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Abstract

The Support Vector Machine (SVM) represents a new and very promising technique for
machine learning tasks involving classification, regression or novelty detection. Improve-
ments of its generalization ability can be achieved by incorporating prior knowledge of the
task at hand.

We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions
and hard margin SVMs for waveform classification. The adaptation of the wavelet decom-
positions is tailored for hard margin SV classifiers with radial basis functions as kernels.
It allows the optimization of the representation of the data before training the SVM and
does not suffer from computationally expensive validation techniques.

We assess the performance of our algorithm against the background of current concerns in
medical diagnostics, namely the classification of endocardial electrograms and the detec-
tion of otoacoustic emissions. Here the performance of hard margin SVMs can significantly
be improved by our adapted preprocessing step.
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1 Introduction

The Support Vector Machine (SVM) is a novel type of learning machine and represents a
very promising tool for solving pattern recognition tasks. The SVM is well motivated from
statistical learning theory and minimizes an upper bound on the generalization error [49, 6].
However, improvements of its performance can still be achieved by using prior knowledge of
the pattern recognition task at hand. In [32] invariances in SVMs were incorporated by the
so—called ’virtual support vectors’, a SVM adjusted scheme of the known technique of learning
with ’virtual training examples’ [26]. Invariances and prior knowledge about the locality in
images were used in [34] for the construction of appropriate kernels for SVMs, see also [3].

Wavelet decompositions allow for a time-scale analysis of functions and have gained a lot
of interest in digital signal processing. Recently, overcomplete wavelet decompositions have
proven to be an efficient data representation for SVMs for object detection tasks [23, 24].
Independently from SVMs, a lot of feature extraction schemes which employ fast orthonormal
wavelet decompositions based on filter banks are known, see, e.g., [16, 25, 46]. Many wavelet
based feature extraction schemes deal with an adaptation of the wavelet decomposition tree,
e.g., the local discriminant basis algorithm of Saito and Coifman [29]. For a recent comparison
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paper we refer to [28]. In the cited wavelet based feature extraction schemes and the exper-
iments in [29, 28] standard wavelets from wavelet theory were employed. These wavelets are
originally designed to optimize some properties, e.g., smoothness conditions, which are not
needed in pattern recognition in general. In recent studies one of the authors has shown that
a filter bank adaptation based on the lattice structure, a well accepted adaptation scheme
for signal coding [10], can significantly improve the performance of a wavelet based feature
extraction for waveform classification tasks [42, 41].

Wavelet based feature extraction schemes aim in the first place at a reduction of the dimen-
sionality of the input space to tackle with the ’curse of dimensionality’, i.e., proliferation of
parameters, which results in immense resources and/or overfitting. SVMs do not depend
on dimensionality in general. Nevertheless, recent work has shown that SVMs can indeed
suffer in high dimensional spaces where many features of the input space are irrelevant and
dimensionality reduction due to feature selection leads to an enhanced SVM performance
[55, 14].

In this paper we couple the idea of SVM learning and adapted wavelet representations for
the extraction of low dimensional feature vectors for binary waveform classification. Our
adaptation strategy is based on a discriminant functional which is well motivated from the
paradigm of "large margin classifiers’ underlying the SVM approach and is specifically designed
for the so—called hard margin SVM. For investigating our approach on real world data, we
adopt current tasks from medical diagnostics. In particular, we deal with a rate independent
arrhythmia recognition in electrocardiology, where we incorporate local instabilities in time
in our learning task and with the detection of otoacoustic emissions in audiology, where we
need a shift—invariant classification scheme.

This paper is organized as follows. In the Sections 2 and 3 we provide the necessary material
concerning SVM classifications and wavelet decompositions by parameterized paraunitary
filter banks. Section 4 presents the adaptation of the parameterized filter banks to hard margin
SVMs with kernels arising from radial basis functions (RBFs). In Section 5 we introduce
RBFs with compact support which have not been used for the construction of SVMs up
to now. Section 6 deals with applications of our algorithm in medical diagnostics, namely
the classification of endocardial electrograms and the shift-invariant detection of otoacoustic
emissions. The conclusions of the paper are given in Section 7.

2 Support Vector Machine Classification

In this section we provide the tools concerning the support vector machine classification with
respect to the applications we have in mind. Our approach is based on the pioneering work
of Vapnik [49] and the new book of Christianini and Shawe-Taylor [6], where the reader can
find a detailed introduction in terms of statistical learning theory.

Let X be a compact subset of R? containing the data to be classified. We suppose that there
exists an underlying unknown function ¢, the so—called target function, which maps X to the
binary set {—1,1}. Given a training set

A={(x;,y;)) € X x {-1,1} :i=1,..., M} (1)
of M associations we are interested in in the construction of a real valued function f defined

on X such that sgn(f) is a 'good approximation’ of ¢. If f classifies the training data correctly,
then which sgn(f(x;)) =t(x;) =y; foralli =1,..., M. Here

(/)= {0920

—1 otherwise.



We will search for f in some reproducing kernel Hilbert spaces which we will introduce next.
By L?(X) we denote the Hilbert space of real valued square integrable functions on X with
inner product (f,g)z2 = [, f(z)g(x)dz. Let K : X x X — R be a positive definite
symmetric function in L?(X x X). Following [30], we call a function K € L*(X x X) positive
definite iff for any finite set of elements {xi,...,x,} C X, the matrix (K(xi,xj))zjzl is
positive definite. In this paper we are only interested in functions K arising from RBFs. In
other words, we assume that there exists a real valued function k& on R so that

K(XvY) :k(HX_YHQ)v (2)

where ||-||2 denotes the Euclidean norm on R?. In our applications we will use Gaussian kernels
and Wendland’s compactly supported RBFs [54]. The latter were not applied in connection
with classification tasks up to now.

For a given K, there exists a reproducing kernel Hilbert space

Hi :==span{K(x,:): x € X'}
of real valued functions on X with inner product determined by
(K (x,%), K(X, %)) = K(X, %) (3)
which has reproducing kernel K, i.e.,
(fC) K Nug = f(X) (f € Hi).

By Mercer’s Theorem, K can be expanded in a uniformly convergent series on X' x X
o0
K(x,y) =Y njej(x)e;(y), (4)
j=1

where 7; > 0 are the eigenvalues of the integral operator Tk : L?(X) — L%(X) with

Tk fly) = [yK(x,y)f(x)dx and where {g;}jen are the corresponding L*(X)-
orthonormalized eigenfunctions.

We introduce a so—called feature map ® : X — (2 by

()= (\/n_j‘Pj('))jeN .

Let £? denote the Hilbert space of real valued quadratic summable sequences a = (a;);en With
inner product (a,b);2 = >, aib;. By (4), we have that ®(x) (x € X) is an element in (2
with

1@ = D el (%) = K (x,%) = k(0).
j=1

We define the feature space Fr C £? by the £?>—closure of all finite linear combinations of
elements ®(x) (x € X)

Fr :=span{®(x) : x € X'}.

Then Fy is a Hilbert space with || - ||z, = || - ||;2. The feature space Fx and the reproducing
kernel Hilbert space H g are isometrically isomorphic with isometry ¢ : Fir — H defined by

Uw) = fu(x) = (W, 8(x))2 = Y wj /750 (). (5)
j=1
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In particular, we have that

| fwllre = w7y (6)
Note that from another point of view Fp is the space of sequences of the Fourier coefficients
of the functions of Hx with respect to the orthonormal basis {,/m;0; : 7 = 1,...} of H.

Let us turn to our classification task. For a given training set (1) we intend to construct a
function f € Hpx which minimizes

M 1
AZ(l—yz‘f(Xi))++§||f||3{Ka (7)

=1

(7) _{7’ if >0,
+ — .

where

0 otherwise.

Note that we can also look for functions of the form f = h+b (h € Hg) with a so—called bias
term b € R. We omit the bias term b here, because its explicit consideration does not lead to
an improvement of our numerical results.

The unconstrained optimization problem (7
mization problem: find f € Hx and u; (i =

(Z ) + 51 1Be (8)

) is equivalent to the following constraint opti-
1,..., M) to minimize

}—‘

subject to

yif(xi)

Uj

l—w (i=1,...,M),

>
> 0 (i=1,...,M).

Every function f € Hg corresponds uniquely to a sequence w € Fg. Thus, by (5) a ( ),
the optimization problem (8) can be rewritten as follows: find w € Fx and u; (i =1,..., M)

to minimize
(Z U> ||W||_7-'Kv (9)

subject to

l—w (i=1,...,M), (10)
0 (i=1,...,M).

yilw, ®(xi)) 7 >
(.
In general the feature space Fx C /2 is infinitely dimensional. For a better illustration of
(9) we assume for a moment that Fr C R”. Then the function fy(v) := (w,v)z, defines
a hyperplane Hy, := {v € Fi : fw(v) = 0} in R" through the origin and an arbitrary
point v; € Fx has the distance |(w, v;)z,|/||[W||7, from Hy. Note that fuo(®(x)) = fw(x).
Thus, the constraints ys(w, ®(x:)) 7 /|[Wllme > 111wz — ui/|[Wllse (0= 1,.... M) in
(10) require that every ®(x;) must at least have the distance 1/||w||r, — ui/||lw||7, from
Hy,.
If there exists w € Fg so that (10) can be fulfilled with u; =0 (i = 1,..., M), then we say
that our training set is linearly separable in Fx. Of course, for Gaussian kernels or kernels
arising from Wendland’s compactly supported radial basis function every finite training set



is linearly separable in Fy, see, e.g., [2] and [38]. Then the optimization problem (9) can be
further simplified to: find w € Fx to minimize

1
11wl (1)

subject to

Given Hx and A, the optimization problem above has a unique solution fy-. In our hyper-
plane context Hy, is exactly the hyperplane which has maximal distance 7 from the training
data, where

1 1 P(x;
v = = = max min {—KW’ (i) Fic| } (12)
Wi llre ISl weFwi=to.n Wl 7

The value v is called the margin of fy+ with respect to the training set 4. In this context, the
solutions of the optimizations problems (9) and (11) are called soft margin and hard margin
SVM classifiers, respectively. See Figure 1 for an illustration of the hard margin case for
n = 2. In Section 4 and in our examples in Section 6 we will restrict our attention to hard
margin SVMs. Note that this restriction is equivalent to the choice A = oo in (8) or (9)

H,
A class 1 v
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O
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Figure 1: The separation of two classes by an optimal hyperplane Hy~ with margin +.

Remark 1. There exists an important relation between the margin of the SVM classifier
and its generalization error, i.e., the probability that sgn(fw=(x)) # y for a randomly chosen
example (x,y) € X x {—1,1}, which motivates the SVM approach and our further investiga-
tions. By [6, Theorem 4.18], an upper bound of the generalization error of the hard margin
SVM classifier decreases if the margin v increases. Roughly speaking: the larger the margin
v the better generalization of the SVM can be expected.

Ut



Note that there exist also estimates for the generalization error of soft margin SVM classifiers
which involve the margin of the unknown target function, see, e.g., [6, Theorem 4.21] and [38].

Next we consider the solution of (11), where we follow mainly the lines of [51]. Here the
notation ’support vector’ comes into the play.
By the Representer Theorem ([20, 51]), the minimizer of (9) has the form

M

F(x) =" K (x,x;). (13)

j=1

Setting f := (f(x1),...,f(xum))T, K := (K(xi,xj))%zl and ¢ := (cq,...,cy)T we obtain
that
f =Kec.

Note that K is positive definite. Further, let Y := diag(y1,...,yn) and u := (uq,...,upr)?.
By 0 and e we denote the vectors with M entries 0 and 1, respectively. Then the optimization
problem (9) can be rewritten as

1
min le’u+ ZcTKe (14)
u,c 2
subject to
u > e—YKec,
u > 0.

The dual problem with Lagrange multipliers o = (avq,...,aa)T and 8 = (B, ... Bar)T reads

max_ L(c,u, o, B3),

cu,a,B
where
L(c,u,a,B) := elu + %CTKC —BTu+a’e—a’YKe - alu
subject to
g—]z:o, g—ﬁzo, a>0,3>0.

Now 0 = 2L = Kc - KYa yields

c=Ya. (15)

Further we have by g—ﬁ = 0 that 8 = Ae — a. Thus, our optimization problem becomes
L 7 T
max | — o YKYa+e' o (16)
[0

subject to
0<a<)le

This quadratic programming (QP) problem is usually solved in the SVM literature. For a
moderate number of associations some standard QP routines can be used and for a large
number of associations, e.g., |A| > 4000, specifically designed large scale algorithms should
be applied, e.g., SVMlight [17].



The support vectors (SVs) are those training patterns x; for which «; does not vanish. Let T
denote the index set of the support vectors I := {i € {1,...,M} : a; # 0} then by (13) and
(15), the function f has the sparse representation

f(x) = Z XZ, Zyzaz Xza
i€l el

which depends only on the SVs. With respect to the margin we obtain by (12) and (3) that

—-1/2
= (I1fllnx) " = ("Ke) M/? = (Zyzazf (%) ) :

iel

Due to the Kuhn—Tucker conditions [11] the solution f of the QP problem (14) has to fulfill
ai(1 —yif(xi) —ui) =0 (i=1...,M).

In case of hard margin classification with u; = 0 this implies that y; f(x;) = 1 (i € I) so that
we obtain the following simple expression for the margin

v = <Z ai> N (17)

i€l
Remark 2. By [6, Theorem 6.8], the number of SVs can also be used to give an upper bound

of the generalization error of the hard margin SVM. The fewer the number of support vectors
the lower is the upper bound of the generalization error.

3 Wavelet Decompositions by Parameterized Paraunitary Fil-
ter Banks

In this section we give a short introduction to paraunitary filter banks and corresponding so
called discrete-time wavelets. The first part mainly builds up on [40]. Here we prefer to use
discrete-time wavelets in £2 instead of wavelets in L?(R) since this approach is straightforward
for digital signal processing. A broader introduction to the topic can be found in [50, 8].

Let Ho(2) := Y ez ho[k]zF be the z-transform of the analysis lowpass filter and Hy(z) :=
> kez hi[k]z7F the z—transform of the analysis highpass filter of a two—channel filter bank
with real-valued filter coefficients. Throughout this paper, we use a capital letter to denote
a function in the z—transform domain and the corresponding small letter to denote its time—
domain version. A filter bank with analysis filters Hy and Hj is called paraunitary (sometimes
also referred to as orthogonal) iff

Ho(z Y)Hy(z) + Hi(z Y)Hi(2) = 2, (18)
Ho(z Y Hy(—2) + Hy(z Y Hy(—2) = 0. (19)

The corresponding synthesis filters are given by
Go(2) = Ho(z7"), Gi(z) = Hi(z71).

The polyphase matriz of a paraunitary filter bank

_( Hoo(z) Hpi(2)
Hyoi(2) := < Hio(z) Hui(2) )

7



with entries from the polyphase decomposition
Hi(z) = Hip(2*) + 2 "Hj (2%) (i =0,1)

satisfies the relation

H] (27 Hpa(2) = 1o, (20)

where I, denotes the 2 x 2 identity matrix.
We are interested in finite impulse response (FIR) filters of order 2L + 1 with real-valued

coefficients
2L+1

Hi(z) ==Y hilkl="  (hi[k] € R). (21)
k=0

For these filters, according to [47], [40, Theorem 4.7], the corresponding polyphase matrix
H,.i(2) can be decomposed into

L-1
_ cost); sint 1 0 cosdy sindp
Hpoi(2) = (g < —sind; cos; > < 0 2! >) ( —sindy cosdy /)’ (22)
where 97, € [0,27) and ¢; € [0,7) (I =0,...,L —1). Further we assume that the highpass

filter has at least one vanishing moment, i.e., H;(1) = 0. By (18) and (19) this implies that
the lowpass filter satisfies Hy(—1) = 0. Using these properties and (20) it is easy to check

that .
1 1
Hpo(1) = 7 ( 11 > :

Since we have by (22) that

L L
cos(>_ ) sin(Y )
Hyo (1) = T T

L L
— sin(lg W) cos(d, %)

=0

9

we obtain

(mod 27).

N

L
Z 19[ =
=0

Let 97 be the residue of 7 — Elf‘;ol ¥; modulo 27 in [0,27). Then the space
PLi={9=(,...,00, 1) : 0, € [0,7)}

can serve to parameterize all two—channel paraunitary filter banks (21) with at least one
vanishing moment of the highpass filter. To emphasize this parameterization we will use
the superscript 9 later. A parameterization with more than one vanishing moment of the
highpass filter can be realized by the method of Zou et al. [56]. Filter banks having the
representation in (22) can efficiently be implemented by the lattice structure [48]. A special
and even more efficient implementation is called the two multiplier lattice [47]. Note that the
parameterization can also be implemented by lifting steps [9] which are frequently used for
designing biorthogonal filter banks. However, we rely on the implementation based on the
lattice structure due its availability in already existing very efficient architectures, e.g., [19],



which we will especially need when dealing with algorithms for low—power devices.

For a fixed 9 € PE let Gy = GY and G1 = G? be the synthesis filters of a two-channel
paraunitary filter bank implemented by the lattice structure. When cascading these filters in
an octave band tree, the synthesis filters of an equivalent parallel structureon level j = 1,...,J
are given by

j—1
Qjo(2) = ][] Go(z*"), (23)
m=0 | i
Qia(z) = Gi1(¥7) [] Go(z*"). (24)
m=0

According to [50] we introduce the discrete—time scaling sequences and wavelets on scale j by
the impulse responses qj0 = (¢j0(k]);c;, and qj1 = (gj,1[k]); oy of the filters (23) and (24),
respectively. Let q7}; := (qj,i[k — 2jm]3kEZ (i = 0,1) denote the translation of q;; by 2/m
samples. The paraunitarity of the filter bank implies the following orthogonality relations of
the scaling sequences and wavelets:

<q2',03 q37,10>[2 = 5[m]a
(q'?,lla q?,1>Z2 = 5[2 - ]](5[777, - n]a
<q2,07 q;?}1>é2 = 0, (25)

(m,n € Z;i,5 =1,...,J), where d[m] = 1 if m = 0 and d[m] = 0 otherwise. We introduce
the spaces Qg := 7?2 and

Qj0 = Span{q}% :m€eZ}, Q1= Span{qgfl :m € Z}.

Note that {q}; : m € Z} forms an orthonormal basis of Q;; (i = 0,1). Further we have by
(23) that Q']’() c---C QZ,O C Ql,g - Qgﬁo and by (24) and (25) that

Qj—1,0 = Qjo ® Qja,

where @ denotes the orthogonal sum. Thus, the space #? can be decomposed as
2 =Q50® EB},:1 Q.1 and the set

{q’}fo,qgfl :jzl,...,J;mEZ} (26)

constitutes an orthonormal basis for /2. With respect to this basis an arbitrary sequence
x € /? can be decomposed as

J
X = Z dolm]afy + Z Z dja[m]qjy (27)
meZ j=1meZ
with the wavelet coefficients
dj,i[m] == <x,q%>gz (Z == 0, 1).

We set
dj = (dj,l[m])mez (] = 1,...,J).

9



We will need norms of these wavelet coefficient vectors later.

Some applications, e.g., our classification task in Section 6 require a shift-invariant multilevel
decomposition (27). This can be achieved by replacing the orthonormal wavelet basis (26) by
the tight wavelet frame

(277247, 2792qT  j=1,....Jym € L},

where q7; := (gji[k — m]); ¢z (i =0,1). Then x € /% can be decomposed as

J
X = Z dNJ,g[m] 617}?0 + Z Z CZ‘,l[m](Nl?}l (28)

meZ j=1meZ

with the coeflicients

~ 1 5 )
djilm] = 37 (x, @), (@ =0,1).
We set

d; == (Jj,l[m])mGZ G=1,....J).

Overcomplete expansions can be implemented by oversampled paraunitary filter banks [7, 1]
The highly redundant expansion (28) corresponds to a nonsubsampled filter bank, i.e., we have
no multirate operations at all. In this special case, the subbands are obtained by pure linear
time—invariant (LTTI) filters given by (23) and (24), respectively. Note that an implementation
as cascaded two—channel building blocks requires to insert 2/ — 1 zeros between the nonzero
coefficients of the filters at the levels j = 2,..., J. This procedure is also known as ’algorithm
a trous’ [36] and is equivalent to the so—called ’cyclic spinning’ [5]. The computation of the
frame coefficients vectors d; requires O(N log N) arithmetic operations instead of O(N) for
the computation of d; (5 = 1,...,logg N). There exist nearly shift-invariant approaches
with lower arithmetic complexity, e.g. [21]. The incorporation of these algorithms into our
adaptation scheme may be a future point of research.

In the following we emphasize the dependence of the wavelet coefficients on the chosen angles
¥ € P~ by the superscript 9.

4 Adaptation to Waveforms

Recent studies [52, 42, 41] have shown that the so-called multilevel concentrations || - ||},
(1 < p < o0) of coefficient vectors of wavelet-like decompositions in distinct levels provide
reliable feature vectors for waveform classification tasks. This mainly steams from the fact
that such feature vectors help to tackle with local instabilities in time. They are therefore
more robust than the consideration of specific Heisenberg cells in the time—scale domain.
The multilevel concentration is a robust but global feature and can be insensitive to slight
morphological dissimilarities of waveforms belonging to distinct classes when non—adapted
decompositions are utilized [42, 41]. Here we present an adaptation of wavelet decompositions
that is tailored to hard margin SVM classifiers. We restrict our attention to orthonormal
wavelet decompositions. The generalization to frame decompositions is straightforward.

Let a set of M waveforms x; € g9 C RN be given which belong to two distinct classes with

corresponding labels y; € {-1,1} (: = 1,...,M). By M; and M_ we denote the sets of
indices i € {1,..., M} with y; =1 and y; = —1, respectively. In general, the length N of our

10



waveforms will be large, e.g., N = 512. We intend to reduce this length while emphasizing
the discriminating features of the signals to support classification tasks.

For this we consider wavelet decompositions of our signals as in the previous section. Let J
be maximal depth of the wavelet decomposition. Further let {j1,...,j4} C {1,...,J} be the
indices of those wavelet coefficient vectors we are interested in. The choice of the relevant
levels can be determined by some validation technique or by prior information about the
waveforms, e.g., a known pre—filtering.

For a fixed waveform x € (oo with wavelet coefficient vectors d}? we define the function
€ PE = RY by

Ex(ﬂ) = (£1(0)752("9)v“-a£d(0)) = (H ||va || ||zpv . 7||d;%i||§p) (29)

and set £;(9) :=&,,(F) (i=1,...,M).
Note that for nonsubsampled filter banks, ||&;9k || and thus &, () do not change if the signal

is shifted. In this case our approach becomes completely translation—invariant.
We want to find 9 so that

A®) = {(Ei(ﬂ),yi) eXCRYx {£1}:i= 1,...,M}

is a ‘good‘ training set for a SVM. By Remark 1, we can expect a better generalization ability
of the hard margin SVM if the margin becomes large. Consequently, we try to find 9 so that

9= i ®(¢,(9)
arg max {z‘eMT,ljréMH (&(9) — @(&;(9 HfK} (30)

By definition of the inner product in Fx and (2) it follows that
|9(&:(0) — (&[5, = I1BE)I5, + ||BE& )5, —2(2(&),2(&;®),,,
= 2K(0) — 2k (Hgi(ﬂ)— € HZ).

We suppose that k() is monotonely decreasing in |¢t|. Then (30) can be rewritten as

¥ = arg max min (9) — & (9 . 31
sps { i Jlei0) - €0, 1)
Note that the geometry in feature spaces induced by kernels was investigated in [3, 33]. For
most waveform recognition tasks the sets M, and M_ can be reduced by averaging the
patterns of the respective classes (or subsets thereof) or by expert selection of representative
subsets. Here we use the first approach and introduce the notation

> e,

tEM4

b= |Mi|

Instead of (31) we search for ¥ with

9 = arg max {|[¢..(9) € (9)]],}. (32)

Solving this optimization problem analytically seems to be infeasible. The optimization func-
tional involves the multilevel concentration and seems not to allow for sophisticated optimiza-
tion strategies. In particular, hill climbing methods in P% are doomed to fail due to local
minima of the optimization functional. We introduce a discrete grid

PE = {9 = (W,...,0,1): 9, €D}, D:= {F—;:Uzo,...,T—l}

11



in PZ and solve (32) by evaluating the optimization functional at each grid point.

There exist possibilities to reduce the complexity of these computations. For example we can
compress the parameter space P{# as follows: Given a positive number 4 < 1, we can further
reduce the parameter space by selecting a maximal subset Pﬁ of 73% so that

d

1 % % *

D @1 0).df  (9) e Spu (9.9° P D # D). (33)
=1

In other words, the distinct wavelets in (33) satisfy the strengthened Cauchy—Schwarz inequal-
ity, that is, the smaller p the more orthogonal the wavelets become. In a way, u steers the
redundancy of our parameter space. If we restrict our interest to smooth wavelets, the con-
sideration of only one level in (33) is sufficient due to their self-similarity across levels. Such a
compression of the parameter space can be significant even for a large u. For instance, when
working with 7' = 32, L = 2 and . = 0.98 we have achieved a compression of |P}|/|Pf| ~ 0.65
in [42].

Although the described strategy only holds for hard margin SVMs and not in the soft margin
case, the use of multilevel concentrations (29) as feature vectors may sometimes be advanta-
geous even without an adaptation since we can incorporate prior knowledge. For instance, for
the frame decomposition (28) the feature vector (29) becomes completely invariant to shifts
of an analyzed waveform. Such shift-invariant feature vectors are often desirable, e.g., see
Section ?7.

5 Radial Basis Functions with Compact Support

In the following sections we will apply two kinds of RBFs k(||x||2), namely Gaussian RBF's
and Wendland’s compactly supported RBFs. The Gaussian RBF K with

2

k(t) = e 257,

is a positive definite function in C>(R?) for all dimensions d and all s € R;. Here C*(R?)
denotes the space of n times continuously differentiable functions on R%. This kernel is also
well accepted for constructing SVMs and provides excellent results for real world applications,
see, e.g., [49, 35].

Recently positive definite RBFs with compact support have been constructed by various au-
thors to solve interpolation problems with scattered data {x;}},, see [31] and the references
therein. In the context of scattered data interpolation, in particular in connection with hierar-
chical interpolation methods [12], RBFs with compact support have several advantages such as
a sparse interpolation matrix (K (x;, Xj))%zl and a sparse representation of the interpolating
function Y a; K (x,x;) at x € R,

RBFs with compact support have not been used for constructing SVMs up to now. One
reason for this maybe that any positive definite RBF with compact support has to be designed
in dependence on the space dimension d, i.e., there does not exist an universal RBF like the
Gaussian which is compactly supported, positive definite and smooth for all space dimensions.
RBF's with compact support are only suited for relatively small space dimensions. Using our
multilevel concentration approach the training data are at most of length d = logs N. In our
applications we have d = 8. For spaces of such a low dimension the following RBF's proposed
by Wendland [54] can easily be calculated and evaluated.
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For o € R and m € Ny we define (-),, and [-],;, by

[(a+m)

N [a]m == (e —=m + 1),

(a)m =
where I' denotes the Gamma function. Let

Wy () == (1 — ).

Then Wendland’s RBFs have the representation
n .
km,n (:B) = Z 51(,7:) x' Wm4-2n—i (:B) (n € N) )
i=0

where the coefficients satisfy the recursion

pY =1,
(m) ~ (m) [+ 1]i—t11 <
= ) t < 1
ﬁt,nJrl iZXt_:l ﬁz,n (m + M — i + 1)i7t+2 (0 St + )7
if the term for ¢ = —1 for ¢ = 0 is ignored.

Let || := max{i € Z : i < z}. For m = |d/2] + n+ 1, Wendland has proved that k,,
defines a positive definite function in C?*(R?). Further, k, , is of the form

{p(x) 0<z<1,

km,n(x) 1o z>1

with a polynomial p of degree |d/2| + 3n + 1. There does not exist a positive definite RBF
in C?*(R?) of the above form with a polynomial p of lower degree.

In the remainder of this paper, we will deal (up to multiplications with constants) with the
RBFs

koi(z) = (To+1)(1-1x)] €C*(R®)
kra(z) = 1/3 (802% + 272 +3) (1 —2)5 € C*(RS).

and their dilations &, »(-/s) (s € Ry).

6 Applications in Medical Diagnostics

In this section, we present two applications of our hybrid wavelet support vector classifiers
in medical diagnostics, namely the classification of endocardial electrograms and the shift—
invariant detection of otoacoustic emissions which also provide contributions to the area of
biomedical research. Our main intention is a comparison of the standard hard margin SVM
applied to the time-domain waveforms to our hybrid approach using filter bank adaptation.
Engineering the best possible classification scheme for the individual application is not our
objective here and further improvements may be achievable by an additional optimal choice
of the decomposition levels or by using A < oo, i.e., by a soft margin SVM. However, although
we do not use such heuristics, our approach easily outperforms the state of the art method
in our first application. In our second application, we present the first truly shift—invariant
detection of otoacoustic emissions and achieve error rates which support an utilization in
clinical environments.
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6.1 Classification of Endocardial Electrograms

Sudden cardiac death is a major public health concern worldwide. According to Ameri-
can estimates, sudden cardiac death claims more than 350.000 lives in the USA every year,
80% up to 90% being due to ventricular tachycardia (VT) [13, 22], i.e., a fast disorder of
the heart beat which stems from the major heart chamber, the ventricle. The implantable
cardioverter—defibrillator (ICD) is an automated antitachycardia device and accepted to be
the most effective therapy for preventing sudden cardiac death due to VTs [43]. The ICD is a
permanently implanted device which continually monitors the electrical activity of the heart
by an endocardial electrogram (EE), i.e., a bioelectric signal from the inner heart is analyzed.
Usually, the information of the EE utilized by an ICD is the heart rate. However, the rate
is of limited reliability in some clinical situation, e.g., excitement or physical exertion where
the (physiological) sinus rhythm (SR) may have an abnormal fast rate which can exceed a
predefined threshold such that a malignant rhythm is detected. Although additional detection
enhancements are used in third generation ICD-systems, inappropriate ICD therapy occur in
up to 13% of the patients who received such a device [53].

e

VJ%Jﬁ%%“Mf

256ms
-

Figure 2: Consecutive beats of SR and VT within a time—frame of 256ms.

Here morphological dissimilarities in the EE of individual beats, due to different activation
patterns, can be used for discriminating the physiological from the pathological rhythm since
they are rate-independent. Such morphological methods are patient dependent and there is
an ongoing interest in an efficient evaluation of morphological criteria [37]. Template matching
methods are well known approaches. The correlation waveform analysis (CWA) with best fit
alignment [44] offers an excellent performance and is widely accepted [39]. We will use this
method as reference tool for performance comparisons to our algorithm.

Pattern recognition schemes for EEs have to tackle the following problems: an excellent
generalization performance although the training data is very sparse and a highly efficient
implementation for classifying the waveforms in view of the limited energy resources of an
implantable device. Furthermore, in view of the current interest in EE compression algorithms
for ICDs [4], the use of perfect reconstruction filter banks is also desirable for EE analysis
since coding conditions can be added without difficulty.

The signals analyzed in this section were obtained during electrophysiological examinations at
the University Hospital of Homburg, Germany. Bipolar EEs were obtained from the apex of
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the right ventricle in 10 patients with inducible monomorphic ventricular tachycardia (VT).
The EEs were amplified, filtered (10-500Hz), and digitized (2kHz, 12 bit resolution). Data
segments of 10s duration were recorded during SR and VT. Consecutive beats were selected
as morphological patterns of SR (240 beats) and VT (240 beats) within a time-frame of
256ms and normalized. Consequently, we have to deal with waveforms x € Qo C RN, where
N =512 and with a decomposition depth of the wavelet tree of J = 8. The set of beats was
controlled by an expert to exclude ectopic beats and artifacts. For our numerical experiments
we use p = 1 in (29). The discrete parameter space was constructed with T'= 30 and L = 2.
This setting was also used in [41], where one of the authors has successfully classified antegrade
and retrograde atrial activations patters by neural networks. We label examples of SR by 1
and of VT by —1. Figure 2 shows five original beats of SR and VT within their time-frame.

(a) o 0.1 (b) o
05 0.5]

1 1

190 15 ﬂo 15|
2 2

25 25

: 0.0 °

o 05 1 15 2 25 3 o

191

Figure 3: Distribution of the difference H§ L(9)—€& (9) ‘ ‘2 (a) and of the corresponding mar-
gin y(9¥) of the SVM (b) in dependence on 9.

0.18

0.0

Figure 3(a) presents the distribution of the differences H€ L(9) €& (9) ‘ ‘2 in Pk for an indi-
vidual patient (|[My| = |M_| = 1). In Figure 3(b) we show the corresponding distribution
of the margin () in PE for a SVM with Wendland’s function k7 2(-/5). As noticeable, the
margin is directly related to H§ L(9)—¢ ,(19)‘ ‘2. The angles 9 provide a multilevel concen-
tration that results in the largest margin of the SVM classifier.

In order to illustrate our adaptation strategy, we consider for a moment only the multilevel
concentrations on the levels j = 4 and j = 5, i.e., & (9) = (|[d?]]p, [|[d? ] )-

~

Figure 4: The decision curve f(&) = 0 for SVM applied to the non—adapted multilevel concen-
trations with 9p (a) and to the adapted multilevel concentrations in R?. The darker points
denote SR.
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This allows us to visualize the ’decision curve’ f(¢) = 0 in R2. We have used a number of
M = 36 training examples for this experiment with |M| = |M_| = 18. For the SVM we
have employed a Gaussian kernel with scaling factor s = 1. Figure 4(a) shows the decision
curve and the 36 training patterns when utilizing the lattice angles 9p = (1.4653,0.49984)
which correspond to the Daubechies wavelet D3 with three vanishing moments. We use the
well known Daubechies wavelet as representative for a non—adapted wavelet. In Figure 4(b)
we have taken the same settings but applied the optimal angles 9. Clearly, we expect that
the SVM classifier performs more reliable for the adapted approach. Here the examples of the
distinct classes lay far apart.

In the following we provide some assessments of the classification performance of our method
using the whole data set of all ten patients. Here two decomposition levels as in the previous
example are not sufficient. To rule out that filtering effects may lead to a loss of information
we consider the full wavelet decomposition tree, i.e., d = 8. Of course, other data dependent
strategies to choose j1, ..., jq in (29) are possible. But, instead of engineering the best possible
classification scheme for SR and VT, we are mainly interested in a comparison of our method
to SVMs applied to the original time-domain waveforms and to SVMs applied to non—adapted
multilevel concentrations.
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Figure 5: The mean number of SVs and the error rate of a SVM applied to the original
waveforms with Gaussian Kernel (top) and to the non-adapted multilevel concentrations
(D3) with Wendland’s function k72 (bottom).

We separate the total data set of 480 beats in a training set of 160 beats (SR: 80, VT: 80)
and a test set of 320 beats (SR: 160, VT: 160). Thus, for each patient we have a training set
of [IM_| = |M_| = 8 waveforms. The remaining set of 32 beats forms an independent test set
for the individual patient.

In the Figures 5 and 6, we have plotted the mean number of SVs (of the ten patients) and
the error rate in dependence on the scaling factor s for different RBFs. The mean number
of SVs is given in percent and 100% means that all of the 16 training patters are SVs for
all patients. The error rate [%] is determined for all patients in common, that is, the ratio
of false classifications on the whole test set to the total number of 320 examples within this
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Figure 6: The mean number of SVs and the error rate of a SVM applied to the adapted multi-
level concentrations with Gaussian Kernel (top) and to the adapted multilevel concentrations
with Wendland’s function k7 2(bottom).

set. A comparison of Figure 5 with Figure 6 with respect to the error rate shows that our
adapted algorithm with both the Gaussian and Wendland’s function is superior to the original
SVM and to the SVM on non-adapted multilevel concentrations. Note that by Remark 2 the
number of support vectors can be considered as indicator for the generalization of the SVM.
The number of support vectors of our new algorithm is approximately half as many as that
of the original SVM. However, the case of SVMs on non-adapted multilevel concentrations
seems to be not in a good agreement with Remark 2. Here we have a smaller number of SVs
than for SVMs on the original waveforms but a worse performance on the test set.

In Figure 7(al) and (bl) we show the evaluations of f for SVMs with Gaussian kernel and
scaling factor s = 0.8 applied to the original waveforms and for SVMs with %72 and scaling
factor s = 5 applied to the adapted multilevel concentrations. The corresponding number of
SVs for the individual patients is given in Figure 7(a2) and (b2), respectively. We see that
SVMs on adapted multilevel concentrations perform better and more reliable than SVMs on
the time-domain waveforms. It is noticeable that the number of SVs found is less for our
hybrid approach.

For the purpose of a performance comparison we shortly introduce the CWA. Let x™ € Qg g
serve as template of SR which is obtained by averaging all the training waveforms of SR, i.e.,
xt = |M|! > icar, Xi- Let further x € Qoo be an arbitrary EE waveform to be classified.
Then the CWA between the template and the waveform is based on the correlation coefficient
p € [—1,1] defined by

S (zf =7 (2 — F)

o \/Zi\;l(q;j— - f+)2\/2i]\;1($i - 5)2,

where 7, := N1 Zfil zi and 7 := N1 Zf\il x; For p = 1 we have a perfect match of the
waveform x and the template. The decision of the CWA, i.e., the classification of SR and VT,

(34)
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Figure 7: The evaluation of f for 10 patients by an SVM applied to the time-domain wave-
forms (al) and to the adapted multilevel concentrations (b1). The corresponding number of
SVs is given in (a2) and (b2), respectively.

is based on an appropriate threshold 7 with 7 < 1. Now p > 7 denotes SR and p < 7 denotes
VT. The performance of the CWA heavily depends on the alignment of the time—frame in
which an individual beat is selected. Therefore, we can further improve the results of the CWA
by the best fit alignment strategy. Here the template x T is shifted over a specific time—frame
centered around the detection point of the beat, i.e., the point where an individual beat is
separated from the EE, and (34) is calculated for each point n € Z of this time-frame so that
p[n] becomes a time dependent sequence. The decision is then based on n = ||p||s~ using
the same threshold criterion as before for p. This procedure is computationally demanding
in general and not appropriate for efficient implementations. The support of the time—frame
depends on the preprocessing of the data. In our experiments we have used 20ms. It is worth
to emphasize that the best fit strategy has only a minor influence for our signals as the beats
are already well aligned. However, in other settings it can be significant.
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Figure 8: The results for the CWA with best fit alignment (CWABF) for 10 patients.
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When averaging the 8 training waveforms of SR of the individual patient as template for the
CWA, we obtain the results in the Figure 8. There is a significant overlap for a subset of
patients and a threshold 7 can heardly be defined for these patients. Comparing these results
to those in Figure 7 we see that the CWA performs much worse than our hybrid scheme and
also worse than SVMs applied to the time-domain waveforms.

6.2 Detection of Otoacoustic Emissions

As already mentioned, the beats analyzed in the previous section are well aligned within
their time—frame. Thus, the analysis does not strongly suffer from shifts in time so that
shift—invariance is of minor importance. Here computationally very efficient but time—variant
orthonormal wavelet decompositions perform well. However, as in our next classification
problem, there is often a need for shift-invariance in waveform recognition. In the following
we use the shift—invariant frame decompositions introduced at the end of Section 3 instead of
orthogonal wavelet decompositions.

0.2
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0,1 -
0,0

20,14
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20,2

T T T T T
0 4 8 12 16 20

t i m e [ms]

0,2 pathological
0,1
0,0 -

0,1 1

sound pressure [mPa]

20,2 -

T T T T T
0 4 8 12 16 20

t i m e [ms]
Figure 9: Two exemplary signals from the physiological and pathological group.

Otoacoustic emissions are sounds generated by the cochlea that can be recorded in the exter-
nal ear canal, see [18, 27]. In the following, we will deal with the transient evoked otoacoustic
emission (TEOAE) that is, in short, a brief pressure wave that emanates from the ear in
response to an acoustic stimulus. These responses are typically of a low intensity or absent in
individuals with mild or greater hearing loss. Consequently, the analysis of TEOAESs seems to
be promising as noninvasive method for detecting hearing loss in patients. Such an objective
analysis requires no patient interaction and is especially of interest in infants. The detection
of otoacoustic emissions represents a challenge for automated schemes. They are of a very low
intensity and hard to separate from the signal background in current measurement set—ups.
Up to now, the classification of individuals with and without hearing losses is to a large extent
based on expert knowledge, see [15] for a description of the parameters used by experts.
The analysis and characterization of TEOAEs is an active and ongoing field of research.
For approaches in the time—frequency domain, see, for instance, [45] and the references therein.
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Figure 10: Distribution of the difference ||&, (9) — 5_(19)“2 (a) and of the corresponding
margin () of the SVM (b) in dependence on 9.

The signals analyzed in this section were obtained at the University Hospital of Homburg,
Germany. The signals were recorded in a sound—proof cabin using a probe inserted into the
outer ear canal. The probe contains a transmitter which delivers the acoustic stimulus and
a miniaturized microphone. The signals were amplified, filtered (300Hz — 10kHz), digitized
(25kHz, 12 bit resolution) and averaged to enhance the signal noise ratio by the standard
technique of the ILO88 Systems (Otodynamics, Ltd.). With this preprocessing, signals of
approximately 20ms (again represented by 512 samples) duration were normalized (by their
energy) and stored for subsequent analysis. The individuals were binary classified in a patho-
logical and a physiological group. The pathological group is labeled with —1 and consists of
individuals with a hearing loss at higher frequencies or with a broad band hearing loss. All
individuals in this group have a hearing loss of more than 20dB above 3kHz. The physiological
group is labeled with 1 and consists of individuals with a hearing loss of less than 20dB in
range from OkHz to 10kHz. Figure 9 shows an exemplary signal of the physiological and the
pathological group, respectively.

We have a total of 68 individuals (and signals) in the physiological group. The pathological
group consists of 55 individuals. We use twenty signals of each group as training set, i.e.,
|My| = |M_| = 20. The remaining signals form an independent test set for the respective
group.

If present, the occurrence of TEOAES in our signals varies over time for the individual subjects.
Consequently, there is a need for a recognition scheme which is not based on locality. In other
words, it must incorporate the fact the information can appear anywhere in the signal and
must thus be shift-invariant.

The morphology of physiological and pathological waveforms may overlap, in particular for
physiological group and individuals which only suffer from a hearing loss at higher frequencies.
Therefore, the appropriate choice of the regularization parameter A in (16) may improve the
results. However, we use again A = oo for implementing a hard margin SVM since it is easier
to interpret and we are mainly interested in comparing SVM on the original time—domain
waveform and on the shift—invariant adapted multilevel concentrations.

Figure 10 illustrates the difference H£+(19) - 5,(19)‘ ‘2 for |[My| =|M_| =1 as example. The
corresponding margin y(¢) in 737[# is also shown, where we have used the Wendland function
k7 o for the SVM. As in the previous section, only a few wavelets of the parameter space result
in a large margin of the SVM classifier.

Figure 11 contains the error rate and the number of SVs in dependence on the scaling
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Figure 11: The mean number of SVs and the error rate of a SVM applied to the original wave-
forms with Gaussian Kernel (top) and to the adapted orthonormal multilevel concentrations
also with a Gaussian kernel (bottom).

parameter s for a SVM applied to the original waveform and for our scheme, but based on
orthonormal (not shift-invariant) decompositions. It is obvious that no reliable hypothesis
about the underlying mapping can be deducted form the training set in the first case so that
the original SVM classifier allows no satisfactory discrimination between the physiological
and the pathological group. In view of the fact that the SVM is a state of the art classifier,
this indicates how difficult it is to deduce a reliable hypothesis. Our scheme with orthonormal
decompositions performs better. However, when using the shift-invariant tight frames in our
scheme, the results in Figure 12 are obtained for k72 and a Gaussian kernel. Here our hybrid
SVM classifier performs significantly better than SVMs on the original waveforms and on
the orthonormal multilevel concentrations. The number of SVs is much smaller than that
of the original SVM. Clearly, with further heuristics, e.g., by discarding information or by
regularization, better results seem to be achievable.

In our applications RBFs with compact support have performed similar to Gaussian RBFs.
The best performance of RBFs with compact support was achieved for large values of the
scaling parameter s so that K(x;,x;) > 0 for all 4,5 € {1,..., M}. Thus, we have achieved
no further advantages from the compact support of these functions.

7 Conclusions

We have presented a new method for improving the performance of hard margin SV classifiers.
For this, we have merged ideas which have recently been developed in signal processing and
machine learning to obtain a hybrid scheme based on wavelet decompositions and SVMs for
waveform classification.

We have illustrated the performance of our scheme against the background of current concerns
in medical diagnostics. Our hybrid scheme classified all EEs of SR and VT of the given test
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Figure 12: The mean number of SVs and the error rate of a SVM applied to to the adapted
shift-invariant multilevel concentrations with the Gaussian kernel (top) and to the adapted
shift-invariant multilevel concentrations with k7 (bottom).

set correctly, a result that was neither achievable by a SVM on the original waveforms nor by
the well accepted CWA with best fit alignment. Based on the very efficient lattice structure
implementation, our scheme meets also the low power requirements of 1CDs.

For the analysis of TEOAEs we have employed tight frames to obtain shift—invariance of
our scheme. Here we achived a significant improvement of the classification performance
for detecting the hearing loss in individuals compared to hard margin SVMs on the original
waveforms.

We have used RBFs with compact support and have shown that these functions perform
similar to the well accepted Gaussian kernels. However, further research is necessary to
exploit the full power of the compact support of these functions.

We conclude that the performance of hard margin SVMs can significantly be improved by
signal-adapted wavelet decompositions since it allows the inclusion of prior knowledge such
as local instabilities in time and shift-invariance. The direct relation of the distances in the
input space and the feature space induced by the RBF allows an optimization of the signal
representation before the training of the hard margin SVM.

For our applications, the presented method is powerful and very promising. However,
especially in the case of TEOAE analysis further investigations are needed on larger data
sets. Here is still room for improvements, i.e., by the optimal choice of the decomposition
levels, the straightforward incorporation of wavelet packets and the optimal choice of the
regularization constant .
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