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omAbstra
tThe Support Ve
tor Ma
hine (SVM) represents a new and very promising te
hnique forma
hine learning tasks involving 
lassi�
ation, regression or novelty dete
tion. Improve-ments of its generalization ability 
an be a
hieved by in
orporating prior knowledge of thetask at hand.We propose a new hybrid algorithm 
onsisting of signal{adapted wavelet de
ompositionsand hard margin SVMs for waveform 
lassi�
ation. The adaptation of the wavelet de
om-positions is tailored for hard margin SV 
lassi�ers with radial basis fun
tions as kernels.It allows the optimization of the representation of the data before training the SVM anddoes not su�er from 
omputationally expensive validation te
hniques.We assess the performan
e of our algorithm against the ba
kground of 
urrent 
on
erns inmedi
al diagnosti
s, namely the 
lassi�
ation of endo
ardial ele
trograms and the dete
-tion of otoa
ousti
 emissions. Here the performan
e of hard margin SVMs 
an signi�
antlybe improved by our adapted prepro
essing step.1991 Mathemati
s Subje
t Classi�
ation. 90C90, 65T60, 90C20, 90C59, 90C30Keywords. Support ve
tor ma
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tions, reprodu
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ognition1 Introdu
tionThe Support Ve
tor Ma
hine (SVM) is a novel type of learning ma
hine and represents avery promising tool for solving pattern re
ognition tasks. The SVM is well motivated fromstatisti
al learning theory and minimizes an upper bound on the generalization error [49, 6℄.However, improvements of its performan
e 
an still be a
hieved by using prior knowledge ofthe pattern re
ognition task at hand. In [32℄ invarian
es in SVMs were in
orporated by theso{
alled 'virtual support ve
tors', a SVM adjusted s
heme of the known te
hnique of learningwith 'virtual training examples' [26℄. Invarian
es and prior knowledge about the lo
ality inimages were used in [34℄ for the 
onstru
tion of appropriate kernels for SVMs, see also [3℄.Wavelet de
ompositions allow for a time{s
ale analysis of fun
tions and have gained a lotof interest in digital signal pro
essing. Re
ently, over
omplete wavelet de
ompositions haveproven to be an eÆ
ient data representation for SVMs for obje
t dete
tion tasks [23, 24℄.Independently from SVMs, a lot of feature extra
tion s
hemes whi
h employ fast orthonormalwavelet de
ompositions based on �lter banks are known, see, e.g., [16, 25, 46℄. Many waveletbased feature extra
tion s
hemes deal with an adaptation of the wavelet de
omposition tree,e.g., the lo
al dis
riminant basis algorithm of Saito and Coifman [29℄. For a re
ent 
omparison0The work of the two authors has been partially supported by Deuts
he Fors
hungsgemeins
haft, Grant S
h457/5{1. 1



paper we refer to [28℄. In the 
ited wavelet based feature extra
tion s
hemes and the exper-iments in [29, 28℄ standard wavelets from wavelet theory were employed. These wavelets areoriginally designed to optimize some properties, e.g., smoothness 
onditions, whi
h are notneeded in pattern re
ognition in general. In re
ent studies one of the authors has shown thata �lter bank adaptation based on the latti
e stru
ture, a well a

epted adaptation s
hemefor signal 
oding [10℄, 
an signi�
antly improve the performan
e of a wavelet based featureextra
tion for waveform 
lassi�
ation tasks [42, 41℄.Wavelet based feature extra
tion s
hemes aim in the �rst pla
e at a redu
tion of the dimen-sionality of the input spa
e to ta
kle with the '
urse of dimensionality', i.e., proliferation ofparameters, whi
h results in immense resour
es and/or over�tting. SVMs do not dependon dimensionality in general. Nevertheless, re
ent work has shown that SVMs 
an indeedsu�er in high dimensional spa
es where many features of the input spa
e are irrelevant anddimensionality redu
tion due to feature sele
tion leads to an enhan
ed SVM performan
e[55, 14℄.In this paper we 
ouple the idea of SVM learning and adapted wavelet representations forthe extra
tion of low dimensional feature ve
tors for binary waveform 
lassi�
ation. Ouradaptation strategy is based on a dis
riminant fun
tional whi
h is well motivated from theparadigm of 'large margin 
lassi�ers' underlying the SVM approa
h and is spe
i�
ally designedfor the so{
alled hard margin SVM. For investigating our approa
h on real world data, weadopt 
urrent tasks from medi
al diagnosti
s. In parti
ular, we deal with a rate independentarrhythmia re
ognition in ele
tro
ardiology, where we in
orporate lo
al instabilities in timein our learning task and with the dete
tion of otoa
ousti
 emissions in audiology, where weneed a shift{invariant 
lassi�
ation s
heme.This paper is organized as follows. In the Se
tions 2 and 3 we provide the ne
essary material
on
erning SVM 
lassi�
ations and wavelet de
ompositions by parameterized paraunitary�lter banks. Se
tion 4 presents the adaptation of the parameterized �lter banks to hard marginSVMs with kernels arising from radial basis fun
tions (RBFs). In Se
tion 5 we introdu
eRBFs with 
ompa
t support whi
h have not been used for the 
onstru
tion of SVMs upto now. Se
tion 6 deals with appli
ations of our algorithm in medi
al diagnosti
s, namelythe 
lassi�
ation of endo
ardial ele
trograms and the shift{invariant dete
tion of otoa
ousti
emissions. The 
on
lusions of the paper are given in Se
tion 7.2 Support Ve
tor Ma
hine Classi�
ationIn this se
tion we provide the tools 
on
erning the support ve
tor ma
hine 
lassi�
ation withrespe
t to the appli
ations we have in mind. Our approa
h is based on the pioneering workof Vapnik [49℄ and the new book of Christianini and Shawe{Taylor [6℄, where the reader 
an�nd a detailed introdu
tion in terms of statisti
al learning theory.Let X be a 
ompa
t subset of Rd 
ontaining the data to be 
lassi�ed. We suppose that thereexists an underlying unknown fun
tion t, the so{
alled target fun
tion, whi
h maps X to thebinary set f�1; 1g. Given a training setA := f(xi; yi) 2 X � f�1; 1g : i = 1; : : : ;Mg (1)of M asso
iations we are interested in in the 
onstru
tion of a real valued fun
tion f de�nedon X su
h that sgn(f) is a 'good approximation' of t. If f 
lassi�es the training data 
orre
tly,then whi
h sgn(f(xi)) = t(xi) = yi for all i = 1; : : : ;M . Heresgn(f(x)) := � 1 if f(x) � 0;�1 otherwise:2



We will sear
h for f in some reprodu
ing kernel Hilbert spa
es whi
h we will introdu
e next.By L2(X ) we denote the Hilbert spa
e of real valued square integrable fun
tions on X withinner produ
t hf; giL2 = RX f(x)g(x) dx. Let K : X � X �! R be a positive de�nitesymmetri
 fun
tion in L2(X �X ). Following [30℄, we 
all a fun
tion K 2 L2(X �X ) positivede�nite i� for any �nite set of elements fx1; : : : ;xng � X , the matrix (K(xi;xj))ni;j=1 ispositive de�nite. In this paper we are only interested in fun
tions K arising from RBFs. Inother words, we assume that there exists a real valued fun
tion k on R so thatK(x;y) = k(jjx� yjj2); (2)where jj�jj2 denotes the Eu
lidean norm on Rd . In our appli
ations we will use Gaussian kernelsand Wendland's 
ompa
tly supported RBFs [54℄. The latter were not applied in 
onne
tionwith 
lassi�
ation tasks up to now.For a given K, there exists a reprodu
ing kernel Hilbert spa
eHK := span fK(~x; �) : ~x 2 Xgof real valued fun
tions on X with inner produ
t determined byhK(~x;x);K(�x;x)iHK := K(~x; �x) (3)whi
h has reprodu
ing kernel K, i.e.,hf(�);K(~x; �)iHK = f(~x) (f 2 HK):By Mer
er's Theorem, K 
an be expanded in a uniformly 
onvergent series on X � XK(x;y) = 1Xj=1 �j'j(x)'j(y); (4)where �j � 0 are the eigenvalues of the integral operator TK : L2(X )! L2(X ) withTKf(y) := RX K(x;y)f(x) dx and where f'jgj2N are the 
orresponding L2(X ){orthonormalized eigenfun
tions.We introdu
e a so{
alled feature map � : X ! `2 by�(�) := �p�j'j(�)�j2N :Let `2 denote the Hilbert spa
e of real valued quadrati
 summable sequen
es a = (ai)i2N withinner produ
t ha; bi`2 = Pi2N aibi. By (4), we have that �(x) (x 2 X ) is an element in `2with jj�(x)jj2̀2 = 1Xj=1 �j'2j (x) = K(x;x) = k(0):We de�ne the feature spa
e FK � `2 by the `2{
losure of all �nite linear 
ombinations ofelements �(x) (x 2 X ) FK := span f�(x) : x 2 Xg:Then FK is a Hilbert spa
e with jj � jjFK = jj � jj`2 . The feature spa
e FK and the reprodu
ingkernel Hilbert spa
e HK are isometri
ally isomorphi
 with isometry � : FK !HK de�ned by�(w) := fw(x) = hw;�(x)i`2 = 1Xj=1wjp�j'j(x): (5)3



In parti
ular, we have that jjfwjjHK = jjwjjFK : (6)Note that from another point of view FK is the spa
e of sequen
es of the Fourier 
oeÆ
ientsof the fun
tions of HK with respe
t to the orthonormal basis fp�j'j : j = 1; : : :g of HK .Let us turn to our 
lassi�
ation task. For a given training set (1) we intend to 
onstru
t afun
tion f 2 HK whi
h minimizes� MXi=1(1� yif(xi))+ + 12 jjf jj2HK ; (7)where (�)+ = � � if � � 0,0 otherwise.Note that we 
an also look for fun
tions of the form f = h+ b (h 2 HK) with a so{
alled biasterm b 2 R. We omit the bias term b here, be
ause its expli
it 
onsideration does not lead toan improvement of our numeri
al results.The un
onstrained optimization problem (7) is equivalent to the following 
onstraint opti-mization problem: �nd f 2 HK and ui (i = 1; : : : ;M) to minimize� MXi=1 ui!+ 12 jjf jj2HK ; (8)subje
t to yif(xi) � 1� ui (i = 1; : : : ;M);ui � 0 (i = 1; : : : ;M):Every fun
tion f 2 HK 
orresponds uniquely to a sequen
e w 2 FK . Thus, by (5) and (6),the optimization problem (8) 
an be rewritten as follows: �nd w 2 FK and ui (i = 1; : : : ;M)to minimize � MXi=1 ui!+ 12 jjwjj2FK ; (9)subje
t to yihw;�(xi)iFK � 1� ui (i = 1; : : : ;M); (10)ui � 0 (i = 1; : : : ;M):In general the feature spa
e FK � `2 is in�nitely dimensional. For a better illustration of(9) we assume for a moment that FK � Rn . Then the fun
tion ~fw(v) := hw;viFK de�nesa hyperplane Hw := fv 2 FK : ~fw(v) = 0g in Rn through the origin and an arbitrarypoint vi 2 FK has the distan
e jhw;viiFK j=jjwjjFK from Hw. Note that ~fw(�(x)) = fw(x).Thus, the 
onstraints yihw;�(xi)iFK=jjwjjFK � 1=jjwjjFK � ui=jjwjjFK (i = 1; : : : ;M) in(10) require that every �(xi) must at least have the distan
e 1=jjwjjFK � ui=jjwjjFK fromHw.If there exists w 2 FK so that (10) 
an be ful�lled with ui = 0 (i = 1; : : : ;M), then we saythat our training set is linearly separable in FK . Of 
ourse, for Gaussian kernels or kernelsarising from Wendland's 
ompa
tly supported radial basis fun
tion every �nite training set4



is linearly separable in FK , see, e.g., [2℄ and [38℄. Then the optimization problem (9) 
an befurther simpli�ed to: �nd w 2 FK to minimize12 jjwjj2FK (11)subje
t to yihw;�(xi)iFK � 1 (i = 1; : : : ;M):Given HK and A, the optimization problem above has a unique solution fw�. In our hyper-plane 
ontext Hw� is exa
tly the hyperplane whi
h has maximal distan
e 
 from the trainingdata, where 
 := 1jjw�jjFK = 1jjfw� jjHK = maxw2FK mini=1;:::;M � jhw;�(xi)iFK jjjwjjFK � : (12)The value 
 is 
alled the margin of fw� with respe
t to the training set A. In this 
ontext, thesolutions of the optimizations problems (9) and (11) are 
alled soft margin and hard marginSVM 
lassi�ers, respe
tively. See Figure 1 for an illustration of the hard margin 
ase forn = 2. In Se
tion 4 and in our examples in Se
tion 6 we will restri
t our attention to hardmargin SVMs. Note that this restri
tion is equivalent to the 
hoi
e � =1 in (8) or (9)

Figure 1: The separation of two 
lasses by an optimal hyperplane Hw� with margin 
.Remark 1. There exists an important relation between the margin of the SVM 
lassi�erand its generalization error, i.e., the probability that sgn(fw�(x)) 6= y for a randomly 
hosenexample (x; y) 2 X � f�1; 1g, whi
h motivates the SVM approa
h and our further investiga-tions. By [6, Theorem 4.18℄, an upper bound of the generalization error of the hard marginSVM 
lassi�er de
reases if the margin 
 in
reases. Roughly speaking: the larger the margin
 the better generalization of the SVM 
an be expe
ted.5



Note that there exist also estimates for the generalization error of soft margin SVM 
lassi�erswhi
h involve the margin of the unknown target fun
tion, see, e.g., [6, Theorem 4.21℄ and [38℄.Next we 
onsider the solution of (11), where we follow mainly the lines of [51℄. Here thenotation 'support ve
tor' 
omes into the play.By the Representer Theorem ([20, 51℄), the minimizer of (9) has the formf(x) = MXj=1 
jK(x;xj): (13)Setting f := (f(x1); : : : ; f(xM ))T , K := (K(xi;xj))Mi;j=1 and 
 := (
1; : : : ; 
M )T we obtainthat f = K
:Note that K is positive de�nite. Further, let Y := diag(y1; : : : ; yM ) and u := (u1; : : : ; uM )T .By 0 and e we denote the ve
tors withM entries 0 and 1, respe
tively. Then the optimizationproblem (9) 
an be rewritten as minu;
 �eTu+ 12
TK
 (14)subje
t to u � e�YK
;u � 0:The dual problem with Lagrange multipliers � = (�1; : : : ; �M )T and � = (�1; : : : �M )T readsmax
;u;�;� L(
;u;�;�);where L(
;u;�;�) := �eTu+ 12
TK
� �Tu+�T e��TYK
��Tusubje
t to �L�
 = 0; �L�u = 0; � � 0; � � 0:Now 0 = �L�
 = K
�KY� yields 
 = Y�: (15)Further we have by �L�u = 0 that � = �e��. Thus, our optimization problem be
omesmax� ��12�TYKY�+ eT�� (16)subje
t to 0 � � � �e:This quadrati
 programming (QP) problem is usually solved in the SVM literature. For amoderate number of asso
iations some standard QP routines 
an be used and for a largenumber of asso
iations, e.g., jAj > 4000, spe
i�
ally designed large s
ale algorithms shouldbe applied, e.g., SVMlight [17℄. 6



The support ve
tors (SVs) are those training patterns xi for whi
h �i does not vanish. Let Idenote the index set of the support ve
tors I := fi 2 f1; : : : ;Mg : �i 6= 0g then by (13) and(15), the fun
tion f has the sparse representationf(x) =Xi2I 
iK(xi;x) =Xi2I yi�iK(xi;x)whi
h depends only on the SVs. With respe
t to the margin we obtain by (12) and (3) that
 = (jjf jjHK )�1 = (
TK
)�1=2 =  Xi2I yi�if(xi)!�1=2 :Due to the Kuhn{Tu
ker 
onditions [11℄ the solution f of the QP problem (14) has to ful�ll�i(1� yif(xi)� ui) = 0 (i = 1 : : : ;M):In 
ase of hard margin 
lassi�
ation with ui = 0 this implies that yif(xi) = 1 (i 2 I) so thatwe obtain the following simple expression for the margin
 =  Xi2I �i!� 12 : (17)Remark 2. By [6, Theorem 6.8℄, the number of SVs 
an also be used to give an upper boundof the generalization error of the hard margin SVM. The fewer the number of support ve
torsthe lower is the upper bound of the generalization error.3 Wavelet De
ompositions by Parameterized Paraunitary Fil-ter BanksIn this se
tion we give a short introdu
tion to paraunitary �lter banks and 
orresponding so
alled dis
rete{time wavelets. The �rst part mainly builds up on [40℄. Here we prefer to usedis
rete{time wavelets in `2 instead of wavelets in L2(R) sin
e this approa
h is straightforwardfor digital signal pro
essing. A broader introdu
tion to the topi
 
an be found in [50, 8℄.Let H0(z) := Pk2Zh0[k℄z�k be the z{transform of the analysis lowpass �lter and H1(z) :=Pk2Zh1[k℄z�k the z{transform of the analysis highpass �lter of a two{
hannel �lter bankwith real{valued �lter 
oeÆ
ients. Throughout this paper, we use a 
apital letter to denotea fun
tion in the z{transform domain and the 
orresponding small letter to denote its time{domain version. A �lter bank with analysis �lters H0 and H1 is 
alled paraunitary (sometimesalso referred to as orthogonal) i�H0(z�1)H0(z) +H1(z�1)H1(z) = 2 ; (18)H0(z�1)H0(�z) +H1(z�1)H1(�z) = 0 : (19)The 
orresponding synthesis �lters are given byG0(z) = H0(z�1) ; G1(z) = H1(z�1):The polyphase matrix of a paraunitary �lter bankHpol(z) := � H00(z) H01(z)H10(z) H11(z) �7



with entries from the polyphase de
ompositionHi(z) = Hi0(z2) + z�1Hi1(z2) (i = 0; 1)satis�es the relation HTpol(z�1)Hpol(z) = I2; (20)where I2 denotes the 2� 2 identity matrix.We are interested in �nite impulse response (FIR) �lters of order 2L + 1 with real{valued
oeÆ
ients Hi(z) := 2L+1Xk=0 hi[k℄z�k (hi[k℄ 2 R): (21)For these �lters, a

ording to [47℄, [40, Theorem 4.7℄, the 
orresponding polyphase matrixHpol(z) 
an be de
omposed intoHpol(z) = (L�1Yl=0 � 
os#l sin#l� sin#l 
os#l �� 1 00 z�1 � ) � 
os#L sin#L� sin#L 
os#L � ; (22)where #L 2 [0; 2�) and #l 2 [0; �) (l = 0; : : : ; L � 1). Further we assume that the highpass�lter has at least one vanishing moment, i.e., H1(1) = 0. By (18) and (19) this implies thatthe lowpass �lter satis�es H0(�1) = 0. Using these properties and (20) it is easy to 
he
kthat Hpol(1) = 1p2 � 1 1�1 1 � :Sin
e we have by (22) thatHpol(1) = 0BB� 
os( LPl=0#l) sin( LPl=0#l)� sin( LPl=0#l) 
os( LPl=0#l) 1CCA ;we obtain LXl=0 #l � �4 (mod 2�):Let #L be the residue of �4 �PL�1l=0 #l modulo 2� in [0; 2�). Then the spa
ePL := f# = (#0; : : : ; #L�1) : #l 2 [0; �)g
an serve to parameterize all two{
hannel paraunitary �lter banks (21) with at least onevanishing moment of the highpass �lter. To emphasize this parameterization we will usethe supers
ript # later. A parameterization with more than one vanishing moment of thehighpass �lter 
an be realized by the method of Zou et al. [56℄. Filter banks having therepresentation in (22) 
an eÆ
iently be implemented by the latti
e stru
ture [48℄. A spe
ialand even more eÆ
ient implementation is 
alled the two multiplier latti
e [47℄. Note that theparameterization 
an also be implemented by lifting steps [9℄ whi
h are frequently used fordesigning biorthogonal �lter banks. However, we rely on the implementation based on thelatti
e stru
ture due its availability in already existing very eÆ
ient ar
hite
tures, e.g., [19℄,8



whi
h we will espe
ially need when dealing with algorithms for low{power devi
es.For a �xed # 2 PL let G0 = G#0 and G1 = G#1 be the synthesis �lters of a two{
hannelparaunitary �lter bank implemented by the latti
e stru
ture. When 
as
ading these �lters inan o
tave band tree, the synthesis �lters of an equivalent parallel stru
ture on level j = 1; : : : ; Jare given by Qj;0(z) = j�1Ym=0G0(z2m); (23)Qj;1(z) = G1(z2j�1) j�2Ym=0G0(z2m): (24)A

ording to [50℄ we introdu
e the dis
rete{time s
aling sequen
es and wavelets on s
ale j bythe impulse responses qj;0 = (qj;0[k℄)k2Z and qj;1 = (qj;1[k℄)k2Z of the �lters (23) and (24),respe
tively. Let qmj;i := �qj;i[k � 2jm℄�k2Z (i = 0; 1) denote the translation of qj;i by 2jmsamples. The paraunitarity of the �lter bank implies the following orthogonality relations ofthe s
aling sequen
es and wavelets:hq0j;0;qmj;0i`2 = Æ[m℄;hqmi;1;qnj;1i`2 = Æ[i � j℄Æ[m � n℄;hq0j;0;qmj;1i`2 = 0; (25)(m;n 2 Z; i; j = 1; : : : ; J), where Æ[m℄ = 1 if m = 0 and Æ[m℄ = 0 otherwise. We introdu
ethe spa
es 
0;0 := `2 and
j;0 = spanfqmj;0 : m 2 Zg ; 
j;1 = spanfqmj;1 : m 2 Zg:Note that fqmj;i : m 2 Zg forms an orthonormal basis of 
j;i (i = 0; 1). Further we have by(23) that 
J;0 � � � � � 
2;0 � 
1;0 � 
0;0 and by (24) and (25) that
j�1;0 = 
j;0 � 
j;1;where � denotes the orthogonal sum. Thus, the spa
e `2 
an be de
omposed as`2 = 
J;0 �LJj=1
j;1 and the set�qmJ;0;qmj;1 : j = 1; : : : ; J ;m 2 Z	 (26)
onstitutes an orthonormal basis for `2. With respe
t to this basis an arbitrary sequen
ex 2 `2 
an be de
omposed asx = Xm2ZdJ;0[m℄qmJ;0 + JXj=1 Xm2Zdj;1[m℄qmj;1 (27)with the wavelet 
oeÆ
ients dj;i[m℄ = hx;qmj;ii`2 (i = 0; 1):We set dj := (dj;1[m℄)m2Z (j = 1; : : : ; J):9



We will need norms of these wavelet 
oeÆ
ient ve
tors later.Some appli
ations, e.g., our 
lassi�
ation task in Se
tion 6 require a shift{invariant multilevelde
omposition (27). This 
an be a
hieved by repla
ing the orthonormal wavelet basis (26) bythe tight wavelet frame �2�J=2~qmJ;0; 2�j=2~qmj;1 : j = 1; : : : ; J ;m 2 Z	;where ~qmj;i := (qj;i[k �m℄)k2Z (i = 0; 1). Then x 2 `2 
an be de
omposed asx = Xm2Z ~dJ;0[m℄ ~qmJ;0 + JXj=1 Xm2Z ~dj;1[m℄~qmj;1 (28)with the 
oeÆ
ients ~dj;i[m℄ = 12j hx; ~qmj;ii`2 (i = 0; 1):We set ~dj := � ~dj;1[m℄�m2Z (j = 1; : : : ; J):Over
omplete expansions 
an be implemented by oversampled paraunitary �lter banks [7, 1℄The highly redundant expansion (28) 
orresponds to a nonsubsampled �lter bank, i.e., we haveno multirate operations at all. In this spe
ial 
ase, the subbands are obtained by pure lineartime{invariant (LTI) �lters given by (23) and (24), respe
tively. Note that an implementationas 
as
aded two{
hannel building blo
ks requires to insert 2j � 1 zeros between the nonzero
oeÆ
ients of the �lters at the levels j = 2; : : : ; J . This pro
edure is also known as 'algorithma trous' [36℄ and is equivalent to the so{
alled '
y
li
 spinning' [5℄. The 
omputation of theframe 
oeÆ
ients ve
tors ~dj requires O(N logN) arithmeti
 operations instead of O(N) forthe 
omputation of dj (j = 1; : : : ; log2N). There exist nearly shift{invariant approa
heswith lower arithmeti
 
omplexity, e.g. [21℄. The in
orporation of these algorithms into ouradaptation s
heme may be a future point of resear
h.In the following we emphasize the dependen
e of the wavelet 
oeÆ
ients on the 
hosen angles# 2 PL by the supers
ript #.4 Adaptation to WaveformsRe
ent studies [52, 42, 41℄ have shown that the so{
alled multilevel 
on
entrations jj � jjp̀p(1 � p < 1) of 
oeÆ
ient ve
tors of wavelet{like de
ompositions in distin
t levels providereliable feature ve
tors for waveform 
lassi�
ation tasks. This mainly steams from the fa
tthat su
h feature ve
tors help to ta
kle with lo
al instabilities in time. They are thereforemore robust than the 
onsideration of spe
i�
 Heisenberg 
ells in the time{s
ale domain.The multilevel 
on
entration is a robust but global feature and 
an be insensitive to slightmorphologi
al dissimilarities of waveforms belonging to distin
t 
lasses when non{adaptedde
ompositions are utilized [42, 41℄. Here we present an adaptation of wavelet de
ompositionsthat is tailored to hard margin SVM 
lassi�ers. We restri
t our attention to orthonormalwavelet de
ompositions. The generalization to frame de
ompositions is straightforward.Let a set of M waveforms xi 2 
0;0 � RN be given whi
h belong to two distin
t 
lasses with
orresponding labels yi 2 f�1; 1g (i = 1; : : : ;M). By M+ and M� we denote the sets ofindi
es i 2 f1; : : : ;Mg with yi = 1 and yi = �1, respe
tively. In general, the length N of our10



waveforms will be large, e.g., N = 512. We intend to redu
e this length while emphasizingthe dis
riminating features of the signals to support 
lassi�
ation tasks.For this we 
onsider wavelet de
ompositions of our signals as in the previous se
tion. Let Jbe maximal depth of the wavelet de
omposition. Further let fj1; : : : ; jdg � f1; : : : ; Jg be theindi
es of those wavelet 
oeÆ
ient ve
tors we are interested in. The 
hoi
e of the relevantlevels 
an be determined by some validation te
hnique or by prior information about thewaveforms, e.g., a known pre{�ltering.For a �xed waveform x 2 
0;0 with wavelet 
oeÆ
ient ve
tors d#j we de�ne the fun
tion�x : PL ! Rd by�x(#) = (�1(#); �2(#); : : : ; �d(#)) := �jjd#j1 jjp̀p ; jjd#j2 jjp̀p ; : : : ; jjd#jd jjp̀p� (29)and set �i(#) := �xi(#) (i = 1; : : : ;M).Note that for nonsubsampled �lter banks, jj~d#jk jj`p and thus ~�x(#) do not 
hange if the signalis shifted. In this 
ase our approa
h be
omes 
ompletely translation{invariant.We want to �nd # so thatA(#) := n(�i(#); yi) 2 X � Rd � f�1g : i = 1; : : : ;Mois a `good` training set for a SVM. By Remark 1, we 
an expe
t a better generalization abilityof the hard margin SVM if the margin be
omes large. Consequently, we try to �nd #̂ so that#̂ = arg max#2PL� mini2M+;j2M� �����(�i(#))� �(�j(#))����FK� : (30)By de�nition of the inner produ
t in FK and (2) it follows that�����(�i(#))� �(�j(#))����2FK = jj�(�i(#))jj2FK + �����(�j(#))����2FK � 2 
�(�i(#));�(�j(#))�FK= 2k(0) � 2k ������i(#)� �j(#)����2� :We suppose that k(t) is monotonely de
reasing in jtj. Then (30) 
an be rewritten as#̂ = arg max#2PL� mini2M+;j2M� �����i(#)� �j(#)����2� : (31)Note that the geometry in feature spa
es indu
ed by kernels was investigated in [3, 33℄. Formost waveform re
ognition tasks the sets M+ and M� 
an be redu
ed by averaging thepatterns of the respe
tive 
lasses (or subsets thereof) or by expert sele
tion of representativesubsets. Here we use the �rst approa
h and introdu
e the notation�� := 1jM�j Xi2M� �i:Instead of (31) we sear
h for #̂ with#̂ = arg max#2PL ������+(#)� ��(#)����2	 : (32)Solving this optimization problem analyti
ally seems to be infeasible. The optimization fun
-tional involves the multilevel 
on
entration and seems not to allow for sophisti
ated optimiza-tion strategies. In parti
ular, hill 
limbing methods in PL are doomed to fail due to lo
alminima of the optimization fun
tional. We introdu
e a dis
rete gridPLT := f# = (#0; : : : ; #L�1) : #l 2 Dg ; D := n��T : � = 0; : : : ; T � 1o11



in PL and solve (32) by evaluating the optimization fun
tional at ea
h grid point.There exist possibilities to redu
e the 
omplexity of these 
omputations. For example we 
an
ompress the parameter spa
e PLT as follows: Given a positive number � < 1, we 
an furtherredu
e the parameter spa
e by sele
ting a maximal subset PL� of PLT so that1d dXi=1 ��hq0ji;1(#);q0ji;1(#�)i`2 �� � � (#;#� 2 PL� ; # 6= #�): (33)In other words, the distin
t wavelets in (33) satisfy the strengthened Cau
hy{S
hwarz inequal-ity, that is, the smaller � the more orthogonal the wavelets be
ome. In a way, � steers theredundan
y of our parameter spa
e. If we restri
t our interest to smooth wavelets, the 
on-sideration of only one level in (33) is suÆ
ient due to their self{similarity a
ross levels. Su
h a
ompression of the parameter spa
e 
an be signi�
ant even for a large �. For instan
e, whenworking with T = 32; L = 2 and � = 0:98 we have a
hieved a 
ompression of jPL� j=jPLT j � 0:65in [42℄.Although the des
ribed strategy only holds for hard margin SVMs and not in the soft margin
ase, the use of multilevel 
on
entrations (29) as feature ve
tors may sometimes be advanta-geous even without an adaptation sin
e we 
an in
orporate prior knowledge. For instan
e, forthe frame de
omposition (28) the feature ve
tor (29) be
omes 
ompletely invariant to shiftsof an analyzed waveform. Su
h shift{invariant feature ve
tors are often desirable, e.g., seeSe
tion ??.5 Radial Basis Fun
tions with Compa
t SupportIn the following se
tions we will apply two kinds of RBFs k(jjxjj2), namely Gaussian RBFsand Wendland's 
ompa
tly supported RBFs. The Gaussian RBF K withk(t) = e� t22s2 ;is a positive de�nite fun
tion in C1(Rd ) for all dimensions d and all s 2 R+ . Here Cn(Rd )denotes the spa
e of n times 
ontinuously di�erentiable fun
tions on Rd . This kernel is alsowell a

epted for 
onstru
ting SVMs and provides ex
ellent results for real world appli
ations,see, e.g., [49, 35℄.Re
ently positive de�nite RBFs with 
ompa
t support have been 
onstru
ted by various au-thors to solve interpolation problems with s
attered data fxigMi=1, see [31℄ and the referen
estherein. In the 
ontext of s
attered data interpolation, in parti
ular in 
onne
tion with hierar-
hi
al interpolation methods [12℄, RBFs with 
ompa
t support have several advantages su
h asa sparse interpolation matrix (K(xi;xj))Mi;j=1 and a sparse representation of the interpolatingfun
tion P ajK(x;xj) at x 2 Rd .RBFs with 
ompa
t support have not been used for 
onstru
ting SVMs up to now. Onereason for this maybe that any positive de�nite RBF with 
ompa
t support has to be designedin dependen
e on the spa
e dimension d, i.e., there does not exist an universal RBF like theGaussian whi
h is 
ompa
tly supported, positive de�nite and smooth for all spa
e dimensions.RBFs with 
ompa
t support are only suited for relatively small spa
e dimensions. Using ourmultilevel 
on
entration approa
h the training data are at most of length d = log2N . In ourappli
ations we have d = 8. For spa
es of su
h a low dimension the following RBFs proposedby Wendland [54℄ 
an easily be 
al
ulated and evaluated.12



For � 2 R and m 2 N0 we de�ne (�)m and [�℄m by(�)m := �(�+m)�(�) ; [�℄m := (� �m+ 1)m ;where � denotes the Gamma fun
tion. Letwm(x) := (1� x)m+ :Then Wendland's RBFs have the representationkm;n(x) = nXi=0 �(m)i;n xiwm+2n�i(x) (n 2 N) ;where the 
oeÆ
ients satisfy the re
ursion�(m)0;0 = 1;�(m)t;n+1 = nXi=t�1 �(m)i;n [i+ 1℄i�t+1(m+ 2n� i+ 1)i�t+2 (0 � t � n+ 1);if the term for i = �1 for t = 0 is ignored.Let bx
 := maxfi 2 Z : i � xg. For m = bd=2
 + n + 1, Wendland has proved that km;nde�nes a positive de�nite fun
tion in C2n(Rd ). Further, km;n is of the formkm;n(x) = � p(x) 0 � x � 1;0 x > 1;with a polynomial p of degree bd=2
 + 3n + 1. There does not exist a positive de�nite RBFin C2n(Rd ) of the above form with a polynomial p of lower degree.In the remainder of this paper, we will deal (up to multipli
ations with 
onstants) with theRBFs k6;1(x) = (7x+ 1) (1� x)7+ 2 C2(R8 )k7;2(x) = 1=3 �80x2 + 27x+ 3� (1� x)9+ 2 C4(R8):and their dilations km;n(�=s) (s 2 R+).6 Appli
ations in Medi
al Diagnosti
sIn this se
tion, we present two appli
ations of our hybrid wavelet support ve
tor 
lassi�ersin medi
al diagnosti
s, namely the 
lassi�
ation of endo
ardial ele
trograms and the shift{invariant dete
tion of otoa
ousti
 emissions whi
h also provide 
ontributions to the area ofbiomedi
al resear
h. Our main intention is a 
omparison of the standard hard margin SVMapplied to the time{domain waveforms to our hybrid approa
h using �lter bank adaptation.Engineering the best possible 
lassi�
ation s
heme for the individual appli
ation is not ourobje
tive here and further improvements may be a
hievable by an additional optimal 
hoi
eof the de
omposition levels or by using � <1, i.e., by a soft margin SVM. However, althoughwe do not use su
h heuristi
s, our approa
h easily outperforms the state of the art methodin our �rst appli
ation. In our se
ond appli
ation, we present the �rst truly shift{invariantdete
tion of otoa
ousti
 emissions and a
hieve error rates whi
h support an utilization in
lini
al environments. 13



6.1 Classi�
ation of Endo
ardial Ele
trogramsSudden 
ardia
 death is a major publi
 health 
on
ern worldwide. A

ording to Ameri-
an estimates, sudden 
ardia
 death 
laims more than 350.000 lives in the USA every year,80% up to 90% being due to ventri
ular ta
hy
ardia (VT) [13, 22℄, i.e., a fast disorder ofthe heart beat whi
h stems from the major heart 
hamber, the ventri
le. The implantable
ardioverter{de�brillator (ICD) is an automated antita
hy
ardia devi
e and a

epted to bethe most e�e
tive therapy for preventing sudden 
ardia
 death due to VTs [43℄. The ICD is apermanently implanted devi
e whi
h 
ontinually monitors the ele
tri
al a
tivity of the heartby an endo
ardial ele
trogram (EE), i.e., a bioele
tri
 signal from the inner heart is analyzed.Usually, the information of the EE utilized by an ICD is the heart rate. However, the rateis of limited reliability in some 
lini
al situation, e.g., ex
itement or physi
al exertion wherethe (physiologi
al) sinus rhythm (SR) may have an abnormal fast rate whi
h 
an ex
eed aprede�ned threshold su
h that a malignant rhythm is dete
ted. Although additional dete
tionenhan
ements are used in third generation ICD{systems, inappropriate ICD therapy o

ur inup to 13% of the patients who re
eived su
h a devi
e [53℄.

Figure 2: Conse
utive beats of SR and VT within a time{frame of 256ms.Here morphologi
al dissimilarities in the EE of individual beats, due to di�erent a
tivationpatterns, 
an be used for dis
riminating the physiologi
al from the pathologi
al rhythm sin
ethey are rate{independent. Su
h morphologi
al methods are patient dependent and there isan ongoing interest in an eÆ
ient evaluation of morphologi
al 
riteria [37℄. Template mat
hingmethods are well known approa
hes. The 
orrelation waveform analysis (CWA) with best �talignment [44℄ o�ers an ex
ellent performan
e and is widely a

epted [39℄. We will use thismethod as referen
e tool for performan
e 
omparisons to our algorithm.Pattern re
ognition s
hemes for EEs have to ta
kle the following problems: an ex
ellentgeneralization performan
e although the training data is very sparse and a highly eÆ
ientimplementation for 
lassifying the waveforms in view of the limited energy resour
es of animplantable devi
e. Furthermore, in view of the 
urrent interest in EE 
ompression algorithmsfor ICDs [4℄, the use of perfe
t re
onstru
tion �lter banks is also desirable for EE analysissin
e 
oding 
onditions 
an be added without diÆ
ulty.The signals analyzed in this se
tion were obtained during ele
trophysiologi
al examinations atthe University Hospital of Homburg, Germany. Bipolar EEs were obtained from the apex of14



the right ventri
le in 10 patients with indu
ible monomorphi
 ventri
ular ta
hy
ardia (VT).The EEs were ampli�ed, �ltered (10{500Hz), and digitized (2kHz, 12 bit resolution). Datasegments of 10s duration were re
orded during SR and VT. Conse
utive beats were sele
tedas morphologi
al patterns of SR (240 beats) and VT (240 beats) within a time{frame of256ms and normalized. Consequently, we have to deal with waveforms x 2 
0;0 � RN , whereN = 512 and with a de
omposition depth of the wavelet tree of J = 8. The set of beats was
ontrolled by an expert to ex
lude e
topi
 beats and artifa
ts. For our numeri
al experimentswe use p = 1 in (29). The dis
rete parameter spa
e was 
onstru
ted with T = 30 and L = 2.This setting was also used in [41℄, where one of the authors has su

essfully 
lassi�ed antegradeand retrograde atrial a
tivations patters by neural networks. We label examples of SR by 1and of VT by �1. Figure 2 shows �ve original beats of SR and VT within their time{frame.

Figure 3: Distribution of the di�eren
e �����+(#)� ��(#)����2 (a) and of the 
orresponding mar-gin 
(#) of the SVM (b) in dependen
e on #.Figure 3(a) presents the distribution of the di�eren
es �����+(#)� ��(#)����2 in PLT for an indi-vidual patient (jM+j = jM�j = 1). In Figure 3(b) we show the 
orresponding distributionof the margin 
(#) in PLT for a SVM with Wendland's fun
tion k7;2(�=5). As noti
eable, themargin is dire
tly related to �����+(#)� ��(#)����2. The angles #̂ provide a multilevel 
on
en-tration that results in the largest margin of the SVM 
lassi�er.In order to illustrate our adaptation strategy, we 
onsider for a moment only the multilevel
on
entrations on the levels j = 4 and j = 5, i.e., �x(#) = (jjd#4 jj`1 ; jjd#5 jj`1).

Figure 4: The de
ision 
urve f(�) = 0 for SVM applied to the non{adapted multilevel 
on
en-trations with #D (a) and to the adapted multilevel 
on
entrations in R2 . The darker pointsdenote SR. 15



This allows us to visualize the 'de
ision 
urve' f(�) = 0 in R2 . We have used a number ofM = 36 training examples for this experiment with jM+j = jM�j = 18. For the SVM wehave employed a Gaussian kernel with s
aling fa
tor s = 1. Figure 4(a) shows the de
ision
urve and the 36 training patterns when utilizing the latti
e angles #D = (1:4653; 0:49984)whi
h 
orrespond to the Daube
hies wavelet D3 with three vanishing moments. We use thewell known Daube
hies wavelet as representative for a non{adapted wavelet. In Figure 4(b)we have taken the same settings but applied the optimal angles #̂. Clearly, we expe
t thatthe SVM 
lassi�er performs more reliable for the adapted approa
h. Here the examples of thedistin
t 
lasses lay far apart.In the following we provide some assessments of the 
lassi�
ation performan
e of our methodusing the whole data set of all ten patients. Here two de
omposition levels as in the previousexample are not suÆ
ient. To rule out that �ltering e�e
ts may lead to a loss of informationwe 
onsider the full wavelet de
omposition tree, i.e., d = 8. Of 
ourse, other data dependentstrategies to 
hoose j1; : : : ; jd in (29) are possible. But, instead of engineering the best possible
lassi�
ation s
heme for SR and VT, we are mainly interested in a 
omparison of our methodto SVMs applied to the original time{domain waveforms and to SVMs applied to non{adaptedmultilevel 
on
entrations.

Figure 5: The mean number of SVs and the error rate of a SVM applied to the originalwaveforms with Gaussian Kernel (top) and to the non{adapted multilevel 
on
entrations(D3) with Wendland's fun
tion k7;2 (bottom).We separate the total data set of 480 beats in a training set of 160 beats (SR: 80, VT: 80)and a test set of 320 beats (SR: 160, VT: 160). Thus, for ea
h patient we have a training setof jM�j = jM�j = 8 waveforms. The remaining set of 32 beats forms an independent test setfor the individual patient.In the Figures 5 and 6, we have plotted the mean number of SVs (of the ten patients) andthe error rate in dependen
e on the s
aling fa
tor s for di�erent RBFs. The mean numberof SVs is given in per
ent and 100% means that all of the 16 training patters are SVs forall patients. The error rate [%℄ is determined for all patients in 
ommon, that is, the ratioof false 
lassi�
ations on the whole test set to the total number of 320 examples within this16



Figure 6: The mean number of SVs and the error rate of a SVM applied to the adapted multi-level 
on
entrations with Gaussian Kernel (top) and to the adapted multilevel 
on
entrationswith Wendland's fun
tion k7;2(bottom):set. A 
omparison of Figure 5 with Figure 6 with respe
t to the error rate shows that ouradapted algorithm with both the Gaussian and Wendland's fun
tion is superior to the originalSVM and to the SVM on non{adapted multilevel 
on
entrations. Note that by Remark 2 thenumber of support ve
tors 
an be 
onsidered as indi
ator for the generalization of the SVM.The number of support ve
tors of our new algorithm is approximately half as many as thatof the original SVM. However, the 
ase of SVMs on non{adapted multilevel 
on
entrationsseems to be not in a good agreement with Remark 2. Here we have a smaller number of SVsthan for SVMs on the original waveforms but a worse performan
e on the test set.In Figure 7(a1) and (b1) we show the evaluations of f for SVMs with Gaussian kernel ands
aling fa
tor s = 0:8 applied to the original waveforms and for SVMs with k7;2 and s
alingfa
tor s = 5 applied to the adapted multilevel 
on
entrations. The 
orresponding number ofSVs for the individual patients is given in Figure 7(a2) and (b2), respe
tively. We see thatSVMs on adapted multilevel 
on
entrations perform better and more reliable than SVMs onthe time{domain waveforms. It is noti
eable that the number of SVs found is less for ourhybrid approa
h.For the purpose of a performan
e 
omparison we shortly introdu
e the CWA. Let x+ 2 
0;0serve as template of SR whi
h is obtained by averaging all the training waveforms of SR, i.e.,x+ = jM+j�1Pi2M+ xi. Let further x 2 
0;0 be an arbitrary EE waveform to be 
lassi�ed.Then the CWA between the template and the waveform is based on the 
orrelation 
oeÆ
ient� 2 [�1; 1℄ de�ned by � := PNi=1(x+i � x+)(xi � x)qPNi=1(x+i � x+)2qPNi=1(xi � x)2 ; (34)where x+ := N�1PNi=1 x+i and x := N�1PNi=1 xi For � = 1 we have a perfe
t mat
h of thewaveform x and the template. The de
ision of the CWA, i.e., the 
lassi�
ation of SR and VT,17



Figure 7: The evaluation of f for 10 patients by an SVM applied to the time{domain wave-forms (a1) and to the adapted multilevel 
on
entrations (b1). The 
orresponding number ofSVs is given in (a2) and (b2), respe
tively.is based on an appropriate threshold � with � < 1. Now � > � denotes SR and � � � denotesVT. The performan
e of the CWA heavily depends on the alignment of the time{frame inwhi
h an individual beat is sele
ted. Therefore, we 
an further improve the results of the CWAby the best �t alignment strategy. Here the template x+ is shifted over a spe
i�
 time{frame
entered around the dete
tion point of the beat, i.e., the point where an individual beat isseparated from the EE, and (34) is 
al
ulated for ea
h point n 2 Z of this time{frame so that�[n℄ be
omes a time dependent sequen
e. The de
ision is then based on � = jj�jj`1 usingthe same threshold 
riterion as before for �. This pro
edure is 
omputationally demandingin general and not appropriate for eÆ
ient implementations. The support of the time{framedepends on the prepro
essing of the data. In our experiments we have used 20ms. It is worthto emphasize that the best �t strategy has only a minor in
uen
e for our signals as the beatsare already well aligned. However, in other settings it 
an be signi�
ant.

Figure 8: The results for the CWA with best �t alignment (CWABF) for 10 patients.18



When averaging the 8 training waveforms of SR of the individual patient as template for theCWA, we obtain the results in the Figure 8. There is a signi�
ant overlap for a subset ofpatients and a threshold � 
an heardly be de�ned for these patients. Comparing these resultsto those in Figure 7 we see that the CWA performs mu
h worse than our hybrid s
heme andalso worse than SVMs applied to the time{domain waveforms.6.2 Dete
tion of Otoa
ousti
 EmissionsAs already mentioned, the beats analyzed in the previous se
tion are well aligned withintheir time{frame. Thus, the analysis does not strongly su�er from shifts in time so thatshift{invarian
e is of minor importan
e. Here 
omputationally very eÆ
ient but time{variantorthonormal wavelet de
ompositions perform well. However, as in our next 
lassi�
ationproblem, there is often a need for shift{invarian
e in waveform re
ognition. In the followingwe use the shift{invariant frame de
ompositions introdu
ed at the end of Se
tion 3 instead oforthogonal wavelet de
ompositions.

Figure 9: Two exemplary signals from the physiologi
al and pathologi
al group.Otoa
ousti
 emissions are sounds generated by the 
o
hlea that 
an be re
orded in the exter-nal ear 
anal, see [18, 27℄. In the following, we will deal with the transient evoked otoa
ousti
emission (TEOAE) that is, in short, a brief pressure wave that emanates from the ear inresponse to an a
ousti
 stimulus. These responses are typi
ally of a low intensity or absent inindividuals with mild or greater hearing loss. Consequently, the analysis of TEOAEs seems tobe promising as noninvasive method for dete
ting hearing loss in patients. Su
h an obje
tiveanalysis requires no patient intera
tion and is espe
ially of interest in infants. The dete
tionof otoa
ousti
 emissions represents a 
hallenge for automated s
hemes. They are of a very lowintensity and hard to separate from the signal ba
kground in 
urrent measurement set{ups.Up to now, the 
lassi�
ation of individuals with and without hearing losses is to a large extentbased on expert knowledge, see [15℄ for a des
ription of the parameters used by experts.The analysis and 
hara
terization of TEOAEs is an a
tive and ongoing �eld of resear
h.For approa
hes in the time{frequen
y domain, see, for instan
e, [45℄ and the referen
es therein.19



Figure 10: Distribution of the di�eren
e �����+(#)� ��(#)����2 (a) and of the 
orrespondingmargin 
(#) of the SVM (b) in dependen
e on #.The signals analyzed in this se
tion were obtained at the University Hospital of Homburg,Germany. The signals were re
orded in a sound{proof 
abin using a probe inserted into theouter ear 
anal. The probe 
ontains a transmitter whi
h delivers the a
ousti
 stimulus anda miniaturized mi
rophone. The signals were ampli�ed, �ltered (300Hz { 10kHz), digitized(25kHz, 12 bit resolution) and averaged to enhan
e the signal noise ratio by the standardte
hnique of the ILO88 Systems (Otodynami
s, Ltd.). With this prepro
essing, signals ofapproximately 20ms (again represented by 512 samples) duration were normalized (by theirenergy) and stored for subsequent analysis. The individuals were binary 
lassi�ed in a patho-logi
al and a physiologi
al group. The pathologi
al group is labeled with �1 and 
onsists ofindividuals with a hearing loss at higher frequen
ies or with a broad band hearing loss. Allindividuals in this group have a hearing loss of more than 20dB above 3kHz. The physiologi
algroup is labeled with 1 and 
onsists of individuals with a hearing loss of less than 20dB inrange from 0kHz to 10kHz. Figure 9 shows an exemplary signal of the physiologi
al and thepathologi
al group, respe
tively.We have a total of 68 individuals (and signals) in the physiologi
al group. The pathologi
algroup 
onsists of 55 individuals. We use twenty signals of ea
h group as training set, i.e.,jM+j = jM�j = 20. The remaining signals form an independent test set for the respe
tivegroup.If present, the o

urren
e of TEOAEs in our signals varies over time for the individual subje
ts.Consequently, there is a need for a re
ognition s
heme whi
h is not based on lo
ality. In otherwords, it must in
orporate the fa
t the information 
an appear anywhere in the signal andmust thus be shift{invariant.The morphology of physiologi
al and pathologi
al waveforms may overlap, in parti
ular forphysiologi
al group and individuals whi
h only su�er from a hearing loss at higher frequen
ies.Therefore, the appropriate 
hoi
e of the regularization parameter � in (16) may improve theresults. However, we use again � =1 for implementing a hard margin SVM sin
e it is easierto interpret and we are mainly interested in 
omparing SVM on the original time{domainwaveform and on the shift{invariant adapted multilevel 
on
entrations.Figure 10 illustrates the di�eren
e �����+(#)� ��(#)����2 for jM+j = jM�j = 1 as example. The
orresponding margin 
(#) in PLT is also shown, where we have used the Wendland fun
tionk7;2 for the SVM. As in the previous se
tion, only a few wavelets of the parameter spa
e resultin a large margin of the SVM 
lassi�er.Figure 11 
ontains the error rate and the number of SVs in dependen
e on the s
aling20



Figure 11: The mean number of SVs and the error rate of a SVM applied to the original wave-forms with Gaussian Kernel (top) and to the adapted orthonormal multilevel 
on
entrationsalso with a Gaussian kernel (bottom).parameter s for a SVM applied to the original waveform and for our s
heme, but based onorthonormal (not shift{invariant) de
ompositions. It is obvious that no reliable hypothesisabout the underlying mapping 
an be dedu
ted form the training set in the �rst 
ase so thatthe original SVM 
lassi�er allows no satisfa
tory dis
rimination between the physiologi
aland the pathologi
al group. In view of the fa
t that the SVM is a state of the art 
lassi�er,this indi
ates how diÆ
ult it is to dedu
e a reliable hypothesis. Our s
heme with orthonormalde
ompositions performs better. However, when using the shift{invariant tight frames in ours
heme, the results in Figure 12 are obtained for k7;2 and a Gaussian kernel. Here our hybridSVM 
lassi�er performs signi�
antly better than SVMs on the original waveforms and onthe orthonormal multilevel 
on
entrations. The number of SVs is mu
h smaller than thatof the original SVM. Clearly, with further heuristi
s, e.g., by dis
arding information or byregularization, better results seem to be a
hievable.In our appli
ations RBFs with 
ompa
t support have performed similar to Gaussian RBFs.The best performan
e of RBFs with 
ompa
t support was a
hieved for large values of thes
aling parameter s so that K(xi;xj) > 0 for all i; j 2 f1; : : : ;Mg. Thus, we have a
hievedno further advantages from the 
ompa
t support of these fun
tions.7 Con
lusionsWe have presented a new method for improving the performan
e of hard margin SV 
lassi�ers.For this, we have merged ideas whi
h have re
ently been developed in signal pro
essing andma
hine learning to obtain a hybrid s
heme based on wavelet de
ompositions and SVMs forwaveform 
lassi�
ation.We have illustrated the performan
e of our s
heme against the ba
kground of 
urrent 
on
ernsin medi
al diagnosti
s. Our hybrid s
heme 
lassi�ed all EEs of SR and VT of the given test21



Figure 12: The mean number of SVs and the error rate of a SVM applied to to the adaptedshift{invariant multilevel 
on
entrations with the Gaussian kernel (top) and to the adaptedshift{invariant multilevel 
on
entrations with k7;2 (bottom).set 
orre
tly, a result that was neither a
hievable by a SVM on the original waveforms nor bythe well a

epted CWA with best �t alignment. Based on the very eÆ
ient latti
e stru
tureimplementation, our s
heme meets also the low power requirements of ICDs.For the analysis of TEOAEs we have employed tight frames to obtain shift{invarian
e ofour s
heme. Here we a
hived a signi�
ant improvement of the 
lassi�
ation performan
efor dete
ting the hearing loss in individuals 
ompared to hard margin SVMs on the originalwaveforms.We have used RBFs with 
ompa
t support and have shown that these fun
tions performsimilar to the well a

epted Gaussian kernels. However, further resear
h is ne
essary toexploit the full power of the 
ompa
t support of these fun
tions.We 
on
lude that the performan
e of hard margin SVMs 
an signi�
antly be improved bysignal{adapted wavelet de
ompositions sin
e it allows the in
lusion of prior knowledge su
has lo
al instabilities in time and shift{invarian
e. The dire
t relation of the distan
es in theinput spa
e and the feature spa
e indu
ed by the RBF allows an optimization of the signalrepresentation before the training of the hard margin SVM.For our appli
ations, the presented method is powerful and very promising. However,espe
ially in the 
ase of TEOAE analysis further investigations are needed on larger datasets. Here is still room for improvements, i.e., by the optimal 
hoi
e of the de
ompositionlevels, the straightforward in
orporation of wavelet pa
kets and the optimal 
hoi
e of theregularization 
onstant �.A
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