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Abstract

In this paper, we consider a variational restoration model consisting of the I-divergence
as data fitting term and the total variation semi-norm or nonlocal means as regularizer
for removing multiplicative Gamma noise. Although the I-divergence is the typical data
fitting term when dealing with Poisson noise we substantiate why it is also appropriate
for cleaning Gamma noise. We propose to compute the minimizers of our restoration
functionals by applying Douglas-Rachford splitting techniques, resp. alternating direction
methods of multipliers. For a particular splitting, we present a semi-implicit scheme to
solve the involved nonlinear systems of equations and prove its Q-linear convergence.
Finally, we demonstrate the performance of our methods by numerical examples.

1 Introduction

We are interested in restoring images f : Ω → R, Ω ⊂ R
2 connected and bounded with

Lipschitz boundary, arising from original images u, which are corrupted by (uncorrelated)
multiplicative noise η of mean 1, i.e.,

f = uη. (1)

The task of removing multiplicative noise appears in many applications, in particular in
synthetic aperture radar (SAR) [9]. Here, we are confronted with speckle noise [40], which is
usually assumed to follow a Gamma distribution. In electronic microscopy [45], single particle
emission computed tomography (SPECT) [51] and positron emission tomography (PET) [56],
non-additive Poisson noise appears in connection with blur.
In this paper, we focus on Gamma distributed noise although our model is appropriate for
Poisson noise as well. Recently, various variational models for removing Gamma noise were
proposed. Following the MAP estimator for multiplicative Gamma noise, Aubert and Aujol
[4] introduced a non-convex model whose data term was subsequently adopted in a convex
model by Shi and Osher in [59]. Indeed, these authors considered a more general data fitting
term, which includes also the model in [54]. They applied a corresponding relaxed inverse
scale space flow as denoising technique. The model of Shi and Osher was modified in [42] by
adding a quadratic term to get a simpler alternating minimization algorithm. A variational
model involving curvelet coefficients for cleaning multiplicative Gamma noise was considered
in [24].
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Beyond variational approaches there exist other techniques to remove multiplicative noise,
e.g., local linear minimum mean square error approaches [47, 46] or anisotropic diffusion
methods [66, 1, 44] which will not be addressed in this paper.
In the above variational models the data fitting term arises from the MAP estimator for
multiplicative Gamma noise. However, in deblurring problems, where we have frequently
Poisson noise, Csiszár’s I-divergence [20] is usually applied as data fitting term. For the
expectation-maximization (EM) approach related to the I-divergence model in deblurring
problems see [49, 52] and the references therein and for the EM - total variation (TV) model
we refer to [51, 56]. NL-means filters for removing non-additive noise were examined in
[19, 43].
In this paper, we consider an I-divergence - TV and I-divergence - nonlocal means (NL-means)
model for denoising. We motivate why the I-divergence data fitting term typically used in
the context of Poisson noise is also appropriate when dealing with multiplicative Gamma
noise. We develop iterative algorithms for computing the minimizers of our functionals by
applying Douglas-Rachford splitting techniques. Such methods were first applied in image
processing in [17]. Note that for our setting the Douglas-Rachford splitting is equivalent to
the alternating direction methods of multipliers (ADMM), also known as alternating split
Bregman algorithm.
This paper is organized as follows: We start by reviewing some variational denoising methods
in Section 2. In particular, we consider their performance for two-pixel signals. We show
that the minimizer of the functional proposed in [59] coincides with the minimizer of our I-
divergence - TV model. Further properties of our restoration models for a discrete setting are
proved in Section 3. In Section 4, we propose to compute the minimizers of our functionals by
applying Douglas-Rachford splittings. For a particular splitting, we present a semi-implicit
scheme to solve the involved nonlinear systems of equations and prove its Q-linear convergence.
Finally, we demonstrate the performance of our algorithms for the I-divergence - TV and the
I-divergence - NL-means model by numerical examples in Section 5 and give a conclusion in
Section 6.

2 Edge preserving variational methods for removing multi-

plicative noise

2.1 Review of models

Variational methods aim to restore the original image by finding the minimizer of some
appropriate functional

E(u) := Ψ(u) + λΦ(u), λ > 0,

where Ψ = Ψf denotes the data fitting term depending on the given (corrupted) data f and
Φ is a regularization term which includes prior information about the original image.
In general, the data fitting term is deduced by maximizing the a-posteriori probability density
p(u|f) (MAP estimation). Most papers deal with additive noise, i.e., f = u + η. If u is
corrupted by additive white Gaussian noise, this leads to the data fitting term Ψf (u) :=
∫

Ω(f −u)2 dx. A frequently applied regularization term is the total variation (TV) semi-norm
suggested by Rudin, Osher and Fatemi (ROF) [55]

|u|BV := sup
p∈C1

0 ,‖ |p| ‖∞≤1

∫

Ω
udiv p dx
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which reads for L1(Ω) functions with weak first derivatives in L1(Ω) as

|u|BV =

∫

Ω
|∇u| dx. (2)

The space BV (Ω) of functions of bounded variation consists of all L1(Ω) functions with

‖u‖BV := ‖u‖L1 + |u|BV <∞.

In the case of additive Gaussian noise, the minimizer û of the whole ROF functional

1

2

∫

Ω
(f − u)2 dx+ λ|u|BV (3)

has many desirable properties. It preserves important structures such as edges, fulfills a
maximum-minimum principle which reads in the discrete n- pixel setting as fmin ≤ ûi ≤ fmax,
where fmin and fmax denote the minimal and maximal coefficient of f , resp., and preserves
the mean value, i.e.,

n∑

i=1

ûi =

n∑

i=1

fi.

The drawback of model (3) consists in its staircasing effect so that meanwhile various alter-
native regularizers were considered. Among them, the NL-means regularization term leads to
very good denoising results. The idea of nonlocal means goes back to [12] and was incorpo-
rated into the variational framework in [35, 36, 37, 67]. We refer to these papers for further
information on NL-means. Based on some pre-computed weights w the regularization term
is given by

Φ(u) =

∫

Ω
|∇wu| dx, |∇wu| :=

(
∫

Ω
(u(y) − u(x))2w(x, y) dy

)1/2
. (4)

In the following, we review variational methods for removing multiplicative noise, where we
restrict our attention to TV regularizers. To see the differences between the models it is
sometimes useful to apply them to the simplest signals f := (f1, f2)

T consisting of only two
pixels so that the functional to minimize becomes

Ψ(f1, u1) + Ψ(f2, u2) + λ|u2 − u1|. (5)

log-model. By (1) it seems to be more appropriate to include quotients rather than dif-
ferences of f and u into the data fitting term, e.g., max{fu , uf }. Taking the logarithm of this
term and setting w := log u we get |w − log f | and using w in the regularization term (2) we
obtain, for a noisy signal f > 0, the log-model

ŵ := argmin
w∈BV

{1

2

∫

Ω
(w − log f)2 dx+ λ|w|BV

}
, û = eŵ. (6)

This is the usual ROF-model (3) for w and log f . Therefore, the maximum-minimum principle
carries directly over to û. However, the mean value preservation

∑n
i=1 ŵi =

∑n
i=1 log fi leads

to
n∏

i=1

ûi =

n∏

i=1

fi.

3



This means that the log-model preserves the geometric mean rather than the arithmetic mean.
For example, if λ is large enough, then ûi = (

∏n
j=1 fj)

1/n for all i = 1, . . . , n which is indeed
smaller than the mean of f provided that f is not the constant signal. So this property is a
severe problem if one wants to use such an approach with a strong multiplicative noise since
in this case the mean of the restored image is much smaller than the one of the original image.
Such a model can therefore not be considered as a good one for multiplicative noise removal.
We want to have a look at the two pixel model (5) for the setting (6).

Example (Two-pixel signals). We assume that f1 ≥ f2 > 0. Setting the gradient with respect
to wi, i = 1, 2, to zero we obtain that the minimizer û1, û2 move to

√
f1f2 with increasing λ

as follows:

û1 = f1e
−λ, û2 = f2e

λ for 0 ≤ λ <
1

2
log

f1

f2
,

û1 = û2 =
√

f1f2 for
1

2
log

f1

f2
≤ λ.

AA-model. Based on the MAP estimator for multiplicative Gamma noise, Aubert and
Aujol [4] proposed to determine the denoised image as a minimizer in {u ∈ BV : u > 0} of
the following, in general non-convex, functional

∫

Ω

f

u
+ log u dx+ λ|u|BV . (7)

While the data fitting term follows canonically from the MAP approach related to the Gamma
distribution, the choice of the regularization term is flexible and we will see in the following
that |∇ log u| seems to be a better choice. In particular, it was observed in numerical examples
[4, 59] that the noise survives much longer at low image values if we increase the regularization
parameter. This is also indicated by our simple two pixel model.

Example (Two-pixel signals). We restrict our attention to the case 0 < f2 ≤ f1 ≤ 3f2. This
may appear if f1 and f2 are disturbed versions of a constant function u1 = u2 = u, i.e.,
f1 = (1 + ν)u and f2 = (1 − ν)u, where 0 ≤ ν ≤ 1/2. Then the minimizer reads

û1 =
−1 +

√
1 + 4λf1

2λ
, û2 =

1 −√
1 − 4λf1

2λ
for 0 < λ <

2(f1 − f2)

(f1 + f2)2
,

û1 = û2 =
f1 + f2

2
for

2(f1 − f2)

(f1 + f2)2
≤ λ.

Assuming as above that fi = (1 − (−1)iν)u, we see that we have to choose λ ≥ ν
u to get the

original constant signal u. This means that λ must be chosen larger for smaller values of u.

SO-model. Shi and Osher [59] suggested to keep the data fitting term in (7) but to replace
the regularizer |u|BV by | log u|BV . Moreover, setting w := log u as in the log-model, this
results in the convex functional

ŵ = argmin
w∈BV

{
∫

Ω
fe−w + w dx+ λ|w|BV

}
, û = eŵ (8)

which overcomes the drawback of (7) as we will see by looking at our two-pixel model (5).
This model was also considered in paper [7] written in parallel to our manuscript.
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Example (Two-pixel signals). Let f1 ≥ f2 > 0. Then the solution of (5) is

û1 =
f1

1 + λ
, û2 =

f2

1 − λ
for 0 ≤ λ <

f1 − f2

f1 + f2
,

û1 = û2 =
f1 + f2

2
for

f1 − f2

f1 + f2
≤ λ.

For fi = (1− (−1)iν)u, the value u is reconstructed if λ ≥ ν which is independent of the size
of u.

Indeed, Shi and Osher considered a more general approach with data fitting term afe−w +
b
2f

2e−2w +(a+ b)w which includes also the model in [54], but b 6= 0 gives in general no better
results. Besides, the authors computed the corresponding relaxed inverse scale space flow to
further improve the quality of the restored image.

I-divergence model. In connection with deblurring in the presence of Poisson noise the
I-divergence, also called generalized Kullback-Leibler divergence

I(f, u) :=

∫

Ω
f log

f

u
− f + u dx

is typically used as data fitting term. The I-divergence is the Bregman distance [10] of the
Boltzmann-Shannon entropy. Therefore, it shares the useful properties of a Bregman distance,
in particular I(f, u) ≥ 0. Ignoring the constant terms, the corresponding convex denoising
model reads

û = argmin
u∈BV,u>0

{
∫

Ω
u− f log u dx+ λ|u|BV

}
. (9)

Having the MAP approach in mind, this model seems to be better related to Poisson noise
than to Gamma noise. This may be the reason why it was not considered for denoising, e.g.,
of SAR images up to now.

2.2 Relation between the SO-model and the I-divergence model

In this subsection, we will see that the minimizers ŵ and û of the functionals in the SO-model
(8) and the I-divergence model (9), resp., coincide in the sense that û = eŵ. Therefore, we
prefer to work with the well-examined I-divergence model in the subsequent sections, which
does not require to take finally the exponent of the minimizing function. Let us start with
some rough arguments to see the basic idea.

Remark 2.1. (An heuristic argument)
Since ∇ew = ew∇w we have for u = ew that ∇u(x) = 0 if and only if ∇w(x) = 0. If we
minimize over smooth functions, the minimizers ŵ and û of (8) and (9), resp., are given by

0 = 1 − fe−ŵ − λdiv
∇ŵ
|∇ŵ| , 0 = 1 − f

û
− λdiv

∇û
|∇û|

for |∇ŵ(x)| 6= 0 and |∇û(x)| 6= 0. Since ∇w
|∇w| = ew∇w

ew|∇w| = ∇u
|∇u| , we obtain that indeed û =

eŵ. Obviously, this approach works also for anisotropic TV regularizers, e.g., the functional
considered in [61].
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The above argumentation has two gaps. First, we have to use |u|BV instead of
∫
|∇u| dx in

BV . Second, the data fitting terms in (8) and (9) are not continuous over Lp, 1 ≤ p < ∞
and over BV . The rest of this subsection closes these gaps.

For a function f ∈ L∞(Ω), let fmin := ess infx f(x) and fmax := ess supx f(x). In the following,
we restrict our attention to functions f ∈ L∞(Ω) with fmin > 0.
Consider the integrands ϕ,ψ : Ω × R → [0,+∞] defined by

ϕ(x, s) := s+ f(x)e−s − log f(x) − 1, (10)

ψ(x, s) :=

{
s− f(x) log s+ f(x) log f(x) − f(x) for s > 0,
+∞ otherwise.

(11)

For integrands, properties like continuity, lower semi-continuity (l.s.c.), convexity and sub-
differentiability are understood with respect to the second variable. For fixed x ∈ Ω, the
functions ϕ and ψ have their minimum 0 in s = log f(x) and s = f(x), respectively. Fig. 1
shows the functions ϕ,ψ for f(x) ∈ {e−1, 1, e}.
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Figure 1: Left: The function ϕ(x, s) for f(x) = e−1 (dotted), f(x) = 1 (solid) and f(x) = e
(dashed). Middle: The function ψ(x, s) for the same values of f(x). Right: The function gk
for ak = −1 and bk = 1 (solid) and the exponential function (dashed).

The functionals Sϕ, Sψ : L1(Ω) → [0,+∞] given by

Sϕ(w) :=

∫

Ω
ϕ(x,w(x)) dx, Sψ(u) :=

∫

Ω
ψ(x, u(x)) dx

are proper. Since ϕ(x, ·) and ψ(x, ·) are normal and strictly convex, Sφ and Sψ are strictly
convex, too. Moreover, by [53] one has that

∂Sϕ(w) = {w∗ ∈ L∞ : w∗(x) ∈ ∂ϕ(x,w(x)) a.e. x ∈ Ω}

=

{
1 − fe−w for 1 − fe−w ∈ L∞,
∅ otherwise,

∂Sψ(u) = {u∗ ∈ L∞ : u∗(x) ∈ ∂ψ(x, u(x)) a.e. x ∈ Ω}

=

{
1 − f/u for u > 0 a.e. and 1 − f/u ∈ L∞,
∅ otherwise.

Hence, the equality
∂Sϕ(w) = ∂Sψ(ew)
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holds true. Since ϕ and ψ are nonnegative, the functionals Sφ and Sψ are l.s.c., see [26, p.
239]. Note that there exist Cφ, Cψ > 0 and Dφ,Dψ > 0 such that

ϕ(x, s) ≥ Cϕ|s| −Dϕ and ψ(x, s) ≥ Cψ|s| −Dψ. (12)

Choose for example a < min{0, log(fmin)} and b > max{0, log(fmax)}, set
Ca := 1 − fmine

−a < 0, Cb := 1 − fmaxe
−b > 0 and wa := a + fmine

−a − log(fmin) − 1,
wb := b + fmaxe

−b − log(fmax) − 1, ub := eb − fmaxb + fmax log(fmax) − fmax and take Cϕ =
min{|Ca|, Cb}, Cψ = Cb and Dϕ = max{Caa− wa, Cbb− wb}, Dψ = Cbe

b − ub.
By properties of |·|BV , see, e.g., [29], we obtain that the functionals Tϕ, Tψ : BV (Ω) → [0,+∞]
defined by

Tϕ(w) := Sϕ(w) + λ|w|BV , Tψ(u) := Sψ(u) + λ|u|BV (13)

are also proper, l.s.c. and strictly convex. By the following lemma, the functionals Tϕ and Tψ
are BV -coercive such that by [29, p. 176] there exists a minimizer of both functionals which
is unique due to their strict convexity.

Lemma 2.2. Let f ∈ L∞(Ω) with fmin > 0. Then Tϕ and Tψ are BV -coercive.

Proof: Since the following arguments are the same for Tϕ and Tψ, we consider only the later
one. By the Poincaré inequality [3, p. 302] there exists a constant CP such that

‖u− ū‖L1 ≤ CP |u|BV , ū :=
1

µ(Ω)

∫

Ω
u(x) dx,

where µ denotes the Lebesgue measure on R
2. We obtain further

‖u‖L1 ≤ ‖u− ū‖L1 + |ū|µ(Ω) ≤ CP |u|BV + |ū|µ(Ω),

‖u‖BV ≤ (CP + 1)|u|BV + |ū|µ(Ω) ≤ C Tψ(u) + |ū|µ(Ω),

where C := (CP + 1)/λ. By (12), we see that

Sψ(u) ≥ Cψ

∫

Ω
|u(x)| dx −Dψ µ(Ω) ≥ µ(Ω)(Cψ|ū| −Dψ)

and consequently

|ū| ≤ 1

µ(Ω)Cψ
Sψ(u) +

Dψ

Cψ
≤ 1

µ(Ω)Cψ
Tψ(u) +

Dψ

Cψ
.

Finally, we get
‖u‖BV ≤ (C + 1/Cψ)Tψ(u) + µ(Ω)Dψ/Cψ. �

For another proof of the BV coercivity of Tψ see [11]. We will need the facts from the following
theorem.

Theorem 2.3. i) Let h : R → R be a non-decreasing and Lipschitz continuous function. Let
u ∈ BV (Ω). Then h(u) ∈ BV and ∂R(u) ⊂ ∂R(h(u)).
ii) Let φ : Ω× R → (−∞,+∞] be a measurable function. Assume that there exists a nonneg-
ative function γ ∈ L1(Ω), a constant C > 0 and 1 ≤ p <∞ such that

|φ(x, s)| ≤ C|s|p + γ(x) a.e. x ∈ Ω, ∀s ∈ R. (14)

Then the functional Sφ is Lp continuous if and only if φ(x, ·) (or equivalent integrands) is
continuous a.e. x ∈ Ω.
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For the proof of i) see [57, p. 148] and for ii) see [31, p. 442]. For i) with locally absolutely
continuous functions h see [41].
The final theorem of this subsection is a special instance of a more general theorem proved by
M. Grasmair in [41]. We found it useful to give this simplified version for our special setting.

Theorem 2.4. Let Tϕ and Tψ be given by (13), where f ∈ L∞(Ω) with fmin > 0. Then ŵ is
the minimizer of Tϕ if and only if û = eŵ is the minimizer of Tψ.

Proof: We show that ŵ = argminw Tϕ(w) implies eŵ = argminu Tψ(u). The reverse direction
follows since the minimizers are unique.
The idea is to approximate the integrands ϕ,ψ and the exponential function by some ’nicer’
functions for which the ’adapted’ assertion follows immediately by Theorem 2.3 and to apply
Γ-convergence arguments to get the final result.
1. To this end, choose a sequence of increasing intervals [ak, bk] ⊂ [ak+1, bk+1] such that
⋃

k[ak, bk] = R and ak < min{0, log(fmin)}, bk > max{0, log(fmax)} for all k ∈ N. Let

ξk(x) := 1 − f(x)e−ak < 0, ζk(x) := 1 − f(x)e−bk > 0

and ξk := ess infx ξk(x) > −∞, ζk := ess supx ζk(x) < ∞. Now we define the truncated
continuous integrands for a.e. x ∈ Ω by

ϕk(x, s) :=







ϕ(x, ak) + ξk(x)(s − ak) if s < ak,
ϕ(x, s) if s ∈ [ak, bk],
ϕ(x, bk) + ζk(x)(s − bk) if s > bk,

ψk(x, s) :=







ψ(x, eak ) + ξk(x)(s − eak) if s < eak ,
ψ(x, s) if s ∈ [eak , ebk ],
ψ(x, ebk ) + ζk(x)(s − ebk) if s > ebk .

Let
Tϕ,k(w) := Sϕk

(w) + λ|w|BV , Tψ,k(u) := Sψk
(u) + λ|u|BV .

For any k ∈ N, these functionals are proper, l.s.c., convex. Moreover, by the same arguments
as in the proof of Lemma 2.2, we see that

Tϕ,k(w) ≥ C1‖w‖BV −D1, Tψ,k(u) ≥ C2‖u‖BV −D2 ∀k ∈ N (15)

for some C1, C2,D1,D2 > 0 so that the functionals are equi-coercive on BV . Recall that a
sequence {Tk}k is equi-coercive on a metric space X if and only if there exists a l.s.c., coercive
function F : X → (−∞,+∞] such that Tk ≥ F for all k, see [21, Proposition 7.7]. Hence,
there exist minimizers ŵk and ûk of Tϕ,k and Tψ,k, respectively.
Since f ∈ L∞ with fmin > 0, the functions ϕk fulfill condition (14) with Ck := max{|ξk|, ζk},
p = 1 and γk := ϕk(·, 0) ∈ L1(Ω). Therefore, we have by Theorem 2.3 ii) that Sϕk

is
continuous on L1 (and on BV ). Set

gk(s) :=







eak + eak(s− ak) if s < ak,
es if s ∈ [ak, bk],
ebk + ebk(s− bk) if s > bk,

see Fig. 1 (right). This truncated exponential function is a non-decreasing Lipschitz con-
tinuous function, so that we get by 2.3 i) that ∂|w|BV ⊂ ∂|gk(w)|BV for all w ∈ BV (Ω).
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Further, one can check by straightforward computation that ∂ϕk(x, s) = ∂ψk(x, gk(s)) so
that ∂Sϕk

(w) = ∂Sψk
(gk(w)). Thus, we obtain by [26, p. 26] that

∂Tϕ,k(w) = ∂Sϕk
(w) + λ∂|w|BV ⊂ ∂Sψk

(gk(w)) + λ∂|gk(w)|BV ⊂ ∂Tψ,k(gk(w)).

Now ŵk is a minimizer of Tϕ,k iff 0 ∈ ∂Tϕ,k(ŵk). Hence, if ŵk is a minimizer of Tϕ,k, then
ûk = gk(ŵk) is a minimizer of Tψ,k.
2. The sequences {ϕk(x,w(x))}k and {ψk(x, u(x))}k are increasing sequences of nonnegative
functions and

lim
k→∞

ϕk(x,w(x)) = ϕ(x,w(x)), lim
k→∞

ψk(x, u(x)) = ψ(x, u(x)) a.e. x ∈ Ω,

so that by the Monotone Convergence Theorem

lim
k→∞

Sϕk
= Sϕ, lim

k→∞
Sψk

= Sψ.

Since {ϕk(x,w(x))}k and {ψk(x, u(x))}k are increasing we see that {Tϕ,k}k and {Tψ,k}k are
increasing sequences, too. Therefore we have by [8, p. 35] that

Γ− lim
k→∞

Tϕ,k = lim
k→∞

Tϕ,k = Tϕ, Γ− lim
k→∞

Tψ,k = lim
k→∞

Tψ,k = Tψ. (16)

3. By the Γ-convergence (16) and since the functionals Tϕ,k and Tψ,k are equi-coercive it
follows that Tϕ,k(ŵk) → Tϕ(ŵ) and Tψ,k(gk(ŵk)) → Tϕ(û) and that each cluster point of
{ŵk}k is ŵ and of {gk(ŵk)}k is û, see [8, p. 29].
4. Let {ŵn}n∈I , {gn(ŵn)}n∈I , I ⊂ N, be subsequences converging in L1 to ŵ and û, resp. By
[2, Theorem 13.6], there exists a subsequence {ŵm}m∈I1 , I1 ⊂ I which converges a.e. to ŵ.
Then by construction of gm, we have that gm(ŵm) converges a.e. to eŵ. On the other hand,
we know that gm(ŵm) converges in L1 to û. Hence, there is a subsequence {gk(ŵk)}k∈I2 ,
I2 ⊂ I1 which converges a.e. to û and consequently û = eŵ a.e. �

3 Discrete denoising model

In the following, we work within a discrete setting, i.e., we consider columnwise reshaped
image vectors f ∈ R

n. Products, quotients etc. of vectors are meant componentwise. By
D ∈ R

mn,n we denote either

i) some discretization of the gradient operator as, e.g., those in [14, 60] with m = 2, see
(36), or

ii) the NL-means operator with binary weights introduced in [37] with m associated to the
number of permitted neighbors, see Section 5. Note that as in i) the rows of D contain
exactly one entry −1 and one entry 1 or are zero rows.

Further, for p := (p1, . . . ,pm)T ∈ R
mn with pk := (pj+(k−1)n)

n
j=1 we use the notation |p| :=

(p2
1 + . . . + p2

m)1/2 ∈ R
n. We ask for the minimizer û of the discrete model

min
u∈Rn

{
Ψ(u) + λφ(Du)

︸ ︷︷ ︸

Φ(u)

}
, (17)
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with

Ψ(u) :=

{
〈1, u− f log u〉 if u > 0,

∞ otherwise
and φ(p) := ‖ |p| ‖1. (18)

If D is given by i) then we refer to (17) as I-divergence - TV model and if D is determined by
ii) we call it I-divergence - NL-means model. The functional in (17) is proper, l.s.c., coercive
and strictly convex on its domain. Therefore, there exists a unique minimizer. The dual
problem of (17) reads

− min
p∈Rmn

{
Ψ∗(−D∗p) + λφ∗(λ−1p)

}
(19)

with the conjugate functions

Ψ∗(v) =

{
−〈f, log(1 − v)〉 + 〈f, log f − 1〉 if v < 1,

∞ otherwise
and φ∗(p) = ιC(p),

where

ιC(p) :=

{
0 if p ∈ C,
∞ otherwise

denotes the indicator function of C := {p ∈ R
mn : ‖ |p| ‖∞ ≤ 1}. There is no duality gap, i.e.,

(17) and (19) take the same value and the minimizers are related by

û = f/(1 +D∗p̂). (20)

The following proposition describes properties of the minimizer of (17).

Proposition 3.1. The solution û of (17) has the following properties:

i) Minimum-maximum principle:

fmin ≤ ûi ≤ fmax for all i = 1, . . . , n,

where fmin and fmax denote the values of the smallest and largest coefficient of f .

ii) Averaging property:

1

n

n∑

i=1

fi
ûi

= 1.

The second property is desirable by (1) and since the mean of η is 1.

Proof: i) The first property follows in the same way as in [4, Theorem 4.1]. We have only to
verify the relations

Φ
(
min(u, fmax)

)
≤ Φ(u), Φ

(
max(u, fmin)

)
≤ Φ(u).

By the structure of φ and D, we see that Φ(u) contains only summands of the form (ui−uj)2.
Thus it remains to show that

|ui − uj| ≥ |min(ui, fmax) − min(uj, fmax)|,
|ui − uj| ≥ |max(ui, fmin) − max(uj , fmin)|.
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The case ui = uj is trivial so that we assume ui > uj . If fmax ≥ ui or uj ≥ fmax, resp.
fmin ≥ ui or uj ≥ fmin we are done. For ui > fmax > uj , the first inequality becomes
|ui − uj| ≥ |fmax − uj | which is true since fmax > 0. Similarly, we get for ui > fmin > uj the
correct inequality |ui − uj| ≥ |ui − fmin|.
ii) The second property follows from (20) and since 1TD∗ = 0. Namely, we have

1

n

n∑

i=1

fi
ûi

=
1

n

n∑

i=1

fi
fi/(1 + (D∗p̂)i)

= 1 +
1

n

n∑

i=1

(D∗p̂)i = 1. �

The following proposition deals with the SO-model versus our I-divergence model in the
discrete setting.

Proposition 3.2. Let D ∈ R
mn,n be a matrix which rows are zero rows or contain exactly

one entry 1 and one entry −1. Then, in the case m = 1, the minimizer û of (17) coincides
with eŵ, where ŵ is the minimizer of the discrete SO-model

ŵ := argmin
w∈Rn

{〈1, fe−w +w〉 + λφ(Dw)}. (21)

Proof. We have that û and ŵ are the minimizers of (17) and (21), resp., if and only if

0 ∈ 1 − f

û
+ λD∗∂φ(Dû),

0 ∈ 1 − f e−ŵ + λD∗∂φ(Dŵ).

If û = eŵ, then 1 − f
û = 1 − f e−ŵ. Next we have a look at the subdifferentials. It is well-

known, see, e.g., [3] for the continuous case, that v ∈ ∂φ(Dw) if and only if v = D∗p for some
p ∈ R

mn and
〈p,Dw〉 = φ(Dw), ‖ |p| ‖∞ ≤ 1.

The equality can be rewritten as

n∑

i=1

m−1∑

j=0

pi+jn(Dw)i+jn =

n∑

i=1

(
m−1∑

j=0

(Dw)2i+jn
)1/2

.

Set di := ((Dw)i+jn)
m−1
j=0 , i = 1, . . . , n. Applying the Cauchy-Schwarz inequality to the inner

sums on the left hand side, we see with ‖ |p| ‖∞ ≤ 1 that

n∑

i=1

|
m−1∑

j=0

pi+jn(Dw)i+jn| ≤
n∑

i=1

(
m−1∑

j=0

p2
i+jn

)1/2 ‖di‖2 ≤
n∑

i=1

‖di‖2

where equality holds true if and only if for each i ∈ {1, . . . , n} one of the following settings
appears:

i) ‖di‖2 = 0 and (pi+jn)
m−1
j=0 arbitrary with

∑m−1
j=0 p2

i+jn ≤ 1 or

ii) ‖di‖2 6= 0 and (pi+jn)
m−1
j=0 = αdi,

∑m−1
j=0 p2

i+jn = 1. The last two equalities imply that
α = 1/||di‖2 so that pi+jn = (Dw)i+jn/‖di‖2, j = 0, . . . ,m− 1.
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Since the exponential function is strictly monotone, the case i) appears for Dŵ if and only if
it appears also for Deŵ. In the second case, if the (i+ jn)–th row of D contains 1 at column
(i+ jn)1 and −1 at column (i+ jn)2, we get that

pi+jn =
ŵ(i+jn)1 − ŵ(i+jn)2

(∑m−1
j=0 (ŵ(i+jn)1 − ŵ(i+jn)2)

2
)1/2

, for w := ŵ

pi+jn =
eŵ(i+jn)1 − eŵ(i+jn)2

(∑m−1
j=0 (eŵ(i+jn)1 − eŵ(i+jn)2 )2

)1/2
, for w := eŵ.

If m = 1, then the right-hand sides are just sgn (ŵ(i+jn)1 − ŵ(i+jn)2), resp., sgn
(
eŵ(i+jn)1 −

eŵ(i+jn)2

)
and coincide since the exponential function is strictly monotone increasing. This

finishes the proof. �

Note that the proof shows that the discrete models are also identical for m ≥ 2 in the
anisotropic setting φ(p) := ‖p‖1.

4 Minimization by Douglas-Rachford splitting

4.1 Douglas-Rachford splitting and ADMM

We consider problems of the form

min
u∈Rn

{
Ψ(u) + λφ(Du)

︸ ︷︷ ︸

Φ(u)

}
, (22)

where Ψ : R
n → (∞,+∞] and φ : R

mn → (∞,+∞] are proper, l.s.c., convex and D ∈ R
mn,n,

as well as their dual problems

− min
p∈Rmn

{
Ψ∗(−D∗p) + λφ∗(λ−1p)

}
. (23)

By Fermat’s rule we know that p̂ is a minimizer of (23) if and only if

0 ∈ ∂ (Ψ∗ ◦ (−D∗)) (p̂) + ∂φ∗(λ−1p̂). (24)

Since Ψ∗ and φ∗ are proper, l.s.c. and convex, the (in general) set-valued operators
∂ (Ψ∗ ◦ (−D∗)) and ∂φ∗ are maximal monotone, see [5]. The second operator is indeed
set-valued. For a maximal monotone operator A, the resolvent JA := (I + A)−1 of A is
single-valued and firmly non-expansive, see [5]. Inclusions of the form (24) can be solved
by various splitting techniques like forward-backward splitting or Douglas-Rachford splitting
(DRS), see [25, 48]. In this paper, we focus on the DRS because it leads to an efficient
algorithm. Note that DRS was first considered in [23] for linear operators.

Theorem 4.1. Let H be a Hilbert space and A,B : H → 2H maximal monotone operators.
Assume that a solution p̂ of

0 ∈ A(p) +B(p)

exists. Then, for any initial elements t(0) and p(0) and any η > 0, the following DRS algorithm
converges weakly to an element t̂:

t(k+1) = JηA(2p(k) − t(k)) + t(k) − p(k),

p(k+1) = JηB(t(k+1)).
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Furthermore, it holds that p̂ := JηB(t̂) satisfies 0 ∈ A(p̂) + B(p̂). If H is finite dimensional,
then the sequence

(
p(k)
)

k∈N
converges to p̂.

For the proof see, e.g., [16]. Note that the iterates in the DRS need not to be computed
exactly. Their convergence is also ensured if we allow summable errors, cf., [25].

The DRS applied to the dual problem (24) is related to the ADMM. To introduce this algo-
rithm we consider the equivalent problem of (17)

min
u∈Rn,d∈Rmn

{Ψ(u) + λφ(d)
︸ ︷︷ ︸

E(u,d)

} subject to d = Du

and apply the augmented Lagrangian method to compute the minimizer iteratively by

(u(k+1), d(k+1)) = argmin
u∈Rn,d∈Rmn

{
E(u, d) + 〈b(k),Du− d〉 +

1

2γ
‖Du− d‖2

2

}

= argmin
u∈Rn,d∈Rmn

{
E(u, d) +

1

2γ
‖γ b(k) +Du− d‖2

2

}
,

b(k+1) = b(k) +
1

γ
(Du(k+1) − d(k+1)), γ > 0.

If we replace b(k) by b(k)/γ, this method is also known in image processing as split Bregman
algorithm, see [13, 32, 39, 62, 65]. Since the first functional is in general hard to minimize,
one uses instead the following alternating split Bregman algorithm (25) - (27). As pointed
out by Esser in [27], this algorithm can be traced back to the ADMM proposed in [34, 38].
Therefore, we will refer to this algorithm as ADMM:

Algorithm

u(k+1) = argmin
u∈Rn

{
Ψ(u) +

1

2γ
‖b(k) +Du− d(k)‖2

2

}
, (25)

d(k+1) = argmin
d∈Rmn

{
φ(d) +

1

2γλ
‖b(k) +Du(k+1) − d‖2

2

}
, (26)

b(k+1) = b(k) +Du(k+1) − d(k+1). (27)

The convergence of d(k) and b(k) is ensured by Theorem 4.1 and the following proposition
from [25, 33], see also [58].

Proposition 4.2. The above ADMM coincides with the DRS algorithm applied to the dual
problem with A := ∂(Ψ∗ ◦ (−D∗)) and B := ∂φ∗(λ−1·), where η = 1/γ and

t(k) = η(b(k) + d(k)), p(k) = ηb(k), k ≥ 0. (28)

Moreover, the convergence of {u(k)}k∈N defined in (25) to a solution of the primal problem
is guaranteed if the primal problem has a unique minimizer or if argminu∈Rn{Ψ(u) + 1

2γ ‖b̂+

Du− d̂‖2
2

}
has a unique solution.
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4.2 ADMM for the I-divergence - TV/NL-means model

First, we apply the ADMM to our setting in (18). By the simple structure of φ in (18), the
solution of (26) is given by

d(k+1) = Tγλ(b
(k) +Du(k+1)),

where Tτ denotes the coupled shrinkage function, which is determined componentwise for
p = (p1, . . . ,pm)T ∈ R

mn with pk := (pj+(k−1)n)
n
j=1 by

Tτ (pj+(k−1)n) :=

{
0 if |p|j ≤ τ,
pj+(k−1)n − τpj+(k−1)n/|p|j if |p|j > τ,

see, e.g., [15, 64].
In contrast to the original problem (17), the functional (25) in the ADMM has a quadratic
penalizer which is differentiable. Setting the gradient to zero, we see that w is a solution of
(25) if w > 0 satisfies

0 = 1 − f

w
+

1

γ

(

D∗Dw +D∗(b(k) − d(k))
)

, (29)

0 = γw − γf + wD∗Dw − wD∗(d(k) − b(k)). (30)

This nonlinear system of equations can be solved in various ways, e.g., by Newton- or Newton-
like methods if a good initial guess exists or by applying DRS again as in the following remark,
see also [17].

Remark 4.3. We apply DRS in (29) with

A(w) :=
1

γ

(
D∗Dw +D∗(b(k) − d(k))

)
, B(w) := 1 − f

w

and obtain

v = (I + ηA)w = w +
η

γ

(
D∗Dw +D∗(b(k) − d(k)

)
,

⇔ w = JηA(v) = (I +
η

γ
D∗D)−1

(
v − η

γ
D∗(b(k) − d(k))

)

and

v = (I + ηB)w = w + η
(
1 − f

w

)
⇔ w = JηB(v) =

(
v − η +

√

(v − η)2 + 4ηf
)
/2.

Note that this formula guarantees that w is positive. However, the convergence of the algorithm
is rather slow.

We propose to solve (30) by an efficient method which can be deduced directly from (30) by
adding τ w for some τ ≥ 0 to both sides of the equation and using a semi-implicit iterative

version. Let Λw(k) := diag
(
(w

(k)
j )nj=1

)
.

Initialization: w(0) := u(k)

For j = 0, 1, . . . solve until a stopping criterion is reached

(
(τ + γ)I + Λw(j) D∗D

)
w(j+1) := γf + w(j)

(
D∗(d(k) − b(k)) + τ 1

)
.
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By the following theorem, the sequence produced by this process converges for sufficiently
large τ ≥ 0 to the solution w > 0 of (30). To this end, note that for our matrices D, the
matrix A := D∗D is a positive semidefinite L-matrix, i.e., all diagonal elements of A are
positive while all non-diagonal elements are not. For the NL-means matrix D = (d1 . . . dn)
this can be seen since the entries of A are aii = ‖di‖2

2 and aij = 〈di, dj〉 and the positions of
the entries −1 and 1 in di cannot match those of the same entries in dj for i 6= j.

Theorem 4.4. Let A ∈ R
n,n be a positive semidefinite L-matrix and let c ∈ R

n and γ > 0 be
given. Then, for sufficiently large τ ≥ 0 and w(0) > 0, the sequence {w(j)}j∈N0 produced by

(
(τ + γ)I + Λw(j) A

)
w(j+1) = γf + w(j) (c+ τ 1) (31)

fulfills w(j) > 0 and converges Q-linearly to the solution w > 0 of

0 = γw − γf + wAw − w c. (32)

Note that in our application c is fixed but may depend on γ.

Proof. 1. First, we show that we can obtain a componentwise positive sequence {w(j)}j∈N0

for sufficiently large τ . To this end, choose τ ≥ 0 such that the vector on the right-hand side
of (31) has only positive entries; take for example τ := −minj cj if c has negative components
and τ = 0 otherwise. Since w(j) > 0, the matrix on the left-hand side of (31) is a strictly
(row) diagonal dominant L-matrix and therefore an M -matrix, i.e., the inverse matrix exists
and has only nonnegative entries. Thus, if w(j) > 0, then the same holds for w(j+1), i.e., for
the whole sequence {w(j)}j∈N0 if we start with w(0) > 0.
2. Next, we show that ‖w − w(j)‖∞ decreases with j. By (31) and (32) we obtain with
Aw := Λw A and Aj := Λw(j) A that

(
(τ + γ)I +Aw

)
w −

(
(τ + γ)I +Aj

)
w(j+1) = (c+ τ 1) (w − w(j)),

(τ + γ)(w −w(j+1)) +Aw w −Aj w
(j+1) = (c+ τ 1) (w − w(j))

and since

Aw w −Aj w
(j+1) = Aw w −Aj w +Aj w −Aj w

(j+1)

= (w − w(j))Aw + Aj(w − w(j+1))

this can be rewritten as
(
(τ + γ)I +Aj

)
(w − w(j+1)) = (Aw − c− τ 1) (w(j) − w).

Further, we see by (32) that Aw − c = γ(f/w − 1) so that
(
(τ + γ)I +Aj

)
(w − w(j+1)) = (γ(f/w − 1) − τ 1) (w(j) − w),

(
I +

1

τ + γ
Aj
)
(w − w(j+1)) =

τ 1 − γ(f/w − 1)

τ + γ
(w − w(j)). (33)

For τ > γ (1
2 ‖f/w‖∞ − 1) we obtain that

‖τ 1 − γ(f/w − 1)‖∞
τ + γ

< 1. (34)

15



Since A is a positive semidefinite L-matrix, it is (row) diagonal dominant and consequently
the vector y defined by

(I +
1

τ + γ
Aj) 1 = 1 +

1

τ + γ
Λw(j) A 1

︸ ︷︷ ︸

y

fulfills y ≥ 0. Hence,

1 = (I +
1

τ + γ
Aj)

−1 1 + (I +
1

τ + γ
Aj)

−1 y

and regarding that (I + 1
τ+γAj)

−1 has only nonnegative entries, we see that the sum of the

row entries of (I + 1
τ+γAj)

−1 is never larger than 1. Together with (33) and (34) this implies

‖w − w(j+1)‖∞ ≤ α ‖w − w(j)‖∞, α < 1,

so that the algorithm converges Q-linearly. �

Remark 4.5. The proof of Theorem 4.4 poses two conditions on τ . In our practical appli-
cations these conditions can be relaxed to τ = 0 in most cases by the following reasons: If
f/w − 1 ∈ (−1, 1), i.e., 0 < f/w < 2, then τ = 0 > γ (1

2 ‖f/w‖∞ − 1). Indeed, this setting is
realistic, since f is approximately a noisy variant of w, i.e., (1−ǫ)w ≤ f ≤ (1+ǫ)w, ǫ ∈ (0, 1).
The first condition on τ that the right-hand side in (31) is positive may lead to large numbers
τ so that the convergence factor α ≈ 1 and the convergence is very slow. However, it follows
directly from the proof that a fast convergence is guaranteed as long as w(j) remains positive
during the iteration process.

In summary, we finally end up with the following algorithm:

Algorithm

Initialization: d(0) := Df , b(0) := 0.
For k = 0, 1, . . . repeat until a stopping criterion is reached

Set u(k+1) to be the final iterate of

Initialization: w(0) := u(k)

For j = 0, 1, . . . solve until a stopping criterion is reached

(
(τ + γ)I + Λw(j) D∗D

)
w(j+1) := γf + w(j)

(
D∗(d(k) − b(k)) + τ 1

)
.

d(k+1) := Tγλ(b
(k) +Du(k+1))

b(k+1) := b(k) +Du(k+1) − d(k+1)

Up to now we have considered the ADMM with respect to the splitting

(I) Ψ(u) + λφ(d) subject to d = Du,

which requires in

• Step 1: the solution of a nonlinear system of equations,
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• Step 2: coupled shrinkage.

Other splittings are possible as

(II) Ψ(u) + λΦ(v) subject to v = u.

(III) 〈0, v〉 + Ψ(u) + λφ(d) subject to

(
u
d

)

=

(
I
D

)

v.

The ADMM for (II) reads

u(k+1) = argmin
u∈Rn

{
Ψ(u) +

1

2γ
‖b(k) + u− v(k)‖2

2

}
,

v(k+1) = argmin
v∈Rmn

{
Φ(v) +

1

2γλ
‖b(k) + u(k+1) − v‖2

2

}
,

b(k+1) = b(k) + u(k+1) − v(k+1)

and can be tackled as follows:

• Step 1: This minimization problem can be decoupled and then solved componentwise
by

u(k+1) =
1

2

(
v(k) − b(k) − γ +

√

(v(k) − b(k) − γ)2 + 4γf
)

(35)

Note that u(k+1) is nonnegative.

• Step 2: Here one has to solve an ’ordinary’ L2-TV minimization problem. This can be
realized in different ways, e.g., by the simple gradient descent reprojection algorithm in
[15] or by faster multistep algorithms [6, 50, 63].

Parallel to this paper, the splitting (II) was proposed for the SO-model by Bioucas-Dias and
Figueiredo in [7]. For the function Ψ of the SO-model, Step 1 can also be decoupled and
a componentwise analytical solution can be given in terms of the Lambert W function, see,
e.g., [18]. However, the authors in [7] suggested better to apply a Newton method here.
In connection with blurred Poissonian images this kind of splitting was used by the same
authors in their so-called PIDAL (Poissonian image deconvolution by augmented Lagrangian)
algorithm [30].

The ADMM for (III) reads

v(k+1) = argmin
v∈Rn

{ 1

2γ
‖
(

b
(k)
1

b
(k)
2

)

+

(
I
D

)

v −
(
u(k)

d(k)

)

‖2
2

}
,

(
u(k+1)

d(k+1)

)

= argmin
u∈Rn,d∈Rmn

{
Ψ(u) + λφ(d) +

1

2γ
‖
(

b
(k)
1

b
(k)
2

)

+

(
I
D

)

v(k+1) −
(
u
d

)

‖2
2

}
,

b(k+1) = b(k) +

(
I
D

)

v(k+1) −
(
u(k+1)

d(k+1)

)

and requires in

• Step 1: the solution of a linear system of equations

v(k+1) = (I +DTD)−1
(

u(k) − b
(k)
1 +DT(d(k) − b

(k)
2 )
)

.

17



• Step 2: Here the minimization with respect to u and d can be decoupled. As already
discussed above, u(k+1) can be computed componentwise by

u(k+1) =
1

2

(

b
(k)
1 + v(k+1) − γ +

√
(

b
(k)
1 + v(k+1) − γ

)2
+ 4γf

)

,

where nonnegativity is ensured and d(k+1) follows by the coupled shrinkage

d(k+1) = Tγλ(b
(k)
2 +Dv(k+1)).

This third splitting has the advantage that it requires no inner loops. It was already mentioned
in [27] that ’multiple’ splittings as (III) can be useful in various applications.

5 Numerical Results

For our numerical examples we use MATLAB implementations. All images are depicted in the
interval [0, 255]. We restrict our attention to multiplicative noise η which follows a Gamma
distribution with density function

g(x) :=
LL

Γ(L)
xL−1 exp(−Lx) 1x≥0(x).

Hence, η has mean 1 and standard deviation σ = 1/
√
L.

In our regularization terms we use the following matrices D:

i) For the discrete TV functional we use

D :=

(
I ⊗D0

D0 ⊗ I

)

, D0 :=










−1 1
0 −1 1

. . .
. . .

−1 1
0










, (36)

where ⊗ denotes the tensor product (Kronecker product) of matrices. In our 1D
computations, D is just the matrix D0 without its last row.

ii) For the discrete NL-means functional we apply the following construction: Initially, we
start with a zero weight matrix w. For every image pixel i = (i1, i2), we compute for
all j = (j1, j2) within a search window of size ω × ω around i the distances

da(i, j) :=

⌈ p−1
2

⌉
∑

t1=−⌈ p−1
2

⌉

⌈ p−1
2

⌉
∑

t2=−⌈ p−1
2

⌉

Ga(t1, t2)
(
h(i1 + t1, i2 + t2) − h(j1 + t1, j2 + t2)

)2
, (37)

where h := log(f) and Ga denotes the discretized, normalized Gaussian with standard
deviation a. We refer to p as the patch size. Then, for given m̃ we select k ≤ m̃
so-called ’neighbors’ j 6= i of i for which da(i, j) takes the smallest values and set
w(i, j) = w(j, i) := 1. By setting w(i, j) = w(j, i) it happens that several weights w(i, ·)
are already non-zero before we reach pixel j. To avoid that the number of non-zero
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weights becomes too large, we choose only k = min{m̃, 2m̃ − l} neighbors for l being
the number of non-zero weights w(i, ·) before the selection. Now, with regard to (4) and
(17) we construct the matrix D ∈ R

mn,n with m = 2m̃ so that D consists of m blocks
of size n × n, each having −1 as diagonal elements plus one additional nonzero value
1 in each row whose position is determined by the nonzero weights w(i, j) and maybe
some zero rows.
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Figure 2: Left: Original signal. Middle: Noisy signal with Gamma noise of standard deviation
0.2. Right: Denoised signal by the I-divergence - TV model with λ = 0.52.

Our first example in Fig. 2 shows a restored 1D signal. The signal and noise level were
chosen in accordance with the experiments in [59]. Although the I-divergence - TV model
was originally designed for Poisson noise, it restores the signal quite nicely except for the
usual staircasing artifacts typical for TV regularization.
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Figure 3: Influence of γ on the number of iterations needed by the ADMM corresponding to
splitting (I) (with τ = 0) to compute the restored signal u on the right of Fig. 2 up to a
maximal error per pixel of ε = 1 (left) and ε = 0.01 (right).

To illustrate the influence of the parameter γ on the speed of the different algorithms we
included Fig. 3. For the noisy signal given in Fig. 2 (left) we iterated the ADMM corre-

sponding to splitting (I) with λ = 0.52 and τ = 0 until maxi |û − u
(k)
i | < ε for a sufficiently

converged reference result û. In all our experiments it was sufficient to iterate the inner loop
only once per outer iteration. The plots show the necessary numbers of iterations for different
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values of γ. Interestingly, the curves increase linearly on the right of the minima. On the left
the shape resembles 1/x. Moreover, the optimal value of γ depends on the chosen ε: For a
smaller value ε the optimal γ is also smaller. These observations could also be confirmed by
2D examples and are equally true for the other two splittings.

Figure 4: Left: Reproduction of a test image in [4]. Middle: Noisy image corrupted by Gamma
noise for σ = 1 (L = 1). Right: Denoised image by the I-divergence - TV model with λ = 2.5.

Our next example in Fig. 4 illustrates the performance of the I-divergence - TV model in 2D.
Here, the image on the left is a reproduction of a synthetic test image in [4]. Compared to
the results given in [4] our denoising result looks very promising.
Next, we applied the I-divergence - TV model and the I-divergence - NL-means model to
restore a part of the ’Barbara’ image corrupted by Gamma noise of standard deviation 0.2
(L = 25). The figure and the noise level were chosen to keep the experiments comparable
with the ones in [59]. As expected, the denoised image by the I-divergence - NL-means model
is significantly better than the result obtained by the I-divergence - TV model due to the
semi-local adaptivity of the NL-means matrix D.
With respect to the computational speed of the different algorithms, the ADMM for (I) with
τ = 0 and the ADMM for (III) outperform in general the algorithm corresponding to (II) for
optimized γ. This is because in all our tests it took much more time to solve a complete L2-TV
problem in each iteration than to compute the solution of one of the involved linear systems
of equations. The performance of the ADMMs corresponding to (I) and (III) depends mainly
on the applied solver. In general, we used a CG method. Note that the involved matrices are
always sparse. For the I-divergence - TV model with D defined in (36), the matrix I +DTD
occurring in the ADMM belonging to (III) has the advantage of being efficiently invertible
by the discrete cosine transform. In this case, the ADMM for (III) performs best.
To present further examples, Fig. 6 shows the restoration results for a part of the ’Cameraman’
image with a higher noise level of standard deviation 0.5 (L = 4) and in Fig. 7 we applied
our methods also to a real-world SAR image. Note that by the construction of the NL-means
matrix D the weights are always computed with respect to the logarithm of the corrupted
image. While we were preparing the final version of this paper, we got to know about the
parallel work [22] of Deledalle et al., who propose an iterated non-local means filter with
probabilistic patch-based weights adapted to SAR images.
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Figure 5: Top: Original image (left) and noisy version corrupted by Gamma noise of standard
deviation 0.2 (L = 25) (right). Bottom: Denoised image by the I-divergence - TV model with
λ = 0.2 (left) and the result by the I-divergence - NL-means model with λ = 0.12, a = 3,
p = 9, ω = 11 and m̃ = 5 (right).

6 Conclusion

We have examined theoretically and numerically the suitability of the I-divergence - TV model
as well as the I-divergence - NL-means model for restoring images contaminated by multiplica-
tive Gamma noise. Furthermore, we showed how to efficiently solve the involved minimization
problems by applying Douglas-Rachford splitting techniques, resp. the alternating direction
method of multipliers. Numerical speed comparisons as well as theoretical examinations of
the influence of the parameter γ on the ADMM, more sophisticated NL-means constructions
and anisotropic functionals for handling non-additive noise are topics of future research.
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draft of [41] available, to M. Sigelle and F. Tupin (Telecom ParisTech, Paris) for providing us
with the image in Fig. 7 and to S. Setzer for fruitful discussions.
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Figure 6: Top: Original image (left) and noisy version corrupted by multiplicative Gamma
noise of standard deviation 0.5 (L = 4) (right). Bottom: Restored image by the I-divergence
- TV model with λ = 0.9 (left) and the result by the I-divergence - NL-means model with
λ = 0.6, a = 1.5, p = 5, ω = 21 and m̃ = 5 (right).
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d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9(2):41–76, 1975.

[39] T. Goldstein and S. Osher. The Split Bregman method for L1-regularized problems. SIAM
Journal on Imaging Sciences, 2(2):323–343, 2009.

[40] J. W. Goodman. Statistical properties of laser speckle patterns. In J. C. Dainty, editor, Laser
Speckle and Related Phenomena, volume 9 of Topics in Applied Physics, pages 9–75. Springer,
1975.

[41] M. Grasmair. A coarea formula for anisotropic total variation regularisation. Preprint to appear,
University of Vienna, 2009.

[42] Y.-M. Huang, M. K. Ng, and Y.-W. Wen. A new total variation method for multiplicative noise
removal. SIAM Journal on Imaging Sciences, 2(1):20–40, 2009.
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