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paper we refer to [28℄. In the ited wavelet based feature extration shemes and the exper-iments in [29, 28℄ standard wavelets from wavelet theory were employed. These wavelets areoriginally designed to optimize some properties, e.g., smoothness onditions, whih are notneeded in pattern reognition in general. In reent studies one of the authors has shown thata �lter bank adaptation based on the lattie struture, a well aepted adaptation shemefor signal oding [10℄, an signi�antly improve the performane of a wavelet based featureextration for waveform lassi�ation tasks [42, 41℄.Wavelet based feature extration shemes aim in the �rst plae at a redution of the dimen-sionality of the input spae to takle with the 'urse of dimensionality', i.e., proliferation ofparameters, whih results in immense resoures and/or over�tting. SVMs do not dependon dimensionality in general. Nevertheless, reent work has shown that SVMs an indeedsu�er in high dimensional spaes where many features of the input spae are irrelevant anddimensionality redution due to feature seletion leads to an enhaned SVM performane[55, 14℄.In this paper we ouple the idea of SVM learning and adapted wavelet representations forthe extration of low dimensional feature vetors for binary waveform lassi�ation. Ouradaptation strategy is based on a disriminant funtional whih is well motivated from theparadigm of 'large margin lassi�ers' underlying the SVM approah and is spei�ally designedfor the so{alled hard margin SVM. For investigating our approah on real world data, weadopt urrent tasks from medial diagnostis. In partiular, we deal with a rate independentarrhythmia reognition in eletroardiology, where we inorporate loal instabilities in timein our learning task and with the detetion of otoaousti emissions in audiology, where weneed a shift{invariant lassi�ation sheme.This paper is organized as follows. In the Setions 2 and 3 we provide the neessary materialonerning SVM lassi�ations and wavelet deompositions by parameterized paraunitary�lter banks. Setion 4 presents the adaptation of the parameterized �lter banks to hard marginSVMs with kernels arising from radial basis funtions (RBFs). In Setion 5 we introdueRBFs with ompat support whih have not been used for the onstrution of SVMs upto now. Setion 6 deals with appliations of our algorithm in medial diagnostis, namelythe lassi�ation of endoardial eletrograms and the shift{invariant detetion of otoaoustiemissions. The onlusions of the paper are given in Setion 7.2 Support Vetor Mahine Classi�ationIn this setion we provide the tools onerning the support vetor mahine lassi�ation withrespet to the appliations we have in mind. Our approah is based on the pioneering workof Vapnik [49℄ and the new book of Christianini and Shawe{Taylor [6℄, where the reader an�nd a detailed introdution in terms of statistial learning theory.Let X be a ompat subset of Rd ontaining the data to be lassi�ed. We suppose that thereexists an underlying unknown funtion t, the so{alled target funtion, whih maps X to thebinary set f�1; 1g. Given a training setA := f(xi; yi) 2 X � f�1; 1g : i = 1; : : : ;Mg (1)of M assoiations we are interested in in the onstrution of a real valued funtion f de�nedon X suh that sgn(f) is a 'good approximation' of t. If f lassi�es the training data orretly,then whih sgn(f(xi)) = t(xi) = yi for all i = 1; : : : ;M . Heresgn(f(x)) := � 1 if f(x) � 0;�1 otherwise:2



We will searh for f in some reproduing kernel Hilbert spaes whih we will introdue next.By L2(X ) we denote the Hilbert spae of real valued square integrable funtions on X withinner produt hf; giL2 = RX f(x)g(x) dx. Let K : X � X �! R be a positive de�nitesymmetri funtion in L2(X �X ). Following [30℄, we all a funtion K 2 L2(X �X ) positivede�nite i� for any �nite set of elements fx1; : : : ;xng � X , the matrix (K(xi;xj))ni;j=1 ispositive de�nite. In this paper we are only interested in funtions K arising from RBFs. Inother words, we assume that there exists a real valued funtion k on R so thatK(x;y) = k(jjx� yjj2); (2)where jj�jj2 denotes the Eulidean norm on Rd . In our appliations we will use Gaussian kernelsand Wendland's ompatly supported RBFs [54℄. The latter were not applied in onnetionwith lassi�ation tasks up to now.For a given K, there exists a reproduing kernel Hilbert spaeHK := span fK(~x; �) : ~x 2 Xgof real valued funtions on X with inner produt determined byhK(~x;x);K(�x;x)iHK := K(~x; �x) (3)whih has reproduing kernel K, i.e.,hf(�);K(~x; �)iHK = f(~x) (f 2 HK):By Merer's Theorem, K an be expanded in a uniformly onvergent series on X � XK(x;y) = 1Xj=1 �j'j(x)'j(y); (4)where �j � 0 are the eigenvalues of the integral operator TK : L2(X )! L2(X ) withTKf(y) := RX K(x;y)f(x) dx and where f'jgj2N are the orresponding L2(X ){orthonormalized eigenfuntions.We introdue a so{alled feature map � : X ! `2 by�(�) := �p�j'j(�)�j2N :Let `2 denote the Hilbert spae of real valued quadrati summable sequenes a = (ai)i2N withinner produt ha; bi`2 = Pi2N aibi. By (4), we have that �(x) (x 2 X ) is an element in `2with jj�(x)jj2̀2 = 1Xj=1 �j'2j (x) = K(x;x) = k(0):We de�ne the feature spae FK � `2 by the `2{losure of all �nite linear ombinations ofelements �(x) (x 2 X ) FK := span f�(x) : x 2 Xg:Then FK is a Hilbert spae with jj � jjFK = jj � jj`2 . The feature spae FK and the reproduingkernel Hilbert spae HK are isometrially isomorphi with isometry � : FK !HK de�ned by�(w) := fw(x) = hw;�(x)i`2 = 1Xj=1wjp�j'j(x): (5)3



In partiular, we have that jjfwjjHK = jjwjjFK : (6)Note that from another point of view FK is the spae of sequenes of the Fourier oeÆientsof the funtions of HK with respet to the orthonormal basis fp�j'j : j = 1; : : :g of HK .Let us turn to our lassi�ation task. For a given training set (1) we intend to onstrut afuntion f 2 HK whih minimizes� MXi=1(1� yif(xi))+ + 12 jjf jj2HK ; (7)where (�)+ = � � if � � 0,0 otherwise.Note that we an also look for funtions of the form f = h+ b (h 2 HK) with a so{alled biasterm b 2 R. We omit the bias term b here, beause its expliit onsideration does not lead toan improvement of our numerial results.The unonstrained optimization problem (7) is equivalent to the following onstraint opti-mization problem: �nd f 2 HK and ui (i = 1; : : : ;M) to minimize� MXi=1 ui!+ 12 jjf jj2HK ; (8)subjet to yif(xi) � 1� ui (i = 1; : : : ;M);ui � 0 (i = 1; : : : ;M):Every funtion f 2 HK orresponds uniquely to a sequene w 2 FK . Thus, by (5) and (6),the optimization problem (8) an be rewritten as follows: �nd w 2 FK and ui (i = 1; : : : ;M)to minimize � MXi=1 ui!+ 12 jjwjj2FK ; (9)subjet to yihw;�(xi)iFK � 1� ui (i = 1; : : : ;M); (10)ui � 0 (i = 1; : : : ;M):In general the feature spae FK � `2 is in�nitely dimensional. For a better illustration of(9) we assume for a moment that FK � Rn . Then the funtion ~fw(v) := hw;viFK de�nesa hyperplane Hw := fv 2 FK : ~fw(v) = 0g in Rn through the origin and an arbitrarypoint vi 2 FK has the distane jhw;viiFK j=jjwjjFK from Hw. Note that ~fw(�(x)) = fw(x).Thus, the onstraints yihw;�(xi)iFK=jjwjjFK � 1=jjwjjFK � ui=jjwjjFK (i = 1; : : : ;M) in(10) require that every �(xi) must at least have the distane 1=jjwjjFK � ui=jjwjjFK fromHw.If there exists w 2 FK so that (10) an be ful�lled with ui = 0 (i = 1; : : : ;M), then we saythat our training set is linearly separable in FK . Of ourse, for Gaussian kernels or kernelsarising from Wendland's ompatly supported radial basis funtion every �nite training set4



is linearly separable in FK , see, e.g., [2℄ and [38℄. Then the optimization problem (9) an befurther simpli�ed to: �nd w 2 FK to minimize12 jjwjj2FK (11)subjet to yihw;�(xi)iFK � 1 (i = 1; : : : ;M):Given HK and A, the optimization problem above has a unique solution fw�. In our hyper-plane ontext Hw� is exatly the hyperplane whih has maximal distane  from the trainingdata, where  := 1jjw�jjFK = 1jjfw� jjHK = maxw2FK mini=1;:::;M � jhw;�(xi)iFK jjjwjjFK � : (12)The value  is alled the margin of fw� with respet to the training set A. In this ontext, thesolutions of the optimizations problems (9) and (11) are alled soft margin and hard marginSVM lassi�ers, respetively. See Figure 1 for an illustration of the hard margin ase forn = 2. In Setion 4 and in our examples in Setion 6 we will restrit our attention to hardmargin SVMs. Note that this restrition is equivalent to the hoie � =1 in (8) or (9)

Figure 1: The separation of two lasses by an optimal hyperplane Hw� with margin .Remark 1. There exists an important relation between the margin of the SVM lassi�erand its generalization error, i.e., the probability that sgn(fw�(x)) 6= y for a randomly hosenexample (x; y) 2 X � f�1; 1g, whih motivates the SVM approah and our further investiga-tions. By [6, Theorem 4.18℄, an upper bound of the generalization error of the hard marginSVM lassi�er dereases if the margin  inreases. Roughly speaking: the larger the margin the better generalization of the SVM an be expeted.5



Note that there exist also estimates for the generalization error of soft margin SVM lassi�erswhih involve the margin of the unknown target funtion, see, e.g., [6, Theorem 4.21℄ and [38℄.Next we onsider the solution of (11), where we follow mainly the lines of [51℄. Here thenotation 'support vetor' omes into the play.By the Representer Theorem ([20, 51℄), the minimizer of (9) has the formf(x) = MXj=1 jK(x;xj): (13)Setting f := (f(x1); : : : ; f(xM ))T , K := (K(xi;xj))Mi;j=1 and  := (1; : : : ; M )T we obtainthat f = K:Note that K is positive de�nite. Further, let Y := diag(y1; : : : ; yM ) and u := (u1; : : : ; uM )T .By 0 and e we denote the vetors withM entries 0 and 1, respetively. Then the optimizationproblem (9) an be rewritten as minu; �eTu+ 12TK (14)subjet to u � e�YK;u � 0:The dual problem with Lagrange multipliers � = (�1; : : : ; �M )T and � = (�1; : : : �M )T readsmax;u;�;� L(;u;�;�);where L(;u;�;�) := �eTu+ 12TK� �Tu+�T e��TYK��Tusubjet to �L� = 0; �L�u = 0; � � 0; � � 0:Now 0 = �L� = K�KY� yields  = Y�: (15)Further we have by �L�u = 0 that � = �e��. Thus, our optimization problem beomesmax� ��12�TYKY�+ eT�� (16)subjet to 0 � � � �e:This quadrati programming (QP) problem is usually solved in the SVM literature. For amoderate number of assoiations some standard QP routines an be used and for a largenumber of assoiations, e.g., jAj > 4000, spei�ally designed large sale algorithms shouldbe applied, e.g., SVMlight [17℄. 6



The support vetors (SVs) are those training patterns xi for whih �i does not vanish. Let Idenote the index set of the support vetors I := fi 2 f1; : : : ;Mg : �i 6= 0g then by (13) and(15), the funtion f has the sparse representationf(x) =Xi2I iK(xi;x) =Xi2I yi�iK(xi;x)whih depends only on the SVs. With respet to the margin we obtain by (12) and (3) that = (jjf jjHK )�1 = (TK)�1=2 =  Xi2I yi�if(xi)!�1=2 :Due to the Kuhn{Tuker onditions [11℄ the solution f of the QP problem (14) has to ful�ll�i(1� yif(xi)� ui) = 0 (i = 1 : : : ;M):In ase of hard margin lassi�ation with ui = 0 this implies that yif(xi) = 1 (i 2 I) so thatwe obtain the following simple expression for the margin =  Xi2I �i!� 12 : (17)Remark 2. By [6, Theorem 6.8℄, the number of SVs an also be used to give an upper boundof the generalization error of the hard margin SVM. The fewer the number of support vetorsthe lower is the upper bound of the generalization error.3 Wavelet Deompositions by Parameterized Paraunitary Fil-ter BanksIn this setion we give a short introdution to paraunitary �lter banks and orresponding soalled disrete{time wavelets. The �rst part mainly builds up on [40℄. Here we prefer to usedisrete{time wavelets in `2 instead of wavelets in L2(R) sine this approah is straightforwardfor digital signal proessing. A broader introdution to the topi an be found in [50, 8℄.Let H0(z) := Pk2Zh0[k℄z�k be the z{transform of the analysis lowpass �lter and H1(z) :=Pk2Zh1[k℄z�k the z{transform of the analysis highpass �lter of a two{hannel �lter bankwith real{valued �lter oeÆients. Throughout this paper, we use a apital letter to denotea funtion in the z{transform domain and the orresponding small letter to denote its time{domain version. A �lter bank with analysis �lters H0 and H1 is alled paraunitary (sometimesalso referred to as orthogonal) i�H0(z�1)H0(z) +H1(z�1)H1(z) = 2 ; (18)H0(z�1)H0(�z) +H1(z�1)H1(�z) = 0 : (19)The orresponding synthesis �lters are given byG0(z) = H0(z�1) ; G1(z) = H1(z�1):The polyphase matrix of a paraunitary �lter bankHpol(z) := � H00(z) H01(z)H10(z) H11(z) �7



with entries from the polyphase deompositionHi(z) = Hi0(z2) + z�1Hi1(z2) (i = 0; 1)satis�es the relation HTpol(z�1)Hpol(z) = I2; (20)where I2 denotes the 2� 2 identity matrix.We are interested in �nite impulse response (FIR) �lters of order 2L + 1 with real{valuedoeÆients Hi(z) := 2L+1Xk=0 hi[k℄z�k (hi[k℄ 2 R): (21)For these �lters, aording to [47℄, [40, Theorem 4.7℄, the orresponding polyphase matrixHpol(z) an be deomposed intoHpol(z) = (L�1Yl=0 � os#l sin#l� sin#l os#l �� 1 00 z�1 � ) � os#L sin#L� sin#L os#L � ; (22)where #L 2 [0; 2�) and #l 2 [0; �) (l = 0; : : : ; L � 1). Further we assume that the highpass�lter has at least one vanishing moment, i.e., H1(1) = 0. By (18) and (19) this implies thatthe lowpass �lter satis�es H0(�1) = 0. Using these properties and (20) it is easy to hekthat Hpol(1) = 1p2 � 1 1�1 1 � :Sine we have by (22) thatHpol(1) = 0BB� os( LPl=0#l) sin( LPl=0#l)� sin( LPl=0#l) os( LPl=0#l) 1CCA ;we obtain LXl=0 #l � �4 (mod 2�):Let #L be the residue of �4 �PL�1l=0 #l modulo 2� in [0; 2�). Then the spaePL := f# = (#0; : : : ; #L�1) : #l 2 [0; �)gan serve to parameterize all two{hannel paraunitary �lter banks (21) with at least onevanishing moment of the highpass �lter. To emphasize this parameterization we will usethe supersript # later. A parameterization with more than one vanishing moment of thehighpass �lter an be realized by the method of Zou et al. [56℄. Filter banks having therepresentation in (22) an eÆiently be implemented by the lattie struture [48℄. A speialand even more eÆient implementation is alled the two multiplier lattie [47℄. Note that theparameterization an also be implemented by lifting steps [9℄ whih are frequently used fordesigning biorthogonal �lter banks. However, we rely on the implementation based on thelattie struture due its availability in already existing very eÆient arhitetures, e.g., [19℄,8



whih we will espeially need when dealing with algorithms for low{power devies.For a �xed # 2 PL let G0 = G#0 and G1 = G#1 be the synthesis �lters of a two{hannelparaunitary �lter bank implemented by the lattie struture. When asading these �lters inan otave band tree, the synthesis �lters of an equivalent parallel struture on level j = 1; : : : ; Jare given by Qj;0(z) = j�1Ym=0G0(z2m); (23)Qj;1(z) = G1(z2j�1) j�2Ym=0G0(z2m): (24)Aording to [50℄ we introdue the disrete{time saling sequenes and wavelets on sale j bythe impulse responses qj;0 = (qj;0[k℄)k2Z and qj;1 = (qj;1[k℄)k2Z of the �lters (23) and (24),respetively. Let qmj;i := �qj;i[k � 2jm℄�k2Z (i = 0; 1) denote the translation of qj;i by 2jmsamples. The paraunitarity of the �lter bank implies the following orthogonality relations ofthe saling sequenes and wavelets:hq0j;0;qmj;0i`2 = Æ[m℄;hqmi;1;qnj;1i`2 = Æ[i � j℄Æ[m � n℄;hq0j;0;qmj;1i`2 = 0; (25)(m;n 2 Z; i; j = 1; : : : ; J), where Æ[m℄ = 1 if m = 0 and Æ[m℄ = 0 otherwise. We introduethe spaes 
0;0 := `2 and
j;0 = spanfqmj;0 : m 2 Zg ; 
j;1 = spanfqmj;1 : m 2 Zg:Note that fqmj;i : m 2 Zg forms an orthonormal basis of 
j;i (i = 0; 1). Further we have by(23) that 
J;0 � � � � � 
2;0 � 
1;0 � 
0;0 and by (24) and (25) that
j�1;0 = 
j;0 � 
j;1;where � denotes the orthogonal sum. Thus, the spae `2 an be deomposed as`2 = 
J;0 �LJj=1
j;1 and the set�qmJ;0;qmj;1 : j = 1; : : : ; J ;m 2 Z	 (26)onstitutes an orthonormal basis for `2. With respet to this basis an arbitrary sequenex 2 `2 an be deomposed asx = Xm2ZdJ;0[m℄qmJ;0 + JXj=1 Xm2Zdj;1[m℄qmj;1 (27)with the wavelet oeÆients dj;i[m℄ = hx;qmj;ii`2 (i = 0; 1):We set dj := (dj;1[m℄)m2Z (j = 1; : : : ; J):9



We will need norms of these wavelet oeÆient vetors later.Some appliations, e.g., our lassi�ation task in Setion 6 require a shift{invariant multileveldeomposition (27). This an be ahieved by replaing the orthonormal wavelet basis (26) bythe tight wavelet frame �2�J=2~qmJ;0; 2�j=2~qmj;1 : j = 1; : : : ; J ;m 2 Z	;where ~qmj;i := (qj;i[k �m℄)k2Z (i = 0; 1). Then x 2 `2 an be deomposed asx = Xm2Z ~dJ;0[m℄ ~qmJ;0 + JXj=1 Xm2Z ~dj;1[m℄~qmj;1 (28)with the oeÆients ~dj;i[m℄ = 12j hx; ~qmj;ii`2 (i = 0; 1):We set ~dj := � ~dj;1[m℄�m2Z (j = 1; : : : ; J):Overomplete expansions an be implemented by oversampled paraunitary �lter banks [7, 1℄The highly redundant expansion (28) orresponds to a nonsubsampled �lter bank, i.e., we haveno multirate operations at all. In this speial ase, the subbands are obtained by pure lineartime{invariant (LTI) �lters given by (23) and (24), respetively. Note that an implementationas asaded two{hannel building bloks requires to insert 2j � 1 zeros between the nonzerooeÆients of the �lters at the levels j = 2; : : : ; J . This proedure is also known as 'algorithma trous' [36℄ and is equivalent to the so{alled 'yli spinning' [5℄. The omputation of theframe oeÆients vetors ~dj requires O(N logN) arithmeti operations instead of O(N) forthe omputation of dj (j = 1; : : : ; log2N). There exist nearly shift{invariant approaheswith lower arithmeti omplexity, e.g. [21℄. The inorporation of these algorithms into ouradaptation sheme may be a future point of researh.In the following we emphasize the dependene of the wavelet oeÆients on the hosen angles# 2 PL by the supersript #.4 Adaptation to WaveformsReent studies [52, 42, 41℄ have shown that the so{alled multilevel onentrations jj � jjp̀p(1 � p < 1) of oeÆient vetors of wavelet{like deompositions in distint levels providereliable feature vetors for waveform lassi�ation tasks. This mainly steams from the fatthat suh feature vetors help to takle with loal instabilities in time. They are thereforemore robust than the onsideration of spei� Heisenberg ells in the time{sale domain.The multilevel onentration is a robust but global feature and an be insensitive to slightmorphologial dissimilarities of waveforms belonging to distint lasses when non{adapteddeompositions are utilized [42, 41℄. Here we present an adaptation of wavelet deompositionsthat is tailored to hard margin SVM lassi�ers. We restrit our attention to orthonormalwavelet deompositions. The generalization to frame deompositions is straightforward.Let a set of M waveforms xi 2 
0;0 � RN be given whih belong to two distint lasses withorresponding labels yi 2 f�1; 1g (i = 1; : : : ;M). By M+ and M� we denote the sets ofindies i 2 f1; : : : ;Mg with yi = 1 and yi = �1, respetively. In general, the length N of our10



waveforms will be large, e.g., N = 512. We intend to redue this length while emphasizingthe disriminating features of the signals to support lassi�ation tasks.For this we onsider wavelet deompositions of our signals as in the previous setion. Let Jbe maximal depth of the wavelet deomposition. Further let fj1; : : : ; jdg � f1; : : : ; Jg be theindies of those wavelet oeÆient vetors we are interested in. The hoie of the relevantlevels an be determined by some validation tehnique or by prior information about thewaveforms, e.g., a known pre{�ltering.For a �xed waveform x 2 
0;0 with wavelet oeÆient vetors d#j we de�ne the funtion�x : PL ! Rd by�x(#) = (�1(#); �2(#); : : : ; �d(#)) := �jjd#j1 jjp̀p ; jjd#j2 jjp̀p ; : : : ; jjd#jd jjp̀p� (29)and set �i(#) := �xi(#) (i = 1; : : : ;M).Note that for nonsubsampled �lter banks, jj~d#jk jj`p and thus ~�x(#) do not hange if the signalis shifted. In this ase our approah beomes ompletely translation{invariant.We want to �nd # so thatA(#) := n(�i(#); yi) 2 X � Rd � f�1g : i = 1; : : : ;Mois a `good` training set for a SVM. By Remark 1, we an expet a better generalization abilityof the hard margin SVM if the margin beomes large. Consequently, we try to �nd #̂ so that#̂ = arg max#2PL� mini2M+;j2M� �����(�i(#))� �(�j(#))����FK� : (30)By de�nition of the inner produt in FK and (2) it follows that�����(�i(#))� �(�j(#))����2FK = jj�(�i(#))jj2FK + �����(�j(#))����2FK � 2 
�(�i(#));�(�j(#))�FK= 2k(0) � 2k ������i(#)� �j(#)����2� :We suppose that k(t) is monotonely dereasing in jtj. Then (30) an be rewritten as#̂ = arg max#2PL� mini2M+;j2M� �����i(#)� �j(#)����2� : (31)Note that the geometry in feature spaes indued by kernels was investigated in [3, 33℄. Formost waveform reognition tasks the sets M+ and M� an be redued by averaging thepatterns of the respetive lasses (or subsets thereof) or by expert seletion of representativesubsets. Here we use the �rst approah and introdue the notation�� := 1jM�j Xi2M� �i:Instead of (31) we searh for #̂ with#̂ = arg max#2PL ������+(#)� ��(#)����2	 : (32)Solving this optimization problem analytially seems to be infeasible. The optimization fun-tional involves the multilevel onentration and seems not to allow for sophistiated optimiza-tion strategies. In partiular, hill limbing methods in PL are doomed to fail due to loalminima of the optimization funtional. We introdue a disrete gridPLT := f# = (#0; : : : ; #L�1) : #l 2 Dg ; D := n��T : � = 0; : : : ; T � 1o11



in PL and solve (32) by evaluating the optimization funtional at eah grid point.There exist possibilities to redue the omplexity of these omputations. For example we anompress the parameter spae PLT as follows: Given a positive number � < 1, we an furtherredue the parameter spae by seleting a maximal subset PL� of PLT so that1d dXi=1 ��hq0ji;1(#);q0ji;1(#�)i`2 �� � � (#;#� 2 PL� ; # 6= #�): (33)In other words, the distint wavelets in (33) satisfy the strengthened Cauhy{Shwarz inequal-ity, that is, the smaller � the more orthogonal the wavelets beome. In a way, � steers theredundany of our parameter spae. If we restrit our interest to smooth wavelets, the on-sideration of only one level in (33) is suÆient due to their self{similarity aross levels. Suh aompression of the parameter spae an be signi�ant even for a large �. For instane, whenworking with T = 32; L = 2 and � = 0:98 we have ahieved a ompression of jPL� j=jPLT j � 0:65in [42℄.Although the desribed strategy only holds for hard margin SVMs and not in the soft marginase, the use of multilevel onentrations (29) as feature vetors may sometimes be advanta-geous even without an adaptation sine we an inorporate prior knowledge. For instane, forthe frame deomposition (28) the feature vetor (29) beomes ompletely invariant to shiftsof an analyzed waveform. Suh shift{invariant feature vetors are often desirable, e.g., seeSetion ??.5 Radial Basis Funtions with Compat SupportIn the following setions we will apply two kinds of RBFs k(jjxjj2), namely Gaussian RBFsand Wendland's ompatly supported RBFs. The Gaussian RBF K withk(t) = e� t22s2 ;is a positive de�nite funtion in C1(Rd ) for all dimensions d and all s 2 R+ . Here Cn(Rd )denotes the spae of n times ontinuously di�erentiable funtions on Rd . This kernel is alsowell aepted for onstruting SVMs and provides exellent results for real world appliations,see, e.g., [49, 35℄.Reently positive de�nite RBFs with ompat support have been onstruted by various au-thors to solve interpolation problems with sattered data fxigMi=1, see [31℄ and the referenestherein. In the ontext of sattered data interpolation, in partiular in onnetion with hierar-hial interpolation methods [12℄, RBFs with ompat support have several advantages suh asa sparse interpolation matrix (K(xi;xj))Mi;j=1 and a sparse representation of the interpolatingfuntion P ajK(x;xj) at x 2 Rd .RBFs with ompat support have not been used for onstruting SVMs up to now. Onereason for this maybe that any positive de�nite RBF with ompat support has to be designedin dependene on the spae dimension d, i.e., there does not exist an universal RBF like theGaussian whih is ompatly supported, positive de�nite and smooth for all spae dimensions.RBFs with ompat support are only suited for relatively small spae dimensions. Using ourmultilevel onentration approah the training data are at most of length d = log2N . In ourappliations we have d = 8. For spaes of suh a low dimension the following RBFs proposedby Wendland [54℄ an easily be alulated and evaluated.12



For � 2 R and m 2 N0 we de�ne (�)m and [�℄m by(�)m := �(�+m)�(�) ; [�℄m := (� �m+ 1)m ;where � denotes the Gamma funtion. Letwm(x) := (1� x)m+ :Then Wendland's RBFs have the representationkm;n(x) = nXi=0 �(m)i;n xiwm+2n�i(x) (n 2 N) ;where the oeÆients satisfy the reursion�(m)0;0 = 1;�(m)t;n+1 = nXi=t�1 �(m)i;n [i+ 1℄i�t+1(m+ 2n� i+ 1)i�t+2 (0 � t � n+ 1);if the term for i = �1 for t = 0 is ignored.Let bx := maxfi 2 Z : i � xg. For m = bd=2 + n + 1, Wendland has proved that km;nde�nes a positive de�nite funtion in C2n(Rd ). Further, km;n is of the formkm;n(x) = � p(x) 0 � x � 1;0 x > 1;with a polynomial p of degree bd=2 + 3n + 1. There does not exist a positive de�nite RBFin C2n(Rd ) of the above form with a polynomial p of lower degree.In the remainder of this paper, we will deal (up to multipliations with onstants) with theRBFs k6;1(x) = (7x+ 1) (1� x)7+ 2 C2(R8 )k7;2(x) = 1=3 �80x2 + 27x+ 3� (1� x)9+ 2 C4(R8):and their dilations km;n(�=s) (s 2 R+).6 Appliations in Medial DiagnostisIn this setion, we present two appliations of our hybrid wavelet support vetor lassi�ersin medial diagnostis, namely the lassi�ation of endoardial eletrograms and the shift{invariant detetion of otoaousti emissions whih also provide ontributions to the area ofbiomedial researh. Our main intention is a omparison of the standard hard margin SVMapplied to the time{domain waveforms to our hybrid approah using �lter bank adaptation.Engineering the best possible lassi�ation sheme for the individual appliation is not ourobjetive here and further improvements may be ahievable by an additional optimal hoieof the deomposition levels or by using � <1, i.e., by a soft margin SVM. However, althoughwe do not use suh heuristis, our approah easily outperforms the state of the art methodin our �rst appliation. In our seond appliation, we present the �rst truly shift{invariantdetetion of otoaousti emissions and ahieve error rates whih support an utilization inlinial environments. 13



6.1 Classi�ation of Endoardial EletrogramsSudden ardia death is a major publi health onern worldwide. Aording to Ameri-an estimates, sudden ardia death laims more than 350.000 lives in the USA every year,80% up to 90% being due to ventriular tahyardia (VT) [13, 22℄, i.e., a fast disorder ofthe heart beat whih stems from the major heart hamber, the ventrile. The implantableardioverter{de�brillator (ICD) is an automated antitahyardia devie and aepted to bethe most e�etive therapy for preventing sudden ardia death due to VTs [43℄. The ICD is apermanently implanted devie whih ontinually monitors the eletrial ativity of the heartby an endoardial eletrogram (EE), i.e., a bioeletri signal from the inner heart is analyzed.Usually, the information of the EE utilized by an ICD is the heart rate. However, the rateis of limited reliability in some linial situation, e.g., exitement or physial exertion wherethe (physiologial) sinus rhythm (SR) may have an abnormal fast rate whih an exeed aprede�ned threshold suh that a malignant rhythm is deteted. Although additional detetionenhanements are used in third generation ICD{systems, inappropriate ICD therapy our inup to 13% of the patients who reeived suh a devie [53℄.

Figure 2: Conseutive beats of SR and VT within a time{frame of 256ms.Here morphologial dissimilarities in the EE of individual beats, due to di�erent ativationpatterns, an be used for disriminating the physiologial from the pathologial rhythm sinethey are rate{independent. Suh morphologial methods are patient dependent and there isan ongoing interest in an eÆient evaluation of morphologial riteria [37℄. Template mathingmethods are well known approahes. The orrelation waveform analysis (CWA) with best �talignment [44℄ o�ers an exellent performane and is widely aepted [39℄. We will use thismethod as referene tool for performane omparisons to our algorithm.Pattern reognition shemes for EEs have to takle the following problems: an exellentgeneralization performane although the training data is very sparse and a highly eÆientimplementation for lassifying the waveforms in view of the limited energy resoures of animplantable devie. Furthermore, in view of the urrent interest in EE ompression algorithmsfor ICDs [4℄, the use of perfet reonstrution �lter banks is also desirable for EE analysissine oding onditions an be added without diÆulty.The signals analyzed in this setion were obtained during eletrophysiologial examinations atthe University Hospital of Homburg, Germany. Bipolar EEs were obtained from the apex of14



the right ventrile in 10 patients with induible monomorphi ventriular tahyardia (VT).The EEs were ampli�ed, �ltered (10{500Hz), and digitized (2kHz, 12 bit resolution). Datasegments of 10s duration were reorded during SR and VT. Conseutive beats were seletedas morphologial patterns of SR (240 beats) and VT (240 beats) within a time{frame of256ms and normalized. Consequently, we have to deal with waveforms x 2 
0;0 � RN , whereN = 512 and with a deomposition depth of the wavelet tree of J = 8. The set of beats wasontrolled by an expert to exlude etopi beats and artifats. For our numerial experimentswe use p = 1 in (29). The disrete parameter spae was onstruted with T = 30 and L = 2.This setting was also used in [41℄, where one of the authors has suessfully lassi�ed antegradeand retrograde atrial ativations patters by neural networks. We label examples of SR by 1and of VT by �1. Figure 2 shows �ve original beats of SR and VT within their time{frame.

Figure 3: Distribution of the di�erene �����+(#)� ��(#)����2 (a) and of the orresponding mar-gin (#) of the SVM (b) in dependene on #.Figure 3(a) presents the distribution of the di�erenes �����+(#)� ��(#)����2 in PLT for an indi-vidual patient (jM+j = jM�j = 1). In Figure 3(b) we show the orresponding distributionof the margin (#) in PLT for a SVM with Wendland's funtion k7;2(�=5). As notieable, themargin is diretly related to �����+(#)� ��(#)����2. The angles #̂ provide a multilevel onen-tration that results in the largest margin of the SVM lassi�er.In order to illustrate our adaptation strategy, we onsider for a moment only the multilevelonentrations on the levels j = 4 and j = 5, i.e., �x(#) = (jjd#4 jj`1 ; jjd#5 jj`1).

Figure 4: The deision urve f(�) = 0 for SVM applied to the non{adapted multilevel onen-trations with #D (a) and to the adapted multilevel onentrations in R2 . The darker pointsdenote SR. 15



This allows us to visualize the 'deision urve' f(�) = 0 in R2 . We have used a number ofM = 36 training examples for this experiment with jM+j = jM�j = 18. For the SVM wehave employed a Gaussian kernel with saling fator s = 1. Figure 4(a) shows the deisionurve and the 36 training patterns when utilizing the lattie angles #D = (1:4653; 0:49984)whih orrespond to the Daubehies wavelet D3 with three vanishing moments. We use thewell known Daubehies wavelet as representative for a non{adapted wavelet. In Figure 4(b)we have taken the same settings but applied the optimal angles #̂. Clearly, we expet thatthe SVM lassi�er performs more reliable for the adapted approah. Here the examples of thedistint lasses lay far apart.In the following we provide some assessments of the lassi�ation performane of our methodusing the whole data set of all ten patients. Here two deomposition levels as in the previousexample are not suÆient. To rule out that �ltering e�ets may lead to a loss of informationwe onsider the full wavelet deomposition tree, i.e., d = 8. Of ourse, other data dependentstrategies to hoose j1; : : : ; jd in (29) are possible. But, instead of engineering the best possiblelassi�ation sheme for SR and VT, we are mainly interested in a omparison of our methodto SVMs applied to the original time{domain waveforms and to SVMs applied to non{adaptedmultilevel onentrations.

Figure 5: The mean number of SVs and the error rate of a SVM applied to the originalwaveforms with Gaussian Kernel (top) and to the non{adapted multilevel onentrations(D3) with Wendland's funtion k7;2 (bottom).We separate the total data set of 480 beats in a training set of 160 beats (SR: 80, VT: 80)and a test set of 320 beats (SR: 160, VT: 160). Thus, for eah patient we have a training setof jM�j = jM�j = 8 waveforms. The remaining set of 32 beats forms an independent test setfor the individual patient.In the Figures 5 and 6, we have plotted the mean number of SVs (of the ten patients) andthe error rate in dependene on the saling fator s for di�erent RBFs. The mean numberof SVs is given in perent and 100% means that all of the 16 training patters are SVs forall patients. The error rate [%℄ is determined for all patients in ommon, that is, the ratioof false lassi�ations on the whole test set to the total number of 320 examples within this16



Figure 6: The mean number of SVs and the error rate of a SVM applied to the adapted multi-level onentrations with Gaussian Kernel (top) and to the adapted multilevel onentrationswith Wendland's funtion k7;2(bottom):set. A omparison of Figure 5 with Figure 6 with respet to the error rate shows that ouradapted algorithm with both the Gaussian and Wendland's funtion is superior to the originalSVM and to the SVM on non{adapted multilevel onentrations. Note that by Remark 2 thenumber of support vetors an be onsidered as indiator for the generalization of the SVM.The number of support vetors of our new algorithm is approximately half as many as thatof the original SVM. However, the ase of SVMs on non{adapted multilevel onentrationsseems to be not in a good agreement with Remark 2. Here we have a smaller number of SVsthan for SVMs on the original waveforms but a worse performane on the test set.In Figure 7(a1) and (b1) we show the evaluations of f for SVMs with Gaussian kernel andsaling fator s = 0:8 applied to the original waveforms and for SVMs with k7;2 and salingfator s = 5 applied to the adapted multilevel onentrations. The orresponding number ofSVs for the individual patients is given in Figure 7(a2) and (b2), respetively. We see thatSVMs on adapted multilevel onentrations perform better and more reliable than SVMs onthe time{domain waveforms. It is notieable that the number of SVs found is less for ourhybrid approah.For the purpose of a performane omparison we shortly introdue the CWA. Let x+ 2 
0;0serve as template of SR whih is obtained by averaging all the training waveforms of SR, i.e.,x+ = jM+j�1Pi2M+ xi. Let further x 2 
0;0 be an arbitrary EE waveform to be lassi�ed.Then the CWA between the template and the waveform is based on the orrelation oeÆient� 2 [�1; 1℄ de�ned by � := PNi=1(x+i � x+)(xi � x)qPNi=1(x+i � x+)2qPNi=1(xi � x)2 ; (34)where x+ := N�1PNi=1 x+i and x := N�1PNi=1 xi For � = 1 we have a perfet math of thewaveform x and the template. The deision of the CWA, i.e., the lassi�ation of SR and VT,17



Figure 7: The evaluation of f for 10 patients by an SVM applied to the time{domain wave-forms (a1) and to the adapted multilevel onentrations (b1). The orresponding number ofSVs is given in (a2) and (b2), respetively.is based on an appropriate threshold � with � < 1. Now � > � denotes SR and � � � denotesVT. The performane of the CWA heavily depends on the alignment of the time{frame inwhih an individual beat is seleted. Therefore, we an further improve the results of the CWAby the best �t alignment strategy. Here the template x+ is shifted over a spei� time{frameentered around the detetion point of the beat, i.e., the point where an individual beat isseparated from the EE, and (34) is alulated for eah point n 2 Z of this time{frame so that�[n℄ beomes a time dependent sequene. The deision is then based on � = jj�jj`1 usingthe same threshold riterion as before for �. This proedure is omputationally demandingin general and not appropriate for eÆient implementations. The support of the time{framedepends on the preproessing of the data. In our experiments we have used 20ms. It is worthto emphasize that the best �t strategy has only a minor inuene for our signals as the beatsare already well aligned. However, in other settings it an be signi�ant.

Figure 8: The results for the CWA with best �t alignment (CWABF) for 10 patients.18



When averaging the 8 training waveforms of SR of the individual patient as template for theCWA, we obtain the results in the Figure 8. There is a signi�ant overlap for a subset ofpatients and a threshold � an heardly be de�ned for these patients. Comparing these resultsto those in Figure 7 we see that the CWA performs muh worse than our hybrid sheme andalso worse than SVMs applied to the time{domain waveforms.6.2 Detetion of Otoaousti EmissionsAs already mentioned, the beats analyzed in the previous setion are well aligned withintheir time{frame. Thus, the analysis does not strongly su�er from shifts in time so thatshift{invariane is of minor importane. Here omputationally very eÆient but time{variantorthonormal wavelet deompositions perform well. However, as in our next lassi�ationproblem, there is often a need for shift{invariane in waveform reognition. In the followingwe use the shift{invariant frame deompositions introdued at the end of Setion 3 instead oforthogonal wavelet deompositions.

Figure 9: Two exemplary signals from the physiologial and pathologial group.Otoaousti emissions are sounds generated by the ohlea that an be reorded in the exter-nal ear anal, see [18, 27℄. In the following, we will deal with the transient evoked otoaoustiemission (TEOAE) that is, in short, a brief pressure wave that emanates from the ear inresponse to an aousti stimulus. These responses are typially of a low intensity or absent inindividuals with mild or greater hearing loss. Consequently, the analysis of TEOAEs seems tobe promising as noninvasive method for deteting hearing loss in patients. Suh an objetiveanalysis requires no patient interation and is espeially of interest in infants. The detetionof otoaousti emissions represents a hallenge for automated shemes. They are of a very lowintensity and hard to separate from the signal bakground in urrent measurement set{ups.Up to now, the lassi�ation of individuals with and without hearing losses is to a large extentbased on expert knowledge, see [15℄ for a desription of the parameters used by experts.The analysis and haraterization of TEOAEs is an ative and ongoing �eld of researh.For approahes in the time{frequeny domain, see, for instane, [45℄ and the referenes therein.19



Figure 10: Distribution of the di�erene �����+(#)� ��(#)����2 (a) and of the orrespondingmargin (#) of the SVM (b) in dependene on #.The signals analyzed in this setion were obtained at the University Hospital of Homburg,Germany. The signals were reorded in a sound{proof abin using a probe inserted into theouter ear anal. The probe ontains a transmitter whih delivers the aousti stimulus anda miniaturized mirophone. The signals were ampli�ed, �ltered (300Hz { 10kHz), digitized(25kHz, 12 bit resolution) and averaged to enhane the signal noise ratio by the standardtehnique of the ILO88 Systems (Otodynamis, Ltd.). With this preproessing, signals ofapproximately 20ms (again represented by 512 samples) duration were normalized (by theirenergy) and stored for subsequent analysis. The individuals were binary lassi�ed in a patho-logial and a physiologial group. The pathologial group is labeled with �1 and onsists ofindividuals with a hearing loss at higher frequenies or with a broad band hearing loss. Allindividuals in this group have a hearing loss of more than 20dB above 3kHz. The physiologialgroup is labeled with 1 and onsists of individuals with a hearing loss of less than 20dB inrange from 0kHz to 10kHz. Figure 9 shows an exemplary signal of the physiologial and thepathologial group, respetively.We have a total of 68 individuals (and signals) in the physiologial group. The pathologialgroup onsists of 55 individuals. We use twenty signals of eah group as training set, i.e.,jM+j = jM�j = 20. The remaining signals form an independent test set for the respetivegroup.If present, the ourrene of TEOAEs in our signals varies over time for the individual subjets.Consequently, there is a need for a reognition sheme whih is not based on loality. In otherwords, it must inorporate the fat the information an appear anywhere in the signal andmust thus be shift{invariant.The morphology of physiologial and pathologial waveforms may overlap, in partiular forphysiologial group and individuals whih only su�er from a hearing loss at higher frequenies.Therefore, the appropriate hoie of the regularization parameter � in (16) may improve theresults. However, we use again � =1 for implementing a hard margin SVM sine it is easierto interpret and we are mainly interested in omparing SVM on the original time{domainwaveform and on the shift{invariant adapted multilevel onentrations.Figure 10 illustrates the di�erene �����+(#)� ��(#)����2 for jM+j = jM�j = 1 as example. Theorresponding margin (#) in PLT is also shown, where we have used the Wendland funtionk7;2 for the SVM. As in the previous setion, only a few wavelets of the parameter spae resultin a large margin of the SVM lassi�er.Figure 11 ontains the error rate and the number of SVs in dependene on the saling20



Figure 11: The mean number of SVs and the error rate of a SVM applied to the original wave-forms with Gaussian Kernel (top) and to the adapted orthonormal multilevel onentrationsalso with a Gaussian kernel (bottom).parameter s for a SVM applied to the original waveform and for our sheme, but based onorthonormal (not shift{invariant) deompositions. It is obvious that no reliable hypothesisabout the underlying mapping an be deduted form the training set in the �rst ase so thatthe original SVM lassi�er allows no satisfatory disrimination between the physiologialand the pathologial group. In view of the fat that the SVM is a state of the art lassi�er,this indiates how diÆult it is to dedue a reliable hypothesis. Our sheme with orthonormaldeompositions performs better. However, when using the shift{invariant tight frames in oursheme, the results in Figure 12 are obtained for k7;2 and a Gaussian kernel. Here our hybridSVM lassi�er performs signi�antly better than SVMs on the original waveforms and onthe orthonormal multilevel onentrations. The number of SVs is muh smaller than thatof the original SVM. Clearly, with further heuristis, e.g., by disarding information or byregularization, better results seem to be ahievable.In our appliations RBFs with ompat support have performed similar to Gaussian RBFs.The best performane of RBFs with ompat support was ahieved for large values of thesaling parameter s so that K(xi;xj) > 0 for all i; j 2 f1; : : : ;Mg. Thus, we have ahievedno further advantages from the ompat support of these funtions.7 ConlusionsWe have presented a new method for improving the performane of hard margin SV lassi�ers.For this, we have merged ideas whih have reently been developed in signal proessing andmahine learning to obtain a hybrid sheme based on wavelet deompositions and SVMs forwaveform lassi�ation.We have illustrated the performane of our sheme against the bakground of urrent onernsin medial diagnostis. Our hybrid sheme lassi�ed all EEs of SR and VT of the given test21



Figure 12: The mean number of SVs and the error rate of a SVM applied to to the adaptedshift{invariant multilevel onentrations with the Gaussian kernel (top) and to the adaptedshift{invariant multilevel onentrations with k7;2 (bottom).set orretly, a result that was neither ahievable by a SVM on the original waveforms nor bythe well aepted CWA with best �t alignment. Based on the very eÆient lattie strutureimplementation, our sheme meets also the low power requirements of ICDs.For the analysis of TEOAEs we have employed tight frames to obtain shift{invariane ofour sheme. Here we ahived a signi�ant improvement of the lassi�ation performanefor deteting the hearing loss in individuals ompared to hard margin SVMs on the originalwaveforms.We have used RBFs with ompat support and have shown that these funtions performsimilar to the well aepted Gaussian kernels. However, further researh is neessary toexploit the full power of the ompat support of these funtions.We onlude that the performane of hard margin SVMs an signi�antly be improved bysignal{adapted wavelet deompositions sine it allows the inlusion of prior knowledge suhas loal instabilities in time and shift{invariane. The diret relation of the distanes in theinput spae and the feature spae indued by the RBF allows an optimization of the signalrepresentation before the training of the hard margin SVM.For our appliations, the presented method is powerful and very promising. However,espeially in the ase of TEOAE analysis further investigations are needed on larger datasets. Here is still room for improvements, i.e., by the optimal hoie of the deompositionlevels, the straightforward inorporation of wavelet pakets and the optimal hoie of theregularization onstant �.Aknowledgements: This work was done in ollaboration with the University Hospital Hom-burg, Germany. In partiular, the authors like to thank Dipl.{Ing. D. Benyouef, OA Dr. W.Delb, and OA PD Dr. J. Jung for providing the medial data and for ritially reading themanusript. 22
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