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Abstract. This paper is concerned with the segmentation of two- and three-dimensional images
containing separated layers. We tackle this problem by combining the fuzzy c-means algorithm
with recently developed convex multi-class segmentation algorithms, where we modify the data
term of the corresponding functional to involve the information of the layer structure. We solve
the optimization problem numerically by applying an alternating direction method of multipliers in
conjunction with the fast discrete cosine transform to solve the involved linear system of equations.
We demonstrate the performance of our method on synthetic and real-world images. In particular we
deal with the segmentation of three-dimensional images arising from micro-computed tomography
of C/SiC-ceramics by synchrotron radiation.

1. Introduction

Segmentation is a fundamental task in image processing which plays in particular a role in many
preprocessing stages. In this paper, we are concerned with the segmentation of special images
containing separating layers. Our aim is to incorporate the knowledge about the layer structure
into the mathematical segmentation model. Our original motivation to consider such problems
comes from the segmentation of three-dimensional image data arising from the micro-computed
tomography of C/SiC-ceramics by synchrotron radiation. Since carbon fiber reinforced silicon
carbide (C/SiC) ceramics can withstand extremely high temperatures and is tough with respect
to fractures, these lightweight long lasting materials are used in jet engines, termal protection
systems of space-crafts, brakes in passenger cars, friction bearings and lightweight gears. The
C/SiC-ceramic data examined in this paper was produced by the liquid silicon infiltration process.
This process starts with a C/C preform, where carbon fibers are bounded by low-density carbon
and subsequently infiltrates the preforms by liquid silicon which reacts with the low-density carbon
forming a layer of SiC. The development of efficient production methods requires tools to monitor
the quality of this siliconization process. The segmentation of the microstructural C/SiC-ceramics
data obtained by micro-computed tomography can serve as preprocessing step here. Fig. 1 shows
a part of one slice of the micro-computed tomography data of C/SiC-ceramics. Due to the imaging
process it is difficult to see even for the human eye that the SiC-layer separates carbon from silicon
everywhere. Therefore the segmentation of the C/SiC-ceramics data is a challenging task. Simple
thresholding techniques fail due to the facts that different segments can still contain the same gray
values and that the separation by the SiC-layer is not clearly visible everywhere.

In this paper we propose to segment images with separating layers by modifying recently proposed
convex relaxation methods for image multi-labeling [1, 17, 18, 23, 29] with respect to the layer
structure. More precisely, our aim is twofold:
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Figure 1. Zoom into one slice of 3d micro-computed tomography data of C/SiC-
ceramics. Due to the imaging process there appear artefacts, e.g., rings, and similar
gray values make it very difficult to distinguish between the different layers.

• Combination of the fuzzy c-means algorithm with a TV-regularized convex optimization
model. Both algorithms intend to find instead of a labeling function a label defining matrix
as minimizer of a certain functional.
• Incorporation of the layer information into the data term of the convex model.

We compute the segment prototypes by the fuzzy c-means algorithm (FCM). Then we use these
prototypes together with the separating layer information in the data term of a convex optimization
model which regularization term is the TV-functional. For solving the resulting convex optimization
problem we propose an alternating direction method of multipliers (ADMM) which is for this
problem identical with the alternating split Bregman algorithm [13] and the Douglas-Rachford-
Splitting algorithm [8, 10, 11, 27]. We focus on a discrete model which uses matrix-vector notation
based on tensor products of matrices. In the numerical part we demonstrate the good performance
of our algorithm for 2d and 3d single-valued data as well as for 2d vector-valued data (color images).

Organization. In Section 2 we introduce our general discrete mathematical model. Section 3
deals with the optimization of the codebook by the FCM algorithm. The label optimization based on
the ADMM is presented in Section 4. In particular, we propose in Subsection 4.2 how to incorporate
the knowledge about the layers into the data term of the functional. Synthetic numerical examples
demonstrate the influence of the additional layer penalizing term. Finally, Section 5 presents real-
world numerical examples, namely for the segmentation of 3d microstructural C/SiC-ceramics data
obtained by micro-computed tomography and of 2d color images of traffic signs. The appendix
generalizes some results to the d-dimensional setting, d ≥ 3.
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2. Mathematical Model

We start by describing our discrete mathematical model. For simplicity of notation, we re-
strict our attention to two-dimensional, single-valued (gray-valued) images and postpone the gen-
eral d-dimensional approach to the appendix. The simple modifications which are required for
vector-valued images (colored images) are addressed in the numerical part. We want to present
a discrete model which uses the handy vector-matrix notation. To this end, we consider images
F : {1, . . . , n1} × {1, . . . , n2} → R columnwise reshaped as

f := vecn1,n2(F ) = vec(F ) ∈ RN , N := n1n2.

Let c ∈ N, c < N denote the number of desired segments labeled by C := {1, . . . , c}. For a given
image f ∈ RN and fixed c ∈ N, we are looking for segment prototypes in a codebook r := (r1, ..., rc)
and a labeling vector l ∈ CN such that

qr,l := (qr,l(j))
N
j=1 with qr,l(j) := rk if l(j) = k

is a ’good’ approximation of f . A general variational approach aims to find r and l by computing
a (local) minimizer (r̂, l̂) of some functional

E(r, l) := Φ(qr,l, f)︸ ︷︷ ︸
data term

+ λ Ψ(l)︸︷︷︸
regularizer

, λ ≥ 0. (1)

Prominent examples of data terms Φ(qr,l, f) are powered `p-norms

Φ(qr,l, f) :=
N∑
j=1

|f(j)− qr,l(j)|p =
c∑

k=1

∑
{j:l(j)=k}

|f(j)− rk|p, p ∈ [1,∞), (2)

their weighted version or the Kullback-Leibler divergence, see [6]. As regularization term Ψ(l) a
discrete version of the Rudin-Osher-Fatemi TV -functional [26] is a good candidate since it enforces
’smooth’ boundaries between the labeled regions. Let us introduce such a discrete TV -functional.
For a function F : Ω→ R from W1,1(Ω), Ω ⊂ R2, the continuous TV -functional is defined by

TV (F) :=

∫
Ω
|∇F(x)| dx

with

∇F(x) := (Fx(x),Fy(x))T, |∇F(x)| =
(
F2
x(x) + F2

y (x)
) 1

2 .

In the discrete setting, we replace the partial derivatives of F by forward differences of our image
F . More precisely, we replace Fx by Dn1F and Fy by FDT

n2
, where

Dn :=


−1 1

−1 1
. . .

. . .

−1 1
0 . . . 0

 ∈ Rn×n

denotes the forward difference matrix and the zero row takes the mirrored (Neumann) boundary
conditions into account. Since we want to deal with columnwise reshaped images we have to
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introduce the tensor (Kronecker) product of matrices. The tensor product of A ∈ Rn1×n2 and
B ∈ Rm1×m2 is given by the matrix

A⊗B :=

 a11B . . . a1n2B
... · · ·

...
an11B . . . an1n2B

 ∈ Rm1n1×m2n2 .

The tensor product is associative and distributive, but not commutative. Using the reshaping
operator vec again, the relation

vec(AXBT) = (B ⊗A) vec(X) (3)

holds true. Consequently, we obtain with the n × n identity matrix In that vec(Dn1F ) = (In2 ⊗
Dn1)f =: fx ∈ RN and vec(FDT

n2
) = (Dn2 ⊗ In1)f =: fy ∈ RN , so that the discrete gradient of f

reads in the reshaped version as (
fx
fy

)
=

(
In2 ⊗Dn1

Dn2 ⊗ In1

)
︸ ︷︷ ︸

∇

f.

With

|∇f | := (|∇f |(j))Nj=1 , |∇f |(j) :=
(
fx(j)2 + fy(j)

2
) 1

2 .

the discrete TV -functional becomes

Ψ(l) = TV (l) :=
N∑
j=1

|∇l|(j). (4)

Now one can try to find a minimizer of (1) by alternating the minimization of the codebook and
the label vector:
Optimization of the codebook. For fixed labels l, i.e., finding

argmin
r∈Rc

E(r, l) = argmin
r∈Rc

Φ(qr,l, f)

is straightforward for various functions Φ. For example, we have for Φ in (2) with p = 2 that the
minimizer is given by

rk =
∑

{j:l(j)=k}

f(j)/#{j : l(j) = k}, k = 1, . . . , c.

Optimization of the labels. Once the codebook r is known, i.e., finding

argmin
l∈CN

E(r, l) = argmin
l∈CN

{Φ(qr,l, f) + λTV (l)} ,

is much more involved. In particular, the functional is in general not convex. For λ = 0, and Φ in
(2), algorithms can be found in the literature, see [12]. For example, for p = 2, Lloyd’s algorithm
[19] can be applied and the corresponding whole alternating algorithm of codebook–label optimiza-
tion is the well-known c-means clustering algorithm. For λ 6= 0, the optimization becomes much
harder. An approach via discrete optimization for the anisotropic TV –functional which involves
graph-cut based algorithms was proposed in [6].

To circumvent the difficult minimization in the label optimization, several authors have pro-
posed to relax the problem by using instead of the label vector l a label defining matrix U :=

(uk(j))
N,c
j,k=1 which assigns to each image point j a non-negative row vector u(j)T := (uk(j))

c
k=1
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with
∑c

k=1 uk(j) = 1. We will see that this trick leads to a convex minimization problem in the
label optimization step of an alternating algorithm. From U , the labeling vector is deduced by

l(j) := argmax
k=1,...,c

uk(j). (5)

In the following, we further use uk := (uk(j))
N
j=1 ∈ RN for the columns of U and u := vec(U) =

(uk)
c
k=1 ∈ RcN for the columnwise reshaped matrix. Instead of the functional (1) with data term

(2) and regularizer (4) we aim to minimize for some p ∈ [1,∞) and m ≥ 1 the functional

N∑
j=1

c∑
k=1

(uk(j))
m |f(j)− rk|p︸ ︷︷ ︸

sk(j)

+ λTV(u) subject to

c∑
k=1

uk(j) = 1∀j, u ≥ 0, (6)

where we have to define TV(u). The data term penalizes those |f(j)− rk|p, k = 1, . . . , c for which
uk(j) is large. In the ideal case that uk(j) = 0 for all but one k for which it becomes 1, we resemble
by (5) exactly the data term in (2). A candidate for TV(u) could be

∑c
k=1 TV (uk). However, in

this paper we prefer a stronger coupling within u and use

TV(u) := ‖ |(Ic ⊗∇)u| ‖1 =
N∑
j=1

|(Ic ⊗∇)u|(j) =
N∑
j=1

(
|∇u1(j)|2 + . . .+ |∇uc(j)|2

) 1
2 .

With s(j) := (sk(j))
c
k=1, j = 1, . . . , N , the functional (6) can be rewritten as

N∑
j=1

〈u(j)m, s(j)〉 + λ‖ |(Ic ⊗∇)u| ‖1 subject to

c∑
k=1

uk(j) = 1∀j, u ≥ 0. (7)

We do not intend to find a minimizer of this non-convex functional by an alternating algorithm.
Instead, we want to use this functional with λ = 0 and m > 1 to determine a codebook. Of course
we also obtain a label defining matrix U which gives in general bad segmentation results due to the
lack of regularization, but could be used as initial guess. Then, for this fixed codebook, we find a
minimizer of (7) which is a convex problem now. Furthermore, we propose to incorporate the layer
information into the data term. More precisely, we modify s(j) to penalize u if the boundary layer
is neglected.

We start with the optimization of the codebook and consider the optimization of the label vector
via the matrix U afterwards.

3. Optimization of the Codebook

To find a codebook, we consider the functional (6) with λ = 0 and m > 1, i.e.,

N∑
j=1

c∑
k=1

(uk(j))
m|f(j)− rk|p subject to

c∑
k=1

uk(j) = 1 ∀j, u ≥ 0. (8)

This functional is used in the fuzzy c-means clustering algorithm (FCM) [2], where the additional

constraint
∑N

j=1 uk(j) > 0 for all k = 1, . . . , c appears. There exists a broad literature on the

FCM algorithm and various of its generalizations, see [15] and the references therein. The notation
’fuzzy’ appears from the replacement of the label vector in the ordinary c-means algorithm by the
label defining matrix U .

The FCM algorithm finds a critical point (local minimizer or saddle point) of (8) by the alter-
nating procedure described below. More precisely, the following FCM algorithm produces for an
arbitrary initial vector u(0) ∈ RcN a sequence (r(i), u(i)) which contains at least a subsequence that
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converges to a critical point of (8), see [14]. Note that the functional (8) is non-convex in r, u, but
convex with respect to r for fixed u and conversely.

The original FCM algorithm, see [3] was given for p = 2.

FCM Algorithm for p = 2:
Initialization: u(0)

For i = 0, . . . repeat until a convergence criterion is reached:

r
(i+1)
k =

∑N
j=1(u

(i)
k (j))mf(j)∑N

j=1(u
(i)
k (j))m

, k = 1, . . . , c,

u
(i+1)
k (j) =

 c∑
l=1

(
|f(j)− r(i+1)

k |p

|f(j)− r(i+1)
l |p

)1/(m−1)
−1

, j = 1, . . . , N,

if f(j) − r(i+1)
k 6= 0 for all k = 1, . . . , c. Supposing that the segment prototypes remain pairwise

different in each iteration step, we set u
(i+1)
k (j) := 1 if f(j)− r(i+1)

k = 0 and u
(i+1)
l (j) = 0, l 6= k.

Let us briefly comment on these alternating steps:

• For fixed u, the computation of a minimizer r̂ of (8) can be handled for every k separately,
so that we have to solve for every k = 1, . . . , c the problem

r̂k := argmin
x∈R

N∑
j=1

(uk(j))
m|f(j)− x|p.

For the original FCM algorithm with p = 2 we obtain the above solution. For p = 1, the
optimum r̂k is the weighted median with weights (uk(j))

m of the f(j), j = 1, . . . , N . See,
e.g., [28] for weighted median computations and in connection with FCM also [16]. For
p > 1 we refer to [20] and for 0 < p < 1 to [22].
• For fixed r, the computation of a minimizer û of (8) can be done for every j separately, so

that we have to solve for every j = 1, . . . , N the problem

û(j) := argmin
x∈Rc

c∑
k=1

(xk)
m |f(j)− rk|p︸ ︷︷ ︸

gk

subject to
c∑

k=1

xk = 1, x ≥ 0. (9)

The Lagrangian of this convex problem reads

L(x, λ, µ) =
c∑

k=1

(
(xk)

mgk − λkxk
)

+ µ(1−
c∑

k=1

xk), λ ≥ 0

and the Karush-Kuhn-Tucker (KKT) conditions which are necessary and sufficient for û(j)
to be a minimizer are given by the constraints in (9) and

(∇xL)k = m(xk)
m−1gk − λk − µ = 0 and xkλk = 0, k = 1, . . . , c, λ ≥ 0.

If there exists k ∈ {1, . . . , c} with gk = 0 we set xk := 1 and xl = 0 for l 6= k. Note that this
is only possible for one k since the rl are pairwise different by assumption. If gk 6= 0 for all

k = 1, . . . , c we get by the KKT conditions that xk = α (gk)
− 1

m−1 with α :=
( µ
m

) 1
m−1 > 0.

(Note that xl = 0 for some l would imply the contradiction λl = −µ < 0.) Then we conclude
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by the constraints that

1 =
c∑
l=1

xl = α
c∑
l=1

(gl)
− 1

m−1 ⇒ α = 1/
c∑
l=1

(gl)
− 1

m−1

which results in the second formula in the FCM algorithm

xk =
(gk)

− 1
m−1∑c

l=1 (gl)
− 1

m−1

=

(
c∑
l=1

(
gk
gl

) 1
m−1

)−1

.

4. Optimization of the Labels

Now we assume a fixed codebook r and consider the minimization of (7) for m = 1:

N∑
j=1

〈u(j), s(j)〉 + λ‖ |(Ic ⊗∇)u| ‖1 subject to
c∑

k=1

uk(j) = 1 ∀j, u ≥ 0 (10)

with given s(j). The focus on the case m = 1 becomes clear in Subsection 4.1, Remark 4.1.
Models of this kind were considered for binary segmentation, i.e., c = 2, in [21]. In particular, the
authors prompted to the relation with the Chan-Vese model [5]. Multi-label segmentations using
the above approach or its relatives were proposed in [1, 17, 18, 23, 29]. Later, we will choose s(j)
in dependence on f and r, e.g., as in (6) and on the knowledge of the layer conditions. In any case,
the s(j), j = 1, . . . , N are fixed before the optimization. We start by describing an algorithm to
solve (10) in Subsection 4.1 and consider the construction of s(j) afterwards in Subsection 4.2.

4.1. Alternating Direction Method of Multipliers. We want to solve (10) by the alternating
direction method of multipliers (ADMM). In general, ADMM is suitable for convex optimization
problems of the form

argmin
x∈Rm,y∈Rn

{G1(x) +G2(y)} subject to Ax = y (11)

with proper, closed, convex functions G1 : Rm → R∪{+∞}, G2 : Rn → R∪{+∞} and A ∈ Rn×m.
The ADMM splits the problem into the following smaller subproblems which have to be solved
alternatingly:

General ADMM:
Initialization: y(0), b(0) ∈ Rm and γ > 0.
For i = 0, . . . repeat until a convergence criterion is reached:

x(i+1) = argmin
x∈Rm

{
G1(x) +

1

2γ
‖b(i) +Ax− y(i)‖22

}
y(i+1) = argmin

y∈Rn

{
G2(y) +

1

2γ
‖b(i) +Ax(i+1) − y‖22

}
b(i+1) = b(i) +Ax(i+1) − y(i+1)

For the above problem, the ADMM coincides with the alternating split Bregman method [13] and
with the Douglas-Rachford splitting method applied to the dual problem of (11), see [8, 9, 11, 27].

For any starting values and any γ > 0, the ADMM sequences {b(i)} and {y(i)} converge to some
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b̂ and ŷ, respectively. The sequence {x(i)} converges to a solution of (11) if problem (11) has a

unique solution, see, e.g., [27]. Note that 1
γ b̂ is a solution of the dual problem of (11)

argmin
p∈Rn

{G∗1(−A∗p) +G∗2(p)},

where G∗ denotes the Fenchel conjugate of G.
To apply the general ADMM to our setting, we rewrite problem (10) as

argmin
u,w∈RcN ,v∈R2cN

{〈u, s〉+ λ‖ |v| ‖1 + ιS(w)} subject to (Ic ⊗∇)u = v, IcNu = w, (12)

with the indicator function ιS of S defined by

ιS(w) :=

{
0 if w ∈ S
∞ otherwise

, and S :=
{
u ∈ RcN :

c∑
k=1

uk(j) = 1 ∀j, u ≥ 0
}
.

By definition of TV we have that vT := (vTx,1, v
T
y,1, . . . , v

T
x,c, v

T
y,c) with vx,k, vy,k ∈ RN and

|v| =

(
c∑

k=1

(v2
x,k + v2

y,k)

) 1
2

∈ RN . (13)

We use G1(u) := 〈u, s〉, G2(v, w) := λ‖ |v| ‖1 + ιS(w) and A :=

(
Ic ⊗∇
IcN

)
in the general ADMM

and obtain the following algorithm:

ADMM for (12):

Initialization: v(0) ∈ R2cN , w(0) ∈ RcN , b(0) ∈ R3cN and γ > 0.
For i = 0, . . . repeat until a convergence criterion is reached:

u(i+1) = argmin
u∈RcN

{
〈u, s〉+

1

2γ
‖b(i) +Au−

(
v(i)

w(i)

)
‖22
}
, (14)(

v(i+1)

w(i+1)

)
= argmin

v∈R2cN ,w∈RcN

{
λ‖ |v| ‖1 + ιS(w) +

1

2γ
‖b(i) +Au(i+1) −

(
v
w

)
‖22
}
, (15)

b(i+1) = b(i) +Au(i+1) −
(
v(i+1)

w(i+1)

)
.

We have to comment the first two steps of the algorithm.

Computation of u(i+1). Due to the differentiability of (14) its solution follows by setting the
gradient of the functional on the right-hand side to zero. Thus, the minimizer is given by the
solution of the linear system of equations

ATAu = AT
((v(i)

w(i)

)
−

(
b
(i)
v

b
(i)
w

)
︸ ︷︷ ︸
b(i)

)
− γs. (16)

The ADMM works very efficient if this linear system can be solved in a fast way. This is indeed
the case by the following considerations: By

(A⊗B)T = AT ⊗BT and (A⊗B)(C ⊗D) = AC ⊗BD (17)
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we obtain

ATA =
(
Ic ⊗∇T , IcN

)(Ic ⊗∇
IcN

)
= (Ic ⊗∇T∇) + IcN .

Consequently, (16) requires to solve for every k = 1, . . . , c a linear system of equations

(∇T∇+ IN )uk = ak with ak := ∇T
(
v

(i)
k − b

(i)
v,k

)
+
(
w

(i)
k − b

(i)
w,k

)
− γs. (18)

The matrix DT
nDn can be diagonalized by the discrete cosine II transformation matrix (DCT-II

matrix) Cn, i.e.,

DT
nDn = CT

n diag(qn)Cn, qn :=

(
4 sin2 πj

2n

)n−1

j=0

(19)

with the orthogonal DCT-II matrix

Cn :=

√
2

n

(
εj cos

j(2k + 1)π

2n

)n−1

j,k=0

, εj :=

{
1/
√

2 j = 0,

1 otherwise,
(20)

see [24, 25]. Now straightforward computation gives

(∇T∇+ IN ) = (CT
n2
⊗ CT

n1
)(Λ + IN )(Cn2 ⊗ Cn1),

where Λ = In2 ⊗ diag(qn1) + diag(qn2) ⊗ In1 , see Lemma A.1 in the appendix. Consequently, we
obtain

uk = (CT
n2
⊗ CT

n1
)(Λ + IN )−1(Cn2 ⊗ Cn1)ak. (21)

Note that the multiplication of a vector with the cosine matrix Cn can be done in a fast way with
O(N logN) arithmetic operations. We like to emphasize that we do not work with tensor products
in our numerical computations, but with matrix - matrix operations based on (3), see (26) in the
appendix.

Remark 4.1. If m > 1 and m 6= 2 in (7), then setting the gradient of the functional in the first
ADMM step to zero, leads to a non-linear system of equations. For m = 2 we obtain again a linear
system of equations, but with coefficient matrix 2γdiag(s) + (Ic ⊗ ∇T∇) + IcN which cannot be
diagonalized by a cosine matrix. If we want to avoid the numerical solution of such a system, the
so-called primal dual hybrid gradient method (PDHG) and its relatives [4, 10, 30] could be used as
an alternative of the ADMM algorithm.

Computation of v(i+1). The problem (15) can be solved separately for v and w by minimizing
the following functionals (22) and (23). We start by considering

v(i+1) = argmin
v∈R2cN

λ‖ |v| ‖1 +
1

2γ

∣∣∣∣v − (b(i)v + (Ic ⊗∇)u(i+1))︸ ︷︷ ︸
=:gv

∣∣∣∣2
2

 . (22)

The minimizer v(i+1) can be obtained by the so-called coupled shrinkage of gv with threshold λγ,
see [27]. Using (13) and v(j)T := (vx,1(j), vy,1(j), . . . , vx,c(j), vy,c(j)), j = 1, . . . , N , this is

v(j)(i+1) =

0 if |gv|(j) ≤ λγ,

gv(j)

(
1− λγ

|gv|(j)

)
otherwise.
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Computation of w(i+1). Finally we are interested in the solution of the second subproblem of
(15)

w(i+1) = argmin
w∈RcN

ιS(w) +
1

2γ

∣∣∣∣w − (b(i)w + u(i+1))︸ ︷︷ ︸
=:gw

∣∣∣∣2
2

 . (23)

In other words, we have to find the orthogonal projection of gw onto S. This projection can also
be done separately for every j = 1, . . . , N which means that we have to solve N subproblems of
the form

argmin
x∈Rc

{
1

2
‖x− g‖22 + ιSc

}
Sc := {x ∈ Rc :

c∑
k=1

xk = 1, x ≥ 0}

This can be done for example as in [7]. The following remark briefly explains the projection step

Remark 4.2. The orthogonal projection of g ∈ Rc onto the hyperplane{
x ∈ Rq :

c∑
k=1

xk = 〈x, 1c〉 = 1
}

is given by

ŵ = g − 1

c
(

c∑
k=1

gk − 1)1c,

where 1c is the vector with c entries 1. If ŵ ≥ 0 then ŵ is also the orthogonal projection onto Sc. If
this is not the case, we set all negative components of ŵ to zero. Let Q denote the index set of the
negative components with q := #Q. We project the reduced vector without zeros (ŵk)k∈Q ∈ Rc−q
onto the reduced hyperplane {x ∈ Rc−q : 〈x, 1c−q〉 = 1}. We repeat the previous step until we obtain
the projection onto Sc.

4.2. Inclusion of Separating Layers. As explained in the introduction the motivation of this
paper came from a real world problem, namely the segmentation of 3d image data of Carbon/Silicon
carbide (C/SiC). This image data consists of a carbon layer, a silicon layer and a silicon carbide
layer. It has the characteristic property that the silicon-carbide layer separates carbon from silicon.

We call the fact that two instances are separated by a third one the separation property. This
property will be exploited in our segmentation model.

The basic idea is to penalize the objective functional (10) by updating s such that pixels belonging
to non-touching layers cannot be neighbors in our segmented image. For every label k ∈ {1, . . . , c},
we introduce a binary distance function

dk : {1, 2, . . . , c} → {0, 1}, dk(l) :=

{
1 if layer l cannot touch layer k,

0 else.

Next, we need an initial (rough) segmentation l0 : {1, . . . , N} : → {1, . . . , c}. Then we define
penalizing function Pk, k = 1, . . . , c as follows:

Pk(j) :=
∑

i∈N (j)

dk(l0(i)), j = 1, . . . , N,

where N (j) denotes the (four-star or eight-star) neighborhood of pixel j in F . Now we update s
in our data term by

sk(j) = |f(j)− rk|p + µPk(j), µ > 0. (24)
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The following numerical examples demonstrate the influence of the layer penalization. In all
experiments we set γ := 0.01 and ‖uk+1− uk‖ < 0.1 =: ε as stopping criterion for ADMM. Smaller
ε had no significant visual effects on the resulting images. Fig. 2(a) shows our ground truth image.
It is a synthetic image consisting of three layers with gray values rgt = (0, 127, 255), where the
subscript gt abbreviates ’ground truth’. The black and the gray part of the image are separated by
a white part which is rather thin at the notches. The image was corrupted by white Gaussian noise
of standard deviation 120. To obtain a codebook we smoothed the input image by convolution with
a Gaussian of standard deviation σ = 5 and applied the FCM algorithm afterwards to minimize (8)
with m = p = 2. The segmentation result is shown in Fig. 2(c). The noise in the image appears
due to the lack of regularization. The corresponding codebook reads r ≈ (−1, 125, 240) is used to
construct s in (10). Fig. 2(d) shows the result of the ADMM-segmentation. In the contrary to the
FCM-result the noise disappears. But also the thin lines at the notches vanish completely.

Figure 2. (a) Ground truth with white separating white lines which are thin at
the notches. (b) Noisy image with Gaussian noise of standard deviation σ = 120,
scaled to [0, 255] for visualization. (c) Result of the FCM algorithm applied to
the Gaussian filtered image. (d) Solution of ADMM applied to b) without layer
penalization, λ = 250.

(a) initial segmenta-
tion

(b) λ = 250, µ =
1500

(c) λ = 500, µ = 500 (d) λ = 500, µ =
1500

Figure 3. Solutions with layer penalization with respect to the inner square in
(a) as initial segmentation for different parameters λ and µ.

The effect of the layer penalization (24) is shown in Figs. 3 and 4. In Fig. 3 the inner square of
the ground truth is used as initial segmentation. Due to the layer penalization (24) the thin lines
at the notches are preserved. We demonstrate also the effects of different parameters λ and µ. In
Fig. 4 the outer square of the ground truth is used as initial segmentation. The outer square as
initial segmentation causes the thin white lines to vanish, because the corresponding pixels are not
penalized at all. The different solutions in Figures 4(b), 4(c) and 4(d) are all valid with respect to
the outer square as initial segmentation because black next to black and black next to white are
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(a) initial segmenta-
tion

(b) λ = 250, µ =
1500

(c) λ = 500, µ = 500 (d) λ = 500, µ =
1500

Figure 4. Solutions with layer penalization with respect to the outer square in (a)
as initial segmentation for different parameters λ and µ.

both allowed configurations. That is, on the boundary of the outer square appears no black pixel
with a gray neighbor or vice versa. In all solutions the original shape of the image is preserved
because the segmentation does not only depend on the penalization of the boundary but also on
the original image.

Remark 4.3. Lellmann et al. [18] have also considered a more general class of TV –based regular-
izers with a weights matrix M

TV(u) := ‖ |(M ⊗∇)u| ‖1.

For our applications this can be used to modify the regularization corresponding to a distance d(k, l)
between labels k and l of adjoined regions.

5. Numerical Experiments

In this section we demonstrate the good performance of our algorithm for real-world data. For
the implementation we used MATLAB and executed our experiments on an Intel Xeon 2.5 GHz
processor. For the codebook retrieval we applied the FCM algorithm introduced in Section 3 with
parameters p = m = 2. We have found that the subsequent label-finding step is very robust with
respect to the codebook.

5.1. Segmentation of Carbon/Silicon carbide (C/SiC) image data. As already mentioned
in the introduction, the C/SiC image data consists of a carbon layer, a silicon layer and a silicon
carbide layer which separates the carbon layer from the silicon layer. Actually, there is a fourth
layer in the C/SiC material, namely the pores in the carbon. These are the darkest areas in the
image and which can be simply found by, e.g., by thresholding. Therefore we ignore them in the
following. Then the carbon has the darkest gray of the three other layers and the separating silicon
carbide the lightest. Accordingly the materials are represented in the segmented results. There are
artefacts in form of circles visible in the input images which should not appear in the segmentation,
because they are not part of the material but arise due to the image capturing method.
2d segmentation of a slice of the C/SiC image data. In our first experiment, we segmented a
2d slice of the size 1251× 1251. Due to the lack of noise it was not necessary to apply a smoothing
filter before computing the codebook. We used as codebook the result of the FCM algorithm
r ≈ (71, 100, 120). The initial segmentation was the result of the ADMM algorithm with only 5
iterations and ADMM parameter γ := 0.01. Fig. 5 shows the corresponding results. The ADMM
applied to the original model (even after much more iteration steps) eliminates the ringing artefacts
, but cannot find the separating SiC layer everywhere as our layer penalizing model did. We have
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Figure 5. 2d segmentation of a C/SiC slice. The first row shows the full images,
while the second row presents zooms into the marked areas of the images. (a) Input
image with materials from light to dark: silicon carbide, silicon, carbon, pores in
carbon (ignored). (b) Initial segmentation with 5 ADMM iterations without layer
penalization and λ = 10. (c) Final segmentation with 40 ADMM iterations applied
to our model with layer penalization and λ = 10, µ = 200.

used the ADMM for the layer penalizing model with 40 iteration steps. The overall algorithm
including the computation time for the FCM and the pre-segmentation requires about 630 seconds,
but the code can further be optimized.
3d segmentation of C/Sic image data. Our next input image has the size of 300× 300× 100
pixels. We used an arbitrary selection from the original image data. The discrete 3d gradient
and some 3d modifications required in the first step of the ADMM algorithm are described in
the appendix. To establish the codebook we applied the FCM algorithm which results in r ≈
(126, 151, 175). Figs. 6 and 7 show our 3d segmentation results for 4, resp., 6 arbitrarily chosen
subsequent slices (slices: 10,12,14,16, resp. 10,12,14,16,18,20) in x-y, resp., x-z direction. As initial
segmentation we used the ADMM results for the model without layer penalization with 5 iterations
and γ := 0.1 shown in the second rows of the figures. The markers in the figures indicate that
not everywhere the separation property was fulfilled. Then we exploited the layer penalized model
and executed 30 ADMM iterations. The improvement can be seen in the third row of the figures.
The overall computation was approximately 1900 seconds. Increasing the iterations of the initial
segmentation did not change our final results significantly.

5.2. 2d segmentation of colored images. Finally, we show that our segmentation model is also
suitable for colored images. We used RGB colorization. In this case we assign to every image pixel
j a color vector f(j) ∈ R3 and for every segment k a color prototype rk ∈ R3. Then we have
only to replace |rk − f(j)| by the vector norm sk(j) = ‖rk − f(j)‖2. We applied our method to
a 3-class segmentation of German traffic signs taken from “The German Traffic Sign Recognition
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Figure 6. First row: x-y-slices of 3d input image data Second row: 3d initial seg-
mentation with 5 ADMM iterations without layer penalization and λ = 15. Some
faulty segmented regions are marked for visualization. Third row: Final segmen-
tation with 30 ADMM iterations applied to our model with layer penalization and
λ = 15, µ = 500.

Benchmark” of the Ruhr-Universität Bochum. These traffic signs have white boundaries separating
the red area from the background. The results are shown in Fig. 8. To compute the codebook we
applied the FCM algorithm. For the first and second row, resp., of Fig. 8 we got

r1 ≈

187 251 74
67 241 64
58 243 52

 , r2 ≈

137 37 109
136 37 64
139 34 55

 ,

where every column vector is the prototype of a segment. We used ADMM without layer pe-
nalization to generate the initial segmentation with 10 iterations and 30 iterations for the final
segmentation step with layer penalization. The ADMM parameter was γ := 0.05. The improve-
ment is clearly visible. As in the previous examples more iterations did not improve our results
significantly.

Acknowledgment. The authors like to thank Jürgen Meinhardt, Fraunhofer ISC Würzburg,
and Alexander Rack, ESFR Grenoble, for providing us with the C/SiC image data.
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Figure 7. x-z-slices of our 3d segmentation results as in Fig. 6.

Appendix A. Aspects of d-dimensional image segmentation

Finally, we consider the d-dimensional setting, d ≥ 3. More precisely, while most generalizations
to higher dimensions in the algorithms are straightforward, the efficient solution of the linear system
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Figure 8. Segmentation of two different traffic signs . (a) Input images. (b)
Initial segmentation without layer penalization after 10 ADMM iterations. (c) Final
segmentation with layer penalization after 40 ADMM iterations. In the first row we
used λ = 100, µ = 500 and in the second row λ = 50, µ = 300.

of equations (18) in the first ADMM step requires some explanation. To this end, we consider d-
dimensional images F : {1, . . . , n1} × · · · × {1, . . . , nd} → R and reshape them indexwise starting

with the first index to get a vector f ∈ RN with N :=
∏d
i=1 ni. We introduce the d-dimensional

discrete gradient by

∇ :=


∇1

∇2
...
∇d

 with ∇i :=
i+1⊗
j=d

Inj ⊗Dni ⊗
1⊗

j=i−1

Inj = Iβi ⊗Dni ⊗ Iαi ,

where αi :=
∏i−1
j=1 nj , βi :=

∏d
j=i+1 nj and

1⊗
i=d

Mi := Md ⊗Md−1 ⊗ · · · ⊗M2 ⊗M1.

To solve the d-dimensional version of the linear system of equations (18), we use the following
lemma.
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Lemma A.1. The negative discrete d-dimensional Laplacian ∇T∇ can be diagonalized by tensor
products of DCT-II matrices Cn defined in (20) as follows:

∇T∇ =

 1⊗
j=d

CT
nj

Λ

 1⊗
j=d

Cnj

 ,

where

Λ :=
d∑
i=1

(Iβi ⊗ diag(qni) ⊗ Iαi) , qn :=

(
4 sin2 πj

2n

)n−1

j=0

.

Proof. Using (17) and (19), we obtain

∇T∇ =
(
∇T1∇1 + . . . +∇Td∇d

)
=

d∑
i=1

(
Iβi ⊗D

T
ni
Dni ⊗ Iαi

)
=

d∑
i=1

(
Iβj ⊗ C

T
ni

diag(qni) Cni ⊗ Iαj

)
.

By the orthogonality of the cosine matrix Ini = CT
ni
Cni and (17) we get further

∇T∇ =
d∑
i=1

( i+1⊗
j=d

CT
nj
Cnj

)
⊗
(
CT
ni

diag(qni)Cni

)
⊗
( 1⊗
j=i−1

CT
nj
Cnj

)
=

d∑
i=1

(
CT
nd
⊗ CT

nd−1

) (
Cnd
⊗ Cnd−1

)
︸ ︷︷ ︸

CT
nd
Cnd
⊗CT

nd−1
Cnd−1

⊗
( i+1⊗
j=d−2

CT
nj
Cnj

)
⊗
(
(Cni)

T diag(qni) Cni

)
⊗
( 1⊗
j=i−1

CT
nj
Cnj

)
.

Applying the previous step also to the last term and repeating it iteratively we obtain

∇T∇ =

d∑
i=1

( i+1⊗
j=d

CT
nj

)( i+1⊗
j=d

Cnj

)
⊗
(
CT
ni

diag(qni) Cni

)
⊗
( 1⊗
j=i−1

CT
nj

)( 1⊗
j=i−1

Cnj

)
.

Using (17) results in

∇T∇ =

d∑
i=1

( i⊗
j=d

CT
nj

)
︸ ︷︷ ︸

A

(( i+1⊗
j=d

Cnj

)
⊗ diag(qni) Cni

)
︸ ︷︷ ︸

B

⊗
( 1⊗
j=i−1

CT
nj

)
︸ ︷︷ ︸

C

( 1⊗
j=i−1

Cnj

)
︸ ︷︷ ︸

D

=
d∑
i=1

( 1⊗
j=d

CT
nj

)( i+1⊗
j=d

Cnj

)
⊗ diag(qni) Cni ⊗

( 1⊗
j=i−1

Cnj

)
=

d∑
i=1

( 1⊗
j=d

CT
nj

)Iβi( i+1⊗
j=d

Cnj

)
⊗ diag(qni) Cni ⊗ Iαi

( 1⊗
j=i−1

Cnj

)
=

d∑
i=1

( 1⊗
j=d

CT
nj

)
(Iβi ⊗ diag(qni) ⊗ Iαi)

( 1⊗
j=d

Cnj

)
.

�
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By the lemma, the d-dimensional version of (21) is given by

uk =

 1⊗
j=d

CT
nj

 (Λ + IN )−1

 1⊗
j=d

Cnj

 ak. (25)

Tensor products of matrices are useful to write the models in a matrix-vector form. However, in
our numerical computations we will not work with tensor products. In the following, we describe
how this can be avoided. We start with the case d = 2. For 2-dimensional images we consider

(∇T∇+ IN )−1f =
(
CT
n2
⊗ CT

n1

)
(Λ + IN )−1 (Cn2 ⊗ Cn1) f.

By (3) we have

(Cn2 ⊗ Cn1) f = vec
(
Cn1 F C

T
n2

)
.

Denoting the componentwise multiplication (Hadamard product) of two matrices by ◦ we obtain

(Λ + IN )−1 vec
(
Cn1 F C

T
n2

)
= vec

(
L ◦

(
Cn1 F C

T
n2

))
where L ∈ Rn1×n2 is the columnwise reshaping of the diagonal of (Λ+IN )−1 into a matrix. Applying
(3) again leads to

(∇T∇+ IN )−1f =
(
CT
n2
⊗ CT

n1

)
vec
(
L ◦

(
Cn1 F C

T
n2

))
= vec

(
CT
n1
L ◦

(
Cn1 · F · CT

n2

)
Cn2

)
. (26)

For the general d-dimensional case we have implemented the right-hand side of (25) without con-
structing the tensor products explicitly by applying the following lemma.

Lemma A.2. Let f ∈ RN with N = n1 . . . nd be given. We set Nk := n1 . . . nk, k = 1, . . . , d.
Starting with fkd := f , kd = 1, we define successively:

• F kd := vec−1
Nd−1,nd

(fkd) ∈ RNd−1×nd,

• fkd,kd−1 is the kd−1-th column of F kd, kd−1 = 1, . . . , nd,
• F kd,kd−1 := vec−1

Nd−2,nd−1
(fkd,kd−1) ∈ RNd−2×nd−1

• and so on.

Then, for j = 2, . . . , d and Ai ∈ Rni×ni the following relation holds true: 1⊗
i=j

Ai

 fkd,...,kj = vecNj−1,nj

( 1⊗
i=j−1

Ai
)
F kd,...,kjAT

j

 .

Proof. Apply (3) to every column kj for every j. �
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[18] J. Lellmann and C. Schnörr. Continuous multiclass labeling approaches and algorithms.
Preprint, University of Heidelberg, 2010.

[19] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, Mar. 1982.

[20] S. Miyamoto and Y. Agusta. Efficient algorithms for lp fuzzy c-means and their termination
properties. In Proc. 5th Conference of the International Federation Classification Socienty,
pages 255–258, Kobe, Japan, 1996.

[21] M. Nikolova, S. Esedoglu, and T. F. Chan. Algorithms for finding global minimizers of image
segmentation and denoising models. SIAM Journal on Applied Mathematics, 66(5):1632–1648,
2006.

[22] D. D. Overstreet. Generalized fuzzy c-means clustering. Master’s thesis, Georgia Southern
University, 1998.

[23] T. Pock, A. Chambolle, D. Cremers, and H. Bischof. A convex relaxation approach for com-
puting minimal partitions. IEEE Conference on Computer Vision and Pattern Recognition,
pages 810–817, 2009.

[24] D. Potts and G. Steidl. Optimal trigonometric preconditioners for nonsymmetric toeplitz
systems. Linear Algebra and its Applications, 281:265–292, 1998.

[25] K. R. Rao and P. Yip. Discrete Cosine Transform. Academic Press, New York, 1990.



20 B. SHAFEI AND G. STEIDL

[26] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Physica D, 60:259–268, 1992.

[27] S. Setzer. Operator splittings, Bregman methods and frame shrinkage in image processing.
International Journal of Computer Vision, 2010. accepted.

[28] S. Setzer, G. Steidl, and T. Teuber. On vector and matrix median computation. Journal of
Computational and Applied Mathematics, 2011. accepted.

[29] C. Zach, D. Gallup, J.-M.Frahm, and M. Niethammer. Fast global labeling for real-time stereo
using multiple plane sweeps. Vision, Modeling, and Visualization Workshop, 2008.

[30] M. Zhu and T. F. Chan. An efficient primal-dual hybrid gradient algorithm for total vatiation
image restoration. UCLA CAM Report 08-34, 2008.

Fraunhofer ITWM, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

University of Kaiserslautern, Department of Mathematics, Gottlieb Daimler Str., 67663 Kaisers-
lautern, Germany


