min{1, 1/(4τgi+ 1

2 ,j− 1
2
)}

+ τgi− 1
2 ,j+ 1

2
· (µk

i,j,−+ − uk
i,j) min{1, 1/(4τgi− 1

2 ,j+ 1
2
)}

+ τgi− 1
2 ,j− 1

2
· (µk

i,j,−− − uk
i,j) min{1, 1/(4τgi− 1

2 ,j− 1
2
)} .

(20)

This scheme can be considered as a stabilisation of the explicit scheme (18). It
coincides with (18), and is therefore a consistent approximation for TV diffusion,
if each of the four minimum operations on its right-hand side selects the value
1. This consistency condition is fulfilled for

0 ≤ τ ≤ min{1/(4gi+ 1
2 ,j+ 1

2
), 1/(4gi+ 1

2 ,j− 1
2
), 1/(4gi− 1

2 ,j+ 1
2
), 1/(4gi− 1

2 ,j− 1
2
)} .

For larger τ it is easy to see that linear diffusion ∂tu = ∆u is approximated.
This happens in regions where the gradient is already close to zero. In this case,
however, the visual differences between linear diffusion and TV diffusion are
small.

3.2 Equivalence to Shift and Rotation Invariant Wavelet Shrinkage

Ordinary single scale Haar wavelet shrinkage divides the image into disjoint
2 × 2-pixel cells and performs Haar wavelet shrinkage on each of these cells as
prescribed in Subsection 2.2. Unfortunately, this process is neither shift invariant
nor rotation invariant. However, both properties can be achieved with a little
more effort by the following procedure:

1. Shift the original image f++ := (fi,j) one pixel to the right to obtain f−+ :=
(fi−1,j), one pixel down to get f+− := (fi,j−1) and one pixel to the right
and down resulting in f−− := (fi−1,j−1),

2. Perform wavelet shrinkage (14) on the 2 × 2 cells of the four images
f++, f−+, f+−, f−−, i.e., four times ordinary Haar wavelet shrinkage.

3. Shift the resulting images back and compute the average.

Obviously, this procedure describes exactly one time step of size τ = θ of our
novel diffusion scheme (20).

4 Experiments

In Figure 1, we contrast the regularisation-free scheme (20) based on the analyt-
ical 2 × 2-pixel solution for TV diffusion with a standard explicit discretisation.
In this scheme, TV diffusivity is approximated by the regularised TV diffusivity

1/

√
|∇u|2 + ε2. Since the stability condition for explicit schemes imposes to the

time step size a bound which is inversely proportional to the upper bound of the
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Fig. 1. Left: Original image, 93 × 93 pixels. Middle: TV diffusion with standard
explicit scheme, where TV diffusivity is regularised with ε = 0.01, τ = 0.0025, 10000
iterations. Right: TV diffusion with 2 × 2-pixel scheme (20) without regularisation of
diffusivity, τ = 0.1, 250 iterations

Fig. 2. Left: Rotationally symmetric original image, 256 × 256 pixels. Middle: TV
diffusion with standard explicit scheme, ε = 0.01, τ = 0.0025, 12000 iterations. Right:
TV diffusion with 2 × 2-pixel scheme (20), τ = 0.1, 300 iterations

Fig. 3. Left: Original image, 93 × 93 pixels. Middle: Balanced forward–backward
diffusion with standard explicit scheme, ε = 0.1, τ = 0.0025, 160000 iterations. Right:
2 × 2-pixel scheme (20), τ = 0.1, 4000 iterations

diffusivity, a high number of iterations is needed for reasonable ε. It can be seen
that the 2 × 2-pixel scheme and the unregularised TV diffusivity which cannot
be used in the explicit scheme considerably reduce blurring effects caused by the
discretisation.
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Figure 2 demonstrates that although the analytically solvable case of the
2 × 2-pixel cell is not the one with optimal rotational invariance, the rotational
invariance is reasonable anyway.

Figure 3 demonstrates balanced forward–backward diffusion. With equal pa-
rameters, it can be seen again that the 2 × 2-pixel scheme looks sharper by
preserving finer details. Moreover, it is worth mentioning that we took a time
step size that exceeded the largest admissible step size of the explicit scheme by
a factor of 40.

5 Conclusion

We have introduced novel numerical schemes for a favourable class of singu-
lar nonlinear diffusion equations that includes TV and BFB diffusion. These
schemes can be distinguished from other schemes by the fact that they do not
require to regularise the diffusivities. They are based on analytical solutions
for 4-pixel images. Combining these solutions in an AOS-like manner creates
extremely simple algorithms that are absolutely stable in the maximum norm,
conditionally consistent and reveal good rotation invariance. Our experiments
have shown that they gives sharper results at edges than traditional schemes
with regularised diffusivities, even for significantly larger time steps. This more
pronounced tendency to create piecewise constant images is particularly suited
for singular nonlinear PDEs.

It is our hope that this work will inspire more research on numerical schemes
for PDE-based image analysis, in which analytical and numerical concepts
are merged.
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