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Abstract

Variational methods in imaging are nowadays developing towards a
quite universal and flexible tool, allowing for highly successful ap-
proaches on tasks like image restoration, registration, segmentation,
super-resolution, and estimation of flow fields. We review recent progress
in mathematical image processing by combining first and second or-
der derivatives in the regularization term of variational models. We
demonstrate the power of the proposed methods by two rather differ-
ent applications. The approaches make use of two different splitting
methods of the functional to obtain iterative numerical schemes which
require in each step only the computation of simple proximal mappings.
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Keywords: Mathematical image analysis, variational models, primal-dual
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1 Introduction

Mathematical image processing is an innovative, rapidly developing branch
of applied mathematics which involves various mathematical fields as ap-
plied harmonic analysis, inverse problems, numerical analysis, partial dif-
ferential equations, mathematical morphology, probabilistic and statistical
methodologies, and variational methods. In this paper we focus on the later
one. More precisely, we will consider non-smooth, convex functionals with
generalized total variation regularization terms which include second order
derivatives. Let us first have a look at the objects we are dealing with.
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1.1 Digital images

A digital two-dimensional gray-value image f can be considered as a map-
ping from a two-dimensional grid G := {1, . . . ,m}×{1, . . . , n} into a discrete
subset {0, . . . , L− 1} of N, whose values can be visualized as gray values by
a computer screen. Humans can distinguish between 64 gray values; how-
ever often 8-bit images with L = 256 different values are considered. When
dealing with images we usually assume that f maps into the real numbers
(or an interval) instead of {0, . . . , L− 1} and apply a subsequent quantiza-
tion (rounding). In Section 4 we present a typical discrete approach to a
variational problem via finite differences which relies on this image model.

From the analytical point of view it is often more intuitive to consider
gray-value images as mappings from a bounded domain Ω ⊂ R2 into the
real numbers. Then the functionals have to be minimized over certain (infi-
nite dimensional) function spaces. (It is not clear to which function spaces
natural images really belong, see [56].) For the numerical treatment one
has finally to apply a discretization, but not necessary a finite difference
approach. Here we refer to the books [38, 85] which focus on continuous
models. In Sections 2 and 3 we start with a continuous variational approach
which may be useful for people having some background in function spaces.
It is possible to skip these sections and move directly to the discrete, finite
dimensional setting on G in Section 4.

Figure 1. Two frames of a traffic scene and optical flow estima-
tion by a first order method similar to [24]. (Image source:

http://i21www.ira.uka.de/image-sequences/).

Gray-value images are the ,,simplest” digital images. Often we have
to deal with vector-valued functions f : G → Rd. For two-dimensional
flow fields appearing, e.g., in motion estimation we have d = 2. A typical
example is shown in Fig. 1. Based on the estimation of optical flow fields
we will estimate strain tensors in Section 5. For hyperspectral images d is
rather large, e.g., d = 256. For color images on a computer screen we have
usually d = 3 and the three components represent the colors red (R), green
(G) and blue (B) (again each color is in {0, . . . , L − 1}, but for simplicity
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we assume that we have real values). Depending on the visualization device
other color spaces than RGB are used. One example is the HSV space which
splits the image into its hue, saturation and value of brightness. The hue
describes in each area of an image the dominant color ingredient that one
really perceives. It is a cyclic value between 0 (for red) and 2π, see Fig.
2. While it is quite hard to determine a certain color by just addressing
its RGB components, the HSV space is more intuitive to the human color
reception system. Fig. 3 shows the decomposition of an image into its
HSV components. In variational models with vector-valued images, the
meaningful coupling of the different vector components is an interesting
ongoing research topic, see [52, 81]. We cannot address this circumvent
topic in the present paper.

Figure 2. Color representation systems: RGB cube and HSV
cone. (Image sources: http://commons.wikimedia.org/ Maklaan and

http://commons.wikimedia.org/Fanghong).

Finally, in various applications we have to replace Rd by a d-fold Rie-
mannian manifold Md. Typical examples are the manifold of symmetric
positive definite matrices which appears in diffusion tensor MRI, the rota-
tion group SO(3) or the n-sphere Sn. Often cyclic data have to be handled
which is the topic of Section 6. An example of an S1-valued image is the hue
image in Fig. 3. Although the S1 is a rather simple manifold the new tech-
niques from convex optimization recently used to minimize the variational
functionals do not simply carry over to this setting.

1.2 Variational Models

In image restoration we are interested in finding an unknown image u0 given
its modified version f . Mathematically the corruption of the original image
can be often described by the application of a linear operator K to u0. For
example, for blurred images, K is a convolution operator, and for images
with missing areas a masking operator, see Fig. 11. The restoration of
missing pixels is called ,,inpainting”. In addition the result of the linear

3



−π

−π
2

0

π
2

π

0

− 1
4

1
2

3
4

1

0

− 1
4

1
2

3
4

1

Figure 3. Top: Original image sailboat and its hue. Bottom: Its sa-
turation and value of brightness. (Image source: USC-SIPI Image

Database) .

transform Ku0 is often corrupted by noise. Depending on the application
we have to tackle with different kind of noise. In this paper we simply focus
on additive white Gaussian noise. In summary, the observed image is

f = Ku0 + η,

where η is the realization of a Gaussian independently identically distributed
random vector with mean zero and variance σ. In pure denoising problems
K is just the identity operator. Often K is known which is also assumed
in this paper. If K is also unknown, the reconstruction problem becomes
much harder. The deblurring problem with an unknown convolution kernel
is called ,,blind deblurring”. The problem to reconstruct u0 from f ≈ Ku0 is
ill-posed or ill-conditioned, since the operator K is either not invertible as for
the inpainting problem or has no continuous inverse (resp. is ill-conditioned
in the finite dimensional setting) as in the deblurring problem such that
small errors in f are amplified if we just apply the inverse operator to f .
Problems of this kind were traditionally considered in the field of inverse
problems, see [14, 44, 66]. A general approach is to minimize an appropriate
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functional of the form

D(Ku; f) + αR(u)→ min
u
, (1)

and to take a minimizer as approximation of u0. The so-called data fidelity
term D measures the deviation of Ku from f . It is often smooth and con-
vex and becomes minimal if Ku = f . The regularizing term R is required
to make the problem well-posed. Moreover, it contains a priori knowledge
(desires) on the reconstructed images and is also called image prior. The
design of appropriate regularizers such that the minimizers of (1) have cer-
tain properties like the preservation of important image structures while
keeping the functional analytically and numerically feasible is a challenging
task. Since such goals cannot be achieved with differentiable regularization
terms, current practice almost exclusively uses non-smooth regularization
functionals like the total variation (TV) [79] and generalizations thereof, or
`1-norms of coefficients arising from scalar products with frame systems, see,
e.g., [48, 73]. The analysis of such functionals requires tools from functional
analysis as well as convex analysis. Finally, the regularization parameter α
balances the influence of the data and the regularization term. Its appro-
priate choice is very important and an ongoing topic of research. Several
techniques were developed to address this task as Morozov’s discrepancy
principle [75], the L-curve criterion [68], the generalized cross-validation [98],
normalized cumulative or residual periodogram approaches [80], and vari-
ational Bayes’ approaches [4, 57]. For an overview over the first methods
we refer to [58] and for recent relations between penalized and constrained
problems to [95] and the references therein. In this paper we do not pay
attention to an automatic adjustment of the parameters but tune them by
hand according to some error measures.

1.3 Algorithms

The efficient solution of non-smooth variational problems of the form (1)
demands for appropriate algorithms. Taking into account the specific struc-
ture of the functional as a sum of different convex terms, splitting algorithms
are a quite canonical choice. Their strength consists in the splitting of the
original problem into a sequence of smaller ones which are easy to compute.

Operator splitting methods were first applied to the numerical solution of
partial differential equations in the 60th of the last century, e.g., by Douglas
and Rachford 1956 [43]. Here the splitting was applied to linear, single-
valued operators in order to solve a certain linear system of equations effi-
ciently. More than 20 years later these splitting methods were generalized in
the convex analysis community to the solution of inclusion problems, where
the linear operators have to be replaced by nonlinear, set-valued, mono-
tone operators. Here we refer to the initial paper of Lions and Mercier [71]
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which was followed by many others. Again after more than 20 years these
methods became popular in image processing starting with the work of Com-
bettes and Wajs [37]. Operator splittings in conjuction with (augmented)
Lagrangian methods und primal-dual methods have recently received a lot
of interest, for an overview see, e.g., [25, 36]. Interestingly, one of the first
papers in imaging in this direction by Goldstein and Osher [53] proposes
a so-called alternating split Bregman algorithm. Later it turned out that
from one point of view this algorithm coincides with the Douglas-Rachford
algorithms applied to the dual problem and from another point of view with
the alternating direction method of multipiers based on the augmented La-
grangian, see [45, 86]. In this paper we will show how primal-dual methods
can be applied to minimize appropriate functionals which were proposed in
two recent applications, namely in the computation of local deformations in
materials from a sequence of image frames via optical flow estimation [7],
and the denoising of phase-valued images [10].

2 Continuous First Order Variational Models

Let Ω ⊂ R2 be a bounded Lipschitz domain. Assume that f ∈ L2(Ω) was
obtained by applying a linear operator K, e.g., a convolution operator, to an
unknown function u0 ∈ L2(Ω) and the result was corrupted by additive white
Gaussian noise. Then the log likelihood approach leads to the minimization
of the data fidelity term

D(Ku; f) :=
1

2
‖f −Ku‖2L2

. (2)

For other noise statistics the data term must be replaced by appropriate
ones as the Kullback-Leibler divergence in case of Poisson or certain kind of
multiplicative noise, see, e.g., [82, 89] or the L1 norm for impulse noise [26].
For the choice of the regularizer, the W 1,2 semi-norm R(u) := ‖∇u‖2L2

has
a long tradition:

1

2
‖f −Ku‖2L2

+ α

∫
Ω
|∇u|2 dx, α > 0.

However, this model is not appropriate for most image processing task,
simply since the minimizer is too smooth: From the continuous point of
view the minimizing image must be in the ,,smooth” Sobolev space W 1,2.
In particular, for the identity operator K, the gradient flow of the corre-
sponding Euler-Lagrange equation is the linear partial differential equation
ut = α4u − u + f . Hence the minimizer is a uniformly smoothed image
which does not take prominent structures of f like edges into account. In
summary, it is impossible to reconstruct sharp edges with semi-norms of
W 1,p, p > 1. This is demonstrated in Fig. 4.
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This drawback leads to the consideration of new classes of non-smooth
regularizers, where the TV regularization [79] is certainly the most fre-
quently applied one in variational image processing. Let BV(Ω) denote the
space of functions of bounded variation, i.e., the Banach space of functions
u : Ω→ R with finite norm ‖u‖BV := ‖u‖L1 + TV(u), where

TV(u) := sup

{∫
Ω
udivϕdx : ϕ ∈ C1

c (Ω,R2), ‖ϕ‖∞ ≤ 1

}
,

and ‖ϕ‖∞ := ‖(ϕ2
1 +ϕ2

2)
1
2 ‖L∞ . Here C1

c (Ω,R2) denotes the space of continu-
ously differentiable vector-valued functions on Ω with compact support. The
distributional first order derivative Du of u is a vector-valued Radon mea-
sure with total variation |Du|(Ω) = TV(u). In particular, for u ∈ W 1,1(Ω)
the TV term reduces to TV(u) =

∫
Ω |∇u| dx so that our functional becomes

1

2
‖f −Ku‖2L2

+ α

∫
Ω
|∇u| dx, α > 0.

Since the gradient of a constant area is zero, the functional does not penalize
constant areas which leads to well-known staircasing effect. A good overview
on total variation for image analysis in particular the relation between the
TV functional and the perimeter of level sets can be found in [27]. A typical
example can be seen in Fig. 4. We mention that smoothed versions of
the absolute value function like its Moreau envelope also known as Huber
function ψ := mint

1
2ε(· − t)2 + | · | or ψ :=

√
| · |2 + ε2 can reduce the

staircasing artifact to some extent but have other drawbacks.

3 Continuous Second Order Variational Models

A successful method to cope with the staircasing effect is to incorporate
higher order derivatives into the regularization term, in particular second
order derivatives. For simplicity we incorporate the regularization parame-
ters within the regularizer R in the rest of the paper.

Let BV(Ω,R2) denote the space of vector-valued functions u = (u1, u2)
of bounded variation, where the above definition of TV has to be modified
by
∫

Ω u1divϕ1 + u2divϕ2 dx. We consider the space of bounded Hessians
BH(Ω) := {u ∈ W 1,1(Ω) : ∇u ∈ BV(Ω,R2)} with norm ‖u‖BH = ‖u‖BV +
|D2u|(Ω) and |D2u| = |D(∇u)|, see [2, 40]. There are three established ways
for combining first and second order derivatives in the regularization term:

i) The first approach minimizes the functional (1) with data term (2)
and regularization term

R(u) :=

∫
Ω
α|∇u| dx+ β|D2u|(Ω)

over BV(Ω,R2). For applications in imaging we refer to [76].
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Figure 4. Top: Original image and noisy image. Bottom: restored im-
ages with W 1,2 regularization and with TV regularization. The
W 1,2 regularized method produces a smoothed images where im-
portant image structures get lost. The TV regularized approach
keeps sharp edges, but introduces a staircasing effect in non flat
areas. (Image from [41]).

ii) The second method makes use of the infimal convolution of two (ex-
tended) functionals Ri, i = 1, 2 which is defined by

(R1�R2)(u) := inf
v+w=u

R1(v) +R2(w).

The infimal convolution is the counterpart of the ’usual’ convolution
of functions in the max-plus algebra. More precisely, the regular-
ization term consists of the infimal convolution of R1(v) := TV(v)
and R2(w) := |D2w| for u (and v) in BV(Ω) and w ∈ W 1,1 with
∇w ∈ BV(Ω,R2):

R(u) := inf
v+w=u

αTV(v) + β|D2w|(Ω).

For ∇v ∈ W 1,1(Ω,R2) and u ∈ W 1,1(Ω) the whole functional can be
rewritten as

1

2
‖f −Ku‖2L2

+

∫
Ω
α|∇u−∇w| dx+ β|∇2w| dx→ min

u,w
(3)
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Roughly speaking, for K = Id, we ’first’ approximate locally the gra-
dient of the function f by ∇w that has itself a low total variation and
then find u as an approximation of f such that u− w has a low total
variation. As a consequence we do not get anymore an almost piece-
wise constant minimizer. This regularization method was introduced
in imaging by Chambolle and Lions [28]. For a recent generalization
called ICTV we refer to [63].

iii) A conceptually different approach was recently proposed by Bredies,
Kunisch and Pock [21]; for the discrete setting see also [87]. Here the
regularization term is the so-called total generalized variation (TGV2)
defined by

R(u) = TGV2
(α,β)(u)

:= sup

{∫
Ω
udiv2ϕdx : ϕ ∈ C2

c

(
Ω,Sym(R2)

)
, ‖ϕ‖∞ ≤ α, ‖divϕ‖∞ ≤ β

}

where C2
c

(
Ω,Sym(R2)

)
denotes the space of two times continuously

differentiable 2-tensor fields with compact support in Ω and divkϕ :=
tr(∇k ⊗ ϕ), k = 1, 2. In other words, we have for ϕ = (ϕ1,1, ϕ1,2, ϕ2,2)
that

div2ϕ = ∂xxϕ1,1 + (∂xy + ∂yx)ϕ1,2 + ∂yyϕ2,2

and

divϕ(e1) = ∂xϕ1,1 + ∂yϕ1,2, divϕ(e2) = ∂xϕ1,2 + ∂yϕ2,2.

An alternative definition of TGV2
(α,β) is given by

TGV2
(α,β)(u) := min

y∈BD(Ω)
α|Du− y|(Ω) + β|Ey|(Ω),

where BD(Ω) is the space of functions of bounded deformation and Ey
is the distributional symmetrised gradient of y, see [22]. In a simplified
version, instead of (3) we get

1

2
‖f −Ku‖2L2

+

∫
Ω
α|∇u− y| dx+ β|∇y| dx→ min

u,y

There are several other approaches which make use of higher order deriva-
tives including weighted versions of the Laplacian [33, 74], bounded Hes-
sians (without first order terms) [13, 31, 60, 62, 72, 84], and Euler’s elastica
[32, 93]. In [69] the spectral norm of the discrete Hessian is used as a regu-
larizer. The relation to higher order diffusion filters was analyzed by Didas
et al. in [42]. For discrete versions of the above approaches we refer to
[87, 88].
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4 Discrete Second Order Variational Models

For computations we need a discrete version of the functionals in the previ-
ous section. We consider gray-value images as functions f : G → R defined
on a rectangular grid G := {1, . . . ,m}×{1, . . . , n} and make use of finite dif-
ference approximations for the differential operators. Indeed the appropriate
discretization plays an important role in certain imaging applications, see,
e.g., [100, 102]. In particular, if the second order derivatives come into the
play and the identities satisfied by the continuous operators should be pre-
served it becomes necessary to work on more than one grid. One possibility
is the use of the finite mimetic difference method, see, e.g., [65, 103, 104].

In the following we will use simple forward difference operators. To have
a convenient vector-matrix notion it is usual to reorder f columnwise into
a vector vec f of length N := mn. If the meaning is clear from the context
we keep the notation f instead of vec f .

The discretization of the data term (2) with a linear operator K follows
just by considering the functions on the grid and taking the Euclidean norm
of their reshaped form:

D(Ku; f) :=
1

2
‖f −Ku‖22, K ∈ RN,N .

For disretizing the regularization term, let

Dn :=


−1 1

. . .
. . .

−1 1
0

 ∈ Rn,n

be the discrete forward difference operator with respect to mirror (Neumann)
boundary conditions and

∇ :=

(
Dx

Dy

)
with Dx := In ⊗Dm, Dy := Dn ⊗ Im

be the discrete gradient operator. Here ⊗ denotes the Kronecker product
operator. Further, let

∇2 :=

 Dxx

Dxy +Dyx

Dyy

 , ∇̃ :=

DT
x 0

DT
y DT

x

0 DT
y


be a second order difference operator and the symmetrised discrete gradient
operator of a vector field, resp., where

Dxx := −In ⊗DT
mDm, Dyy := −DT

nDn ⊗ Im,
Dxy := −DT

n ⊗Dm, Dyx := −Dn ⊗DT
m.

Then the regularization terms in i) - iii) become
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i) R(u) = α‖∇u‖2,1 + β‖∇2u‖2,1,

ii) R(u) = minw∈RN α‖∇(u− w)‖2,1 + β‖∇2w‖2,1,

iii) R(u) = miny∈R2N α‖∇u− y‖2,1 + β‖∇̃y‖2,1,

where we use the mixed L2(Rd)− L1(RN ) norms defined for x ∈ RNd as

‖x‖L2(Rd),L1(RN ) = ‖x‖2,1 :=
N∑
i=1

d−1∑
j=0

x2
jN+i

 1
2

,

see [87, 88] for the functionals ii) and iii). Fig. 5 shows the denoising results
for the image in Fig. 4 top, right.

Figure 5. Top: Noisy image from Fig. 4 and denoised images with
regularization i). Bottom: Denoised images with regularization
ii), and iii).

There are numerous applications of second order models in image pro-
cessing. In the following we present two recent ones, namely, the computa-
tion of local deformations in materials from a sequence of image frames via
optical flow estimation [7], and the denoising of phase-valued images [10].
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Figure 6. Experimental setup for the tensile test inside a scanning elec-
tron microscope. Load-deformation diagram with three selected
micrographs (1024 × 884 pixel; size 51µm × 44µm) taken under
increasing load. (Image credit: S. Schuff, Department of Mechan-
ical and Process Engineering, University of Kaiserslautern.)

The first application is interesting since the the strain is directly computed
within the numerical algorithm by an appropriate variable splitting. The
second application establishes for the first time a second order model for
cyclic data.

5 Computation of Local Deformation for Multi-
phase Metallic Materials

5.1 Motivation

The (Cauchy) strain tensor plays a fundamental role in mechanical engineer-
ing for deriving local mechanical properties of materials. In this subsection
we calculate local strains of silicon carbide particle reinforced aluminum
matrix composites from a sequence of scanning electron microscope images
acquired during tensile tests, where the micro-specimen is pulled in hori-
zontal direction and elongates with increasing force. Fig. 6 illustrates the
experimental setup and the resulting image sequence schematically∗. For de-

∗The scanning electron microscope tensile tests were performed at the Department of
Mechanical and Process Engineering, University of Kaiserslautern by Dr. F. Balle, Prof.
Dr. D. Eifler, and S. Schuff).
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formations of a continuum body the strain tensor is defined via the gradient
of the displacement u = (u1, u2), i.e.,

ε =

(
εxx εxy
εyx εyy

)
:=

1

2
(∇uT +∇u) =

(
∂xu1

1
2(∂yu1 + ∂xu2)

1
2(∂yu1 + ∂xu2) ∂yu2

)
.

We will especially focus on εxx which describes the change in displacement
u1 for the horizontal direction. A positive value indicates tension and a
negative one compression.

One of the few papers which addresses the (Lagrangian) strain tensor
computation by a variational method is [59] by Hewer et al.. The authors
propose a smooth fourth order optical flow model which directly computes
the strain tensor from an image sequence obtained in a biaxial tensile test
with an elastomer. In contrast to our paper they were interested in the
macro scale behavior and compute the minimizer of their smooth energy
function by solving the corresponding Euler-Lagrange equations. For engi-
neering purposes there are some approaches and commercial software pack-
ages based on image correlation such as [19, 83, 94, 99]. However, these
methods are only suitable for computing the strain on a macro scale. Vari-
ational methods for optical flow estimation go back to [64]. There is a vast
number of refinements and extensions of their approach and we refer to
[9, 61] for a comprehensive overview. In particular higher order optical flow
models were successfully used, e.g., in [1, 96, 103, 104, 105].

5.2 Variational Model

As for images we consider flow fields u = (u1, u2) : G → R2 on a rectangular
grid and use the reordering vecu = ((vecu1)T, vecu2)T)T ∈ R2N . As usual
we identify u with vecu if the meaning is clear from the context.

In the task at hand we focus on two images f1 and f2 from the tensile
test belonging to different tensions. For multiframe treatments in optical
flow we refer, e.g., to [99]. The data term in (1) relies on an invariance re-
quirement between these images. Here we focus on the brightness invariance
assumption which reads in the continuous setting as

f1(x, y)− f2

(
(x, y)− u(x, y)

)
≈ 0, u = (u1, u2). (4)

Using a first order Taylor expansion around an initial optical flow field ū =
(ū1, ū2) gives

f2

(
(x, y)− u) ≈ f2

(
(x, y)− ū

)
−
(
∂xf2

∂yf2

)(
(x, y)− ū

)
·
(
u(x, y)− ū(x, y)

)
.

(5)
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Later we will apply a coarse-to-fine scheme [3, 23] and use the result from
one scale as an initialization for the next scale. By (5) the requirement (4)
becomes

0 ≈ f1(x, y)− f2

(
(x, y)− ū

)
+

(
∂xf2

∂yf2

)(
(x, y)− ū

)
·
(
u(x, y)− ū(x, y)

)
.

Note that f2((x, y)−ū) is only well defined in the discrete setting, if (i, j)−ū
is in G. Here, bilinear interpolation is used to compute values between
grid points. Using a non-negative increasing function ϕ : R → R≥0 and
considering only grid points (x, y) = (i, j) ∈ G, the data term becomes∑
(i,j)∈G

ϕ

((
Dmf2

(
(i, j)− ū

)
f2

(
(i, j)− ū

)
DT
n

)
·
(
u(i, j)− ū(i, j)

)
− f2

(
(i, j)− ū

)
+ f1(i, j)

)

and for ϕ(t) := |t| finally

D(Ku; c) :=
1

2
‖Ku+ c‖1, K := (AB). (6)

where ‖ · ‖1 denotes the L1(R2N ) norm and

A := diag
(

vec
(
Dmf2

(
(i, j)− ū

)) )
, B := diag

(
vec
(
f2

(
(i, j)− ū

)
DT
n

) )
,

c := −vec

((
Dmf2

(
(i, j)− ū

)
f2

(
(i, j)− ū

)
DT
n

)
· ū(i, j)− f2

(
(i, j)− ū

)
+ f1(i, j)

)
.

For the choice of the regularization term we notice that the global dis-
placement during insitu tensile testing can be roughly approximated by a
plane. Therefore it makes sense to separate this global displacement from
the local one using an infimal convolution regularization ii) (or the TGV2

model which provides nearly the same results):

R(u) = inf
v+w=u

{α‖∇v‖2,1 + β‖∇2w‖2,1}, (7)

where ∇u := (I2 ⊗∇)u and ∇2u := (I2 ⊗∇2)u.
It can be shown that in the case ker(

(
A B

)
)∩ker(∇) = {0} there exists

a minimizer of J(u) := D(Ku; c) +R(u), see [7].

5.3 Algorithm

To solve the convex, non-smooth optimization problem (1) with data term
(6) and regularization term (7) we apply a primal dual algorithm with an
appropriate splitting. To this end, we rewrite the problem as

min
u,w,s,t

{‖Ku+ c‖1 + α‖s‖2,1 + β‖t‖2,1} (8)

such that

(
∇ −∇
0 ∇2

)(
u
w

)
=

(
s
t

)
.
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Indeed, we are not interested in u, but in its non-smooth part v = u−w or
more precisely in the strain s = ε(v) = ∇(u−w) which fortunately directly
appears in the constraint.

With F (u,w) := ‖Ku + c‖1 and G(s, t) := α‖s‖2,1 + β‖t‖2,1 the La-
grangian of (8) reads

L((u,w, s, t), (p, q)) := F (u,w) +G(s, t) + 〈∇(u− w)− s, p〉+ 〈∇2w − t, q〉

with the dual variable (p, q). Then the primal problem (8) and its dual can
be written as

(P ) min
u,w,s,t

max
p,q

L((u,w, s, t), (p, q)), (D) max
p,q

min
u,w,s,t

L((u,w, s, t), (p, q)).

Using the Fenchel dual of G defined by

G∗(p, q) := max
s,t
〈
(
s
t

)
,

(
p
q

)
〉 −G(s, t)

the problems become

(P ) min
u,w

max
p,q

{
F (u,w)−G∗(p, q) + 〈∇(u− w), p〉+ 〈∇2w, q〉

}
,

(D) max
p,q

min
u,w

{
F (u,w)−G∗(p, q) + 〈∇(u− w), p〉+ 〈∇2w, q〉

}
.

The Arrow-Hurwitz method consists in alternating the minimization over
the primal and dual variables and adding a stabilizing quadratic terms:(
u(r+1)

w(r+1)

)
= arg min

u,w

{
F (u,w) +

〈(
∇(u− w)

∇2w

)
,

(
p(r)

q(r)

)〉
+

1

2τ
‖
(
u
w

)
−
(
u(r)

w(r)

)
‖22
}
,

= proxτF

((
u(r)

w(r)

)
− τ

(
∇Tp(r)

−∇Tp(r) + (∇2)Tq(r)

))
(
p(r+1)

q(r+1)

)
= arg min

p,q

{
G∗(p, q)−

〈(
∇(u(r+1) − w(r+1))

(∇2)w(r+1)

)〉
+

1

2σ
‖
(
p
q

)
−
(
p(r)

q(r)

)
‖22
}

= proxσG∗(

(
p(r)

q(r)

)
+ σ

(
∇(u(r+1) − w(r+1))

(∇2)w(r+1)

)
),

where the proximal mapping of a proper, closed convex function g : Rd →
Rd ∪ {+∞} is defined by

proxλg(x) := arg min
y

1

2
‖x− y‖22 + λg(y), λ > 0. (9)
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The internal parameters τ and σ of the algorithm can be found as in [54].
The basic idea behind this algorithm is that the proximal mappings can be
simply computed (often there exists an analytical formula) for many func-
tions used in variational image reconstruction models including the present
ones.

Further, we apply an extrapolation step for the dual variable. This
results in the primal-dual algorithm [29, 77] which is known as Chambolle-
Pock algorithm in image processing. It was meanwhile generalized for vari-
ous other functionals, e.g., in [20, 35, 97]. To cope with large displacements
our algorithm was moreover updated by a coarse-to-fine scheme, see, e.g.,
[3, 23].

5.4 Numerical Results

In this tutorial we demonstrate the potential of our variational approach
only by one example. We have applied our method to two different images
f2 obtained during the tensile test at a low (F1 = 3446N) and a high (F2 =
3980N) load level, see Fig. 6. Fig. 7 shows magnified micrographs (100 ×
100 pixels, size 5µm × 5µm) of two different regions of the whole image
where cracks were initiated. In both experiments the areas of computed
high local strains correspond to crack areas in the material. It is remarkable
that even under low load, when the cracks are not or hardly visible in the
images, the strain tensor in the corresponding regions is high and seems
to be a sensitive and useful tool to study crack initiation mechanisms of
silicon carbide reinforced aluminum matrix composites. For details on the
parameter choice see [7].

6 Restoration of Cyclic Data

6.1 Motivation

In various applications in image processing and computer vision the func-
tions of interest take values on the circle S1 or on manifolds. In this sub-
section we deal with S1-valued data which appear, e.g., in interferometric
synthetic aperture radar [17, 18, 39], electroencephalogram data analysis
[90], ground based astronomy [8, 30, 34, 55], circular statistics [47, 67] and
color image restoration in HSV spaces. Handling phase-valued data with
techniques for real-valued data introduces artifacts since the cyclic nature
of the data is neglected. Fig. 1 shows a denoising example, where the so-
called hue of an image which is phase-valued was denoised by minimizing
the functional with squared L2 data term and second order regularizer i)
described in Sec. 4. Without taking the cyclic structure of the data into
account the color values became completely wrong.
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Region 1 without load. Region 2 without load.

Region 1 under low load. Region 2 under low load.

−0.20

0.00

0.20

−0.20

0.00

0.20

Region 1 under high load. Region 2 under high load.

−0.50

0.00

0.50

−0.50

0.00

0.50

Figure 7. Results corresponding to images under low and high load.
Zooms into two different regions. Top: The two initial image
regions without load. Bottom: εxx = ∂xv1 for the two different
regions under low and high load together with the image frame.
The cracks in the high load images correspond to areas of high
strain εxx. The high strain areas can also be detected from the
low load images, where the cracks in the images themselves are
(nearly) not visible.
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Figure 8. Left to right: Image sailboat from Fig. 3 with hue channel
corrupted by wrapped Gaussian noise (σ = 0.4), denoised image
by a second order method for real valued data (wrong colors are
created), and by our method for cyclic data. Without taking the
cyclic structure of the data into account we do not obtain correct
colors.

Although the minimization of TV regularized functionals is among the
most popular methods for edge-preserving image restoration such methods
were only very recently applied to cyclic structures. The TV notation for
functions with values on a manifold has been studied in [50, 51] using the
theory of Cartesian currents. These papers were an extension of the pre-
vious work [49] were the authors focus on S1-valued functions and show in
particular the existence of minimizers of certain energies in BV(Ω). The first
papers which apply a cyclic TV approach in imaging are [70, 91, 92]. In this
subsection we want to incorporate second order differences into the energy
functional for cyclic data. Indeed [10] is the first paper which uses higher
order differences of cyclic data in regularization terms of energy functionals
for image restoration.

6.2 Variational Model

We restrict our attention to functionals (1) with K = Id. First we replace
the Euclidean distance by the geodesic distance dS1(p, q) := arccos(〈p, q〉)
on S1 := {p2

1 + p2
2 = 1 : p = (p1, p2)T ∈ R2}. Given a base point q ∈ S1,

the exponential map expq : R → S1 from the tangent space TqS1 ' R of
S1 at q onto S1 is 2π-periodic, i.e., expq(x) = expq((x)2π) for any x ∈ R,
where (x)2π denotes the unique point in [−π, π) such that x = 2πk + (x)2π,
k ∈ Z. To guarantee the injectivity of the exponential map, we restrict its
domain of definition from R to [−π, π). Thus, for p, q ∈ S1, there is now
a unique x ∈ [−π, π) satisfying expq(x) = p. Given such representation
system xj ∈ [−π, π) of pj ∈ S1, j = 1, 2 centered at an arbitrary point q
on S1 the geodesic distance becomes

dS1(p1, p2) = d(x1, x2) = min
k∈Z
|x2 − x1 + 2πk| = |(x2 − x1)2π|. (10)
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Then, for f, u : G → S1, the cyclic equivalent of the discretized data term
in (2) becomes

D(u; f) :=
1

2

m,n∑
i,j=1

d(ui,j , fi,j)
2.

To define a regularization term related to those in i) in Section 4 we
need appropriate definitions of first and second order difference operators
for cyclic data. For w = (wj)

κ
j=1 ∈ Rκ\{0} with

∑κ
j=1wj = 0 a real-valued

finite difference operator is given by x 7→ 〈x,w〉. For cyclic data we consider
similarly

d(x;w) := min
α∈R
〈[x+ α1κ]2π, w〉, (11)

where 1κ is the vector with κ entries 1 and [x]2π denotes the component-by-
component application of (t)2π if t 6= (2k + 1)π, k ∈ Z and [(2k + 1)π]2π =
±π, k ∈ Z. For w1 := (−1, 1)T definition (11) coincides with the geodesic
distance, i.e., d(x;w1) = d(x1, x2) for all x ∈ [−π, π)2. For the difference
masks w2 := (1,−2, 1)T and w1,1 := (−1, 1, 1,−1)T it can be shown [10] that

d(x;wν) = |(〈x,wν〉)2π|, ν ∈ {2, (1, 1)}.

It is remarkable that this relation does not hold true for other differences,
e.g., for the third order difference w = (−1, 3,−3, 1)T. Introducing the
notation

d2(x) := d(x;w2) and d1,1(x) := d(x;w1,1)

the regularization term becomes

R(u) := TV1(u) + TVhv
2 (u) + TVd

2(u) (12)

with

TV1(u) := α1

n−1,m∑
i,j=1

d(ui,j , ui+1,j) + α2

n,m−1∑
i,j=1

d(ui,j , ui,j+1),

TVhv
2 (u) := β1

n−1,m∑
i=1,j=2

d2(ui−1,j , ui,j , ui+1,j) + β2

n,m−1∑
i=2,j=1

d2(ui,j−1, ui,j , ui,j+1),

TVd
2(u) := β3

n−1,m−1∑
i,j=1

d1,1(ui,j , ui+1,j , ui,j+1, ui+1,j+1).

Note that this regularizer corresponds to the so-called ”anisotropic coun-
terpart” of the regularization term in i) in Sections 3 and 4, i.e., roughly
speaking it is related to∫

Ω
α1|∂x1u|+ α2|∂x2u|+ β1|∂x1x1u|+ β1|∂x2x2u|+ β3|∂x1x2u| dx.

19



6.3 Algorithm

As in the previous section we will apply an iterative algorithm which is based
on analytic computations of proximal mappings of the difference functions
d(·;w) similar to (9).

Proximal mapping of differences of cyclic data. As a cyclic counter-
part to (9) we deal with

proxλd(·;w)(f) := arg min
x∈[−π,π)κ

E(x; g, w),

E(x; g, w) :=
1

2

κ∑
j=1

d(xj , fj)
2 + λd(x;w)p, λ > 0

for w ∈ {w1, w2, w1,1}. Here arg minx∈[−π,π)κ means that we are looking for

the representative of x ∈ (S1)κ in [−π, π)κ.

Theorem 6.1. [10] For w ∈ {w1, w2, w1,1} set s := sgn(〈f, w〉)2π. Let
g ∈ [−π, π)κ, where κ is adapted to the respective length of w.

1. If |(〈g, w〉)2π| < π, then the unique minimizer of E(x; g, w) is given by

x̂ = (g − smw)2π, m := min

{
λ,
|(〈g, w〉)2π|
‖w‖22

}
.

2. If |(〈g, w〉)2π| = π, then E(x; g, w) has the two minimizers

x̂ = (g ∓ smw)2π, m := min

{
λ,

π

‖w‖22

}
.

Our proof in [10] uses the fact that

E(x; f, w) =
1

2

κ∑
j=1

min
kj∈Z
|gj − xj − 2πkj |2 + λmin

σ∈Z
|〈x,w〉 − 2πσ|

= min
k∈Zκ
σ∈Z

1

2
‖g − x− 2πk‖22 + λ|〈x,w〉 − 2πσ|,

so that the minimization can finally be restricted to those of real-valued
data.

Cyclic proximal point algorithm (CPPA). Having an analytic expres-
sion for the proximal mappings of the cyclic finite differences at hand, our
algorithm of choice to minimize the whole functional

J(u) := D(u; f) +R(u)
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with D(u; f) in (10) and R(u) in (12) will be the cyclic proximal point
algorithm (CPPA). The basic idea of the CPPA consists again in splitting
the functional in an appropriate way as a sum J =

∑L
l=1 Jl and to compute

successively the proximal mappings of the summands Jl.
The proximal point algorithm (PP) on the Euclidean space goes back

to [78] and was extended to Riemannian manifolds of non-positive sectional
curvature in [46] and to Hadamard spaces in [5]. Its real-valued version
computes arg minx g(x) for a proper, closed convex function g on RN by
iterating

x(r) := proxλg(x
(r−1)) = arg min

x

1

2
‖x(r−1) − x‖22 + λg(x).

Finding arg minx g1(x) + g2(x) for the sum of two proper, closed convex
function gi, i = 1, 2 could be at the first glance performed similarly

x(r) := proxλg2
(
proxλg1(x(r−1))

)
.

Since the concatenation of the two firmly non-expansive proximal operators
is again firmly non-expansive the sequence of iterates {x(r)}r converges, but
unfortunately not to a minimizer of g1 + g2 but instead to the minimizer
of λg1 + g2, where λg1 denotes the Moreau envelope of g1. Convergence
to the minimizer of the desired sum g1 + g2 can by achieved by varying
the parameter λ within the iterations. More precisely, the CPPA computes

arg minx
L∑
l=1

gl(x) by

x(k) = proxλkgL

(
proxλkgL−1

(
. . . proxλkg1(x(k−1))

))
,

where
∞∑
k=0

λk =∞, and
∞∑
k=0

λ2
k <∞. (13)

This CPPA on the Euclidean space was given in [16], see also the survey [15].
A CPPA for Hadamard spaces can be found in [6]. With first order differ-
ences of cyclic data in the regularization term the CPPA was applied for
image restoration in [101].

For our functional J we use a splitting into L = 6 (in one dimension)
and L = 15 (in two dimensions) summands which correspond to the natural
splitting of the image grid into disjoint parts by the difference operators.
For example we apply for the first summand in TVhv

2 the splitting into the
three parts

2∑
ν=0

⌊
n−1
3

⌋∑
i=1

m∑
j=1

d2(u3i−2+ν,j , u3i−1+ν,j , u3i+ν,j).
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Convergence. Since S1 is not a Hadamard space, the convergence analysis
of the CPPA in [6] cannot be applied. However, convergence can be proved
under certain conditions: i) the data f ∈ (S1)n,m is locally dense enough,
which means that the distance between neighboring pixel values

d∞(f) := max
(i,j)∈I

max
(k,l)∈Ni,j

d(fi,j , fk,l), Ni,j :=
{

(k, l) ∈ I : |i−k|+|l−j| = 1
}

is sufficiently small. ii) The regularization parameters α, β are sufficiently
small. More precisely, we assume that for some ε > 0 we have

TV1(f) + TVhv
2 (f) + TVd

2(f) ≤ ε2

µ
, (14)

where µ := max{α1, α2, β1, β2, β3} > 0. iii) Condition (13) must be fulfilled.

Theorem 6.2. [10] Let f ∈ (S1)n,m with d∞(f) < π
8 . Let λ := {λk}k fulfill

property (13) and√
ε2 + 32‖α‖22L(L+ 1) + 8‖α‖∞L <

π

16
,

for some ε > 0, where L = 15. Further, assume that the parameters α, β of
the functional J and ε satisfy (14). Then the sequence {u(k)}k generated by
the CPPA converges to a global minimizer of J .

6.4 Numerical Results

In this section we demonstrate the performance of our algorithms by numer-
ical examples with artificial signals and images. For real-world applications
in synthetic aperture radar and for the analysis of electroencephalograms
we refer to [10].

We start by demonstrating the influence of first and/or second order
differences on the denoising process for one-dimensional data.

The function g : [0, 1]→ [−π, π) given by

g(x) :=



−24πx2 + 3
4π for 0 ≤ x ≤ 1

4 ,

4πx− π
4 for 1

4 < x ≤ 3
8 ,(

−πx− 3
8

)
2π

for 3
8 < x ≤ 1

2 ,(
− j+7

8 π
)

2π
for 3j+16

32 < x ≤ 3j+19
32 , j = 0, 1, 2, 3,

3
2π exp

(
−35

7 −
1

1−x
)
− 3

4π for 7
8 < x ≤ 1,

was sampled equidistantly to obtain the original signal u0 at N = 500 sam-
ples. This function is distorted by wrapped Gaussian noise η of standard
deviation σ = 1

5 to get f in Fig. 9 (a). Note that the linear increase on
[

1
4 ,

3
8

]
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of g is continuous and the change from π to −π at 5
16 is just due to the chosen

representation system in [−π, π). Similarly the two constant parts with the
values −π and 7

8π differ only by a jump size of −π
8 . In the representation

system [0, 2π) the signal looks as in Fig. 9 (b). We apply our method with
different model parameters α and β to f which yields the restored signals
ur. The parameters were optimized with respect to the restoration error
measured by the ‘cyclic’ mean squared error

e(u0, ur) :=
1

N

M∑
i=1

d(u0,i, ur,i)
2.

The resulting signal ur is depicted in Fig. 9 (c)-(e). Fig. 9 (f) shows the
result from Fig. 9 (e) with respect to another representation system.

Next we consider the synthetic surface given on [0, 1]2 shown in Fig. 10
(a). This surface consists of two plates of height ±2π divided at the diagonal,
a set of stairs in the upper left corner in direction π

3 , a linear increasing area
connecting both plateaus having the shape of an ellipse with major axis at
the angle π

6 , and a half ellipsoid forming a dent in the lower right of the
image with circular diameter of size 9

25 and depth 4π. The initial data is
given by sampling the described surface at m = n = 256 sampling points.
Then Gaussian noise is added and the data is wrapped, see 10 (b) and
(c). Fig. 10 (d)-(f) show the denoising results with different regularization
terms. The parameters were chosen from 1

8N such that they minimize the
cyclic mean squared error.

Finally, Fig. 11 shows an artificial inpainting example with cyclic second
order regularization terms. The original image u0 is corrupted by a non-
invertible masking operator K which gives f . Here no noise is added. The
masking operator K has to be involved into the data term of the functional.
For the precise description of the setting we refer to [11]. The results were
further extended to S1 × Rd-valued data in [12].
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Figure 10. Denoising of an artificial surface: (c) wrapped image (b) of
(a) corrupted by wrapped Gaussian noise. Reconstructed images
ur using (d) the real-valued first plus second order regulariza-
tion i). The results at near ±π are poor. (e) the cyclic TV1

regularizer, e(u0, ur) = 7.09 × 10−3. Here ur reproduces the
piecewise constant parts of the stairs in the upper left part and
the background, but introduces a staircasing in both linear in-
creasing areas inside the ellipse and in the half ellipsoid. (f) the
regularizer in (12), e(u0, ur) = 5.37 × 10−3. Combining first and
second order cyclic differences improves the results.
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Figure 11. Original image (a) and its masked version (b). The first re-
construction (c) employs only first order cyclic differences and
produces staircasing. Combining first and second order cyclic
differences in (d) we obtain a nearly perfect reconstruction. (Im-

age source: Courtesy of R. Bergmann, [11]).
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