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Abstract. This is an overview of recent research of the authors on
the application of variational methods with higher–order derivatives
in image processing. We focus on gray-valued and matrix-valued
images and deal with a purely discrete setting. We show that regu-
larization methods with second–order derivatives can be successfully
applied to the denoising of gray–value images. In 1D the solutions
of the corresponding minimization problems are discrete polynomial
splines (sometimes with higher defects) and inf-convolution splines
with certain knots. The proposed methods can be transferred to ma-
trix fields. Due to the operator structure of matrices, new tasks like
the preservation of positive definiteness and the meaningful coupling
of the matrix components come into play.

§1. Introduction

In recent years mathematical methods from optimization theory, harmonic
analysis, stochastics or partial differential equations were successfully ap-
plied in digital image processing, while conversely image processing tasks
have led to interesting mathematical questions. In this paper, we restrict
our attention to applications of variational methods in conjunction with
higher–order derivatives in image processing. In a couple of papers, these
techniques have proved to be useful for scalar-valued images, vector-valued
images and tensor-valued images. In this paper, we are only interested in
scalar- and matrix–valued images, more precisely in the denoising of gray–
value images and matrix fields. Vector-valued images are for example col-
ored images or optical flow fields, see Fig. 1 (middle). One of the authors
has used higher–order regularization methods for the simultaneous esti-
mation and decomposition of optical flows [47]. Matrix-valued data have
gained significant importance in recent years, e.g., in diffusion tensor mag-
netic resonance imaging (DT-MRI). Here, every image pixel corresponds
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Fig. 1. Gray-value image of the battle at the Alamo in San Antonio (left),
vector-valued image of an optical flow field (middle), matrix-valued image of a
DT-MRI slice (right).

to a symmetric positive definite matrix A which can be visualized as the
ellipsoid

{x ∈ R
3 : xTA−2x = 1}.

The lengths of the axes of the ellipsoid are the eigenvalues of A and the
ellipsoid illustrates the direction of the diffusion of water molecules, see
Fig. 1 (right).

A well-established method for the denoising of a scalar-valued image
u from a given image f degraded by white Gaussian noise consists in
calculating

argmin
u

∫

Ω

(f − u)2 + α Φ(|∇u|2) dxdy (1)

with a regularization parameter α > 0 and an increasing function Φ :
[0,∞] → R in the penalizing term. The first summand encourages simi-
larity between the restored image and the original one, while the second
term rewards smoothness. Some illustrating examples are given in Fig. 2.
For the straightforward choice Φ(s) = s2, the penalizing term coincides
with the H1 norm of u. The corresponding minimizer becomes too smooth
at edges. The frequently applied ROF–model introduced by Rudin, Osher
and Fatemi [33] with

Φ(s2) :=
√

s2 = |s| (2)

preserves sharp edges, but leads to the so-called staircasing effect. We
will see that one way to overcome both artifacts is to use higher–order
derivatives in the functional.

This paper is organized as follows: In Section 2, we start with the
basic background concerning our discrete setting and positively homoge-
neous penalizing terms. Then, in Section 3, we deal with the denoising of
gray–value images. More precisely, in Section 3.1, we start with 1D signals
and verify that the solutions of the corresponding minimization problems
are discrete splines whose knots correspond to the contact points of their
dual counterparts with some tube boundary. In Section 3.2, we generalize
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Fig. 2. Top left: Part of the MATLAB clown image. Top right: Denoised image
by the H1-model with α = 5. Edges are smoothed. Bottom left: Denoised image
by the ROF-model with α = 10. The staircasing effect is visible. Bottom right:
Denoised image by using higher–order derivatives in the penalizing functional
(Here: inf–convolution with r = 2 and α1 = 10, α2 = 20).

the results to images. In Section 4 we transfer the proposed successful
techniques from the scalar–valued case to tensor fields. Due to the matrix
structure of the data a couple of new questions appears, e.g., the meaning-
ful coupling of the matrix components in the functionals and the preserva-
tion of positive definiteness by the minimizers. In Section 4.1 we propose
a so-called ’component–based’ method which directly adapts the scalar–
valued approach but takes only the vector space structure of the matrices
into account. The more sophisticated so-called ’operator–based’ method
which we introduce in Section 4.2 respects also the operator structure of
matrices. Numerical examples for the different approaches with artificial
as well as real–world data sets are given in Section 4.3.

§2. Preliminaries

In this paper, we will only work in a discrete setting. To this end, we
approximate the derivatives by forward differences. Further, we restrict
our attention to positively homogeneous penalizing terms. In the following
we provide the necessary background.
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Forward difference matrices. Starting with the forward difference
matrix

DN,1 :=







−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0

.
.
.

.
.
.

.
.
.

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1






∈ R

N−1,N

the m–th order difference matrices DN,m ∈ R
N−m,N can be defined by

DN,m = DN−(m−1),1 . . . DN,1 = DN−k,m−kDN,k, 1 ≤ k ≤ m − 1. (3)

If the length N is fixed, we abbreviate DN,m to Dm. The image R(DT

N,m)
of DT

N,m is given by the vectors with m vanishing moments and the kernel
N (DN,m) of DN,m by the discrete polynomials of degree ≤ m − 1, i.e.,

R(DT

N,m) = {f ∈ R
N :

N−1
∑

j=0

jrf(j) = 0, r = 0, . . . , m − 1},

N (DN,m) = span{(jr)N−1
j=0 : r = 0, . . . , m − 1}.

We have the orthogonal decomposition R
N = R(DT

N,m) ⊕N (DN,m).

Positively homogeneous penalizers. For given f ∈ R
N , we consider

argmin
u∈RN

1

2
‖f − u‖2

ℓ2 + J(u), (4)

where J is a convex, positively homogeneous functional, i.e., J(λu) =
λJ(u) for λ > 0 and all u ∈ R

N . The solution û of this problem coincides
with û = f − v̂, where v̂ is the solution of the dual problem

argmin
v∈RN

1

2
‖f − v‖2

ℓ2 + J∗(v), (5)

and J∗(v) := supw∈RN{〈v, w〉 − J(w)} denotes the Legendre-Fenchel con-
jugate of J . Since J is positively homogeneous, J∗ is the indicator function
of the convex set

C := {v : 〈v, w〉 ≤ J(w), ∀w ∈ R
N}, (6)

i.e.,

J∗(v) = δC(v) :=

{

0, for v ∈ C,
∞, for v 6∈ C.

Hence, (5) implies that
û = f − ΠCf, (7)
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where ΠC denotes the orthogonal projection onto C.
Now let J = J1� · · ·�Jr be the infimal convolution (inf-convolution)

of the proper convex functionals J1, · · · , Jr defined by

(J1� · · ·�Jr)(u) := inf
u1,...,ur

{J1(u1) + · · · + Jr(ur) : u1 + · · · + ur = u}.

Then J1� · · ·�Jr is also a proper convex functional. It is not hard to show
that for lower semi-continuous proper functionals Jk with Jk(−u) = Jk(u),
the solution û of (4) is given by û = û1 + · · ·+ ûr, where ûk, k = 1, . . . , r,
are determined by

argmin
u1,...,ur

1

2
‖f − u1 − · · · − ur‖2

2 + J1(u1) + · · · + Jr(ur).

The Legendre-Fenchel conjugate of the inf-convolution is given by

(J1� · · ·�Jr)
∗ = J∗

1 + · · · + J∗
r .

If Jk, k = 1, . . . , r, are positively homogeneous, then J∗
k = δCk

for appro-
priate convex sets Ck in (6) and the minimizer of (4) reads

û = f − Π∩Ck
f. (8)

§3. Denoising of Gray-Value Images

Before turning to images, we consider 1D signals and characterize the
minimizers of our functionals as discrete splines with certain knots. We
note that minimization problems of the form

argmin
u

1

2

∑

i∈I

(f(xi) − u(xi))
2 + λ‖Lu‖p

Lp
, (9)

where L denotes a general differential operator and their relations to
splines are well–examined in approximation theory. For p = 2, one may
start, e.g., with I. J. Schoenberg’s and C. deBoor’s papers [35, 13] in 1D,
consider the results of G. Wahba [43] and in 2D of J. Duchon [14]. For
p ∈ (1,∞), a good overview can be found in the book [4] (see also [11]),
while the paper of S. D. Fisher and J. W. Jerome [15] deals with the non-
reflexive setting p = 1. For the discrete setting, we refer to the papers of
O. L. Mangasarian and L. L. Schumaker [29, 30].

3.1. Higher–Order Regularization in 1D

We start with a basic approach and consider useful generalizations after-
wards.
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Basic approach. For given f ∈ R
N , we are interested in

argmin
u

1

2
‖f − u‖2

ℓ2 + α‖Dmu‖ℓ1. (10)

By (6) and (7), the solution of (10) is given by

û = f − ΠCf,

C = {v : 〈v, w〉 ≤ α‖Dmw‖ℓ1 ∀w ∈ R
N}.

It is easy to check that v ∈ C implies that v ∈ R(DT
m). Since DT

m ∈
R

N,N−m has full rank, we have that for every v ∈ R(DT
m) there exists

a uniquely determined V ∈ RN−m such that v = DT
mV , and conversely

V = (DmDT
m)−1Dmv = D†

mv with the Moore–Penrose inverse D†
m. Fur-

thermore, simple estimates give

sup
w∈R(DT

m)

w 6=0

|〈v, w〉|
‖Dmw‖ℓ1

≤ ‖V ‖ℓ∞ ,

so that C = {v := DT
mV : ‖V ‖ℓ∞ ≤ α}. Thus, û = f − DT

mV̂ , where V̂ is
the minimizer of

‖f − DT

mV ‖2
ℓ2 → min, subject to ‖V‖ℓ∞ ≤ α. (11)

This is a quadratic minimization problem with linear constraints, and can
be solved by standard methods.

Assume that f ∈ R(DT
m), i.e., f = DT

mF and set U := F − V . Then
we see that û = DT

mÛ , where Û is the solution of

‖DT

mU‖2
ℓ2 → min, subject to ‖F − U‖ℓ∞ ≤ α.

It can be shown that Û is also the solution of the following contact problem
[37]:

1. U lies in a tube around F of width 2α , i.e., ‖F − U‖ℓ∞ ≤ α.

2. Let Ξ := {j ∈ {0, . . . , N − m − 1} : (DN+m,2mŨ)j 6= 0}, where

Ũ := (0m, U, 0m). If j ∈ Ξ, then U(j) = F (j) − (−1)mα, i.e., U(j)
contacts the boundary of the tube.

In general, solving this contact problem is not straightforward. Only for
the special case m = 1 there exists the so-called ’taut–string’ algorithm
[12] which is based on a convex hull algorithm and requires only O(N)
arithmetic operations. Concerning tube algorithms, see also [28, 20].

By the second contact condition, we see that U and u are indeed poly-
nomial splines of degree 2m − 1 and m − 1, resp., in the following sense:
Recall that a real-valued function s defined on [a, b] is a polynomial spline
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of degree m − 1 with knots Θ := {x1, . . . , xq}, a < x1 < . . . < xq < b, if
s ∈ Cm−2[a, b] and s is a polynomial of degree ≤ m − 1 on each interval
[xk, xk+1], k = 0, . . . , q; x0 := a, xq+1 := b, i.e.,

s(m)(x) = 0, for x ∈ (a, b), x 6∈ Θ.

These smoothest polynomial splines are also called splines with defect 1
or with knot multiplicity 1. Similarly, we say that u ∈ R

N is a discrete
polynomial spline of degree m − 1 with knots Θ = Ξ + ⌊m

2 ⌋ if

(DN,mu)(j) = 0, j ∈ {0, . . . .N − m − 1}, j 6∈ Ξ.

By this definition Ũ is a discrete polynomial spline of degree 2m − 1 with
knots Θ = Ξ+m. Now DT

mDm is the restriction of DN+m,2m to its middle

N − m columns. Thus, DN+m,2mŨ = DT
mDmU , and since u = DT

mU we
see that

(Dmu)(j) = 0, except for j ∈ Ξ.

Hence, û is a discrete polynomial spline of degree m−1 with knots Ξ+⌊m
2 ⌋.

Material on discrete splines can be found, e.g., in [36] and in connection
with optimization problems different from the one considered here in [29,
30]. The relation of (DT

mDm)−1 to G. Wahba’s reproducing kernels in the
reproducing kernel Hilbert spaces Wm

2,0 is explained in [37].

Generalizations. The approach (10) can be generalized in various di-
rections, e.g.:

• by introducing additional data fitting terms to encourage the similar-
ity between derivatives of f and u,

• by using an inf-convolution penalizing term,

• by using other matrices L than difference matrices in the penalizing
term.

As an example of the first approach we consider

argmin
u

1

2
‖f − u‖2

ℓ2 +
β

2
‖D1f − D1u‖2

ℓ2 + α ‖Dmu‖ℓ1 . (12)

Let A := BTB = IN + βDT
1 D1 = CT

N (IN + βΛ2)CN , where CN de-

notes the matrix of the DCT-II transform, and Λ := diag
(

2 sin jπ
2N

)N−1

j=0
.

Let f = f0 + f1 be the A–orthogonal decomposition of f related to
R

N = N (Dm)⊕A R(A−1DT
m), where orthogonality is meant with respect

to 〈u, v〉A = vTAu. Then the solution of (12) is given by û = f0 + û1,

where û1 = f̂1 − A−1DT
mV̂ and V̂ solves

1

2
‖Bf − (B−1)TDT

mV ‖2
ℓ2 → min, subject to ‖V ‖ℓ∞ ≤ α.
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Using the spectral decomposition of A and the fact that the DCT-II
can be computed with O(N log N) arithmetic operations, the solution
of this quadratic problem can be computed efficiently. Finally, for f ∈
R(A−1DT

m) and f = A−1DT
mF , the dual problem can be rewritten as

û = A−1DT
mÛ , where Û solves

‖(B−1)TDT

mU‖2
ℓ2 → min, subject to ‖F − U‖ℓ∞ ≤ α.

It turns out that Û is a discrete counterpart of a polynomial spline of
degree 2m − 1 with defect 3, while û is again a discrete polynomial spline
of degree m − 1 with defect 1, see [38].

As an example of the second approach we consider the inf-convolu-
tion penalizing term

argmin
u

1

2
‖f − u‖2

ℓ2 + (J1� · · ·�Jm)(u)

with Jk(u) := αk‖Dku‖ℓ1, k = 1, . . . , m. By (8) we obtain the solution
û = f − v̂, where v̂ solves

1

2
‖f − v‖2

ℓ2 → min subject to v = DT

1 V1 = · · · = DT

mVm, (13)

‖Vk‖ℓ∞ ≤ αk, k = 1, . . . , m.

By (3) we have
v = DT

mVm = DT

N,kDT

N−k,m−kVm,

and since Vk is uniquely determined, this implies that Vk = DT

N−k,m−kVm.

Hence (13) can be reformulated as v̂ = DT
mV̂ , where V̂ is the solution of

1

2
‖f−DT

mV ‖2
ℓ2 → min, subject to ‖DN−k,m−kTV ‖ℓ∞ ≤ αk, k = 1, . . . , m.

Here û is the sum of discrete polynomial splines of degree k − 1, k =
1, . . . , m with different knots. Note that so-called ’inf-convolution splines’
related to the data fitting term in (9) were introduced by P. J. Laurent
[24, 25].

The third approach leads to discrete L-splines as minimizers. There
exists a rich literature on L–splines; for an overview see [36]. Recently,
L–splines were studied in signal processing problems by M. Unser et al.
[42].

3.2. Higher–Order Regularization in 2D

Higher–order regularization methods and PDE–based methods were con-
sidered in a different setting than proposed in this paper in [34, 10, 46, 27,
21, 22]. The inf-convolution technique was first applied in image process-
ing by A. Chambolle and P.-L. Lions [9]. As in 1D, we start with a general
approach, where we restrict our attention to second–order derivatives.
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Basic approach. For the sake of simplicity, we consider quadratic im-
ages f ∈ R

n,n. We transform f into a vector f ∈ R
N with N = n2 in the

following way:

vec f :=







f0

...
fn−1






,

where fj denotes the j-th column of f . Let D :=

(

Dn,1

0T
n

)

. Then we

approximate the partial derivative operators by

Dx := In ⊗ D, Dxx := In ⊗ DTD,

Dy := D ⊗ In, Dyy := DTD ⊗ In,

where A ⊗ B denotes the Kronecker product of A and B. Further, we set

D1 :=

(

Dx

Dy

)

, D2 :=

(

Dxx

Dyy

)

.

As an alternative to D2, we can also use D2,H := (DT
xx, DT

yy, D
T
xy, D

T
yx)T

with an appropriate matrix Dxy for the mixed derivatives. Now we con-
sider the problem

argmin
u∈RN

1

2
||f − u‖2

ℓ2 + α || |Lu| ‖ℓ1, (14)

where L ∈ {D2,D2,H} and |W |(j) :=
(

∑p−1
k=0 W (j + kN)2

)1/2

for W ∈
R

pN and j = 1, . . . , N . For L = D1, problem (14) is a discrete version of
the ROF–model (1), (2). By (6) and (7), the solution û of (14) is given
by

û = f − ΠCf,

C = {v : 〈v, w〉 ≤ α‖ |Lw| ‖ℓ1 , ∀w ∈ R
N}.

Again we see that v ∈ C implies that v ∈ R(LT), i.e., there exist vectors
V ∈ RpN such that v = LTV . In contrast to the 1D case, the function V
is not uniquely determined. However, we can prove that, see, e.g., [38],

sup
w∈R(LT)

w 6=0

|〈v, w〉|
‖ |Lw| ‖ℓ1

≤ min
v=LTV

‖ |V | ‖ℓ∞ .

Thus, û = f − LTV̂ , where V̂ is the minimizer of

‖f − LTV ‖2
ℓ2 → min, subject to ‖ |V| ‖ℓ∞ ≤ α. (15)

This is a quadratic minimization problem with quadratic constraints (if
squared). We propose to solve this problem by one of the following two
techniques:
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• Chambolle’s descent algorithm [8] which is simple to implement, in-
cluding modifications,

• second-order cone programming (SOCP) [17, 26] which is based on
a primal/dual interior point method. There exists sophisticated soft-
ware for SOCP, e.g., the packages SeDuMi [40] or MOSEK [1].

In our numerical experiments we have applied SOCP.

Generalizations. The generalizations considered in 1D carry over to
images. Concerning the first approach, we may consider

argmin
u

1

2
‖f − u‖2

2 +
β

2
‖D1f −D1u‖2

ℓ2 + α‖ |Lu| ‖ℓ1.

Then the dual formulation becomes

‖Bf − (B−1)TLTV ‖2
ℓ2 → min, subject to ‖ |V | ‖ℓ∞ ≤ α, (16)

where
A := BTB = (Cn ⊗ Cn)T(IN + αΛ2

2)(Cn ⊗ Cn)

and Λ2
2 = Λ2 ⊗ In + In ⊗ Λ2.

In the second approach, we restrict out attention to

argmin
u∈RN

1

2
||f − u‖2

ℓ2 + (J1�J2)(u),

where

J1(u) := α1 ‖ |D1u| ‖ℓ1 , and J2(u) := α2 ‖ |D2u| ‖ℓ1 ,

Consequently, by (8), we obtain that û = f − v̂, where v̂ is the solution of

‖f − v‖2
2 → min, subject to v = DT

1 V1 = DT

2 V2, (17)

‖ |V1| ‖∞ ≤ α1, ‖ |V2| ‖∞ ≤ α2.

Now we have that

DT

2 = DT

1

(

Dx 0
0 Dy

)

.

Assuming that V1 =

(

Dx 0
0 Dy

)

V2, which is in general not true, we

modify (17) as

‖f −DT

2 V ‖2
2 → min, subject to ‖ |

(

DxV 1

DyV 2

)

| ‖∞ ≤ α1,(18)

‖ |V | ‖∞ ≤ α2.
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Note that this minimization problem is similar but not equivalent to (17).
The solutions of (17) and (18) can be computed by SOCP.

A numerical comparison of the different methods, namely, (15) with
L = D1, (15) with L = D2, (16) with L = D2, and (18) is given in
Fig. 3. The parameters are chosen with respect to the best SNR. Note
that the images with best SNR do not in general have the best visual
quality. For a comparison of images with good visual quality see [38].
Fig. 3 demonstrates that using second order derivatives in (15) we can
reduce the staircasing effect and preserve edges. By incorporating the
gradient fitting term as in (16), the image quality can be further improved.
Finally, the modified inf-convolution approach (18) gives the best results
in our example.

Improved finite difference discretizations. Finally, we want to give
some remarks on the discretization of derivatives by finite differences. For
the applications at hand, the standard forward differences work well. How-
ever, e.g., for optical flow estimation/decomposition of non-rigid motion,
we have to ensure that the integral identities fulfilled by the continuous
operators are still correct in the discrete setting. This is not possible by
using just one grid. A remedy consists in applying the finite mimetic
difference method [23] which was done, e.g., in [47].

For images with distinguished directions as in Fig. 4 the results with
simple forward or central differences can be improved by using, e.g., the
following Haar wavelet inspired discretization of the gradient proposed in
[45]: We discretize the squared gradient magnitude |∇u|2 at cell midpoints
(i + 1

2 , j + 1
2 ) in a twofold way. To simplify notation, let us fix i = j = 1

and consider U := (u(i, j))2i,j=1. First, we can approximate ux and uy by
arithmetic means of central difference approximations

ux

(

3

2
,
3

2

)

≈ (u(2, 2)− u(2, 1) + u(1, 2)− u(1, 1))/2 = −û(1, 2) ,

uy

(

3

2
,
3

2

)

≈ (u(2, 2) + u(2, 1) − u(1, 2)− u(1, 1))/2 = −û(2, 1) ,

where Û := HUH and H := 1√
2

(

1 1
1 −1

)

. This leads to

|∇u|2 ≈ 1

2

(

(u(2, 2) − u(1, 1))2 + (u(2, 1) − u(1, 2))2
)

= û(1, 2)2 + û(2, 1)2, (19)

and may also be interpreted as squared gradient magnitude with respect
to the coordinates 1√

2
(1, 1)T and 1√

2
(1,−1)T. On the other hand, we can
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Fig. 3. Denoising experiment in 2D. Top left: Original image (size 256× 256).
Top right: Image with additive white Gaussian noise, SNR 11.16. Middle left:
Denoised image with ROF model α = 21, SNR=24.04. The staircasing effect is
visible. Middle right: Denoised image with second order model α = 15, SNR
= 22.45. The staircasing becomes less visible. Bottom left: Denoised image
with second order model (16) β = 0.5, α = 33, SNR= 22.83. The background
becomes smoother while edges are preserved. Bottom right: Denoised image
with simplified inf-convolution model (18) and α1 = 21, α2 = 79. SNR = 25.80.
This is the best result for our example.
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Fig. 4. Top left: Original image with values in [0,1]. Top right: Noisy image
with white Gaussian noise of standard deviation 0.4. Bottom left: Denoised
image by the ROF-model and forward difference discretization. Bottom right:
Denoised image by the ROF-model and Haar filter discretization.

also average the squared derivatives

u2
x

(

3

2
,
3

2

)

≈ 1

2

(

(u(2, 2) − u(2, 1))2 + (u(1, 2) − u(1, 1))2
)

,

u2
y

(

3

2
,
3

2

)

≈ 1

2

(

(u(2, 2) − u(1, 2))2 + (u(2, 1) − u(1, 1))2
)

,

and obtain

|∇u|2 ≈ 1

2

(

u(2, 2)− u(1, 2))2 + (u(2, 1) − u(1, 1))2

+(u(2, 2)− u(2, 1))2 + (u(1, 2) − u(1, 1))2

= û(1, 2)2 + û(1, 2)2 + 2û(2, 2)2. (20)

Now each convex combination of (19) and (20) can be used as an approxi-
mation of the squared gradient magnitude. Here we restrict our attention
to their average

|∇u|2 ≈ û(1, 2)2 + û(1, 2)2 + û(2, 2)2. (21)
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Transfering this approximation to the whole image, we obtain as a discrete
version of (1) with function (2) the minimization problem (14) with
L := ((H1 ⊗ H0)

T, (H0 ⊗ H1)
T, (H1 ⊗ H1)

T)
T

and

H0 :=
1√
2













√
2 0 . . . 0 0

1 1 . . . 0 0

.
.
.

.
.
.

0 0

.

.

. 1 1

0 0

.

.

. 0
√

2













, H1 :=
1√
2













0 0 . . . 0 0
1 −1 . . . 0 0

.
.
.

.
.
.

0 0

.

.

. 1 −1

0 0

.

.

. 0 0













.

Note that H0 ∈ R
n+1,n and H1 ∈ R

n+1,n are related to Haar filters
with the corresponding modifications at the boundary so that 1

2 (HT
0 H0 +

HT
1 H1) = In. Fig. 4 demonstrates the improvement by using the proposed

discretization (21) of the gradient. Note that with central differences we
get checkerboard patterns, not shown in the figure.

§4. Denoising of Tensor-Valued Images

The following variety of applications make it worthwhile to develop ap-
propriate tools for the restoration and processing of matrix-valued data:
First, diffusion tensor magnetic resonance imaging (DT-MRI) [3] is a mod-
ern medical imaging technique that measures a 3× 3 positive semidefinite
matrix-field. A so-called diffusion tensor is assigned to each voxel. This
diffusion tensor describes the diffusive property of water molecules. Since
water diffuses preferably along ordered tissue such as nerve fibers, this
matrix gives valuable information about the geometry and organization
of the tissue under examination. Hence this matrix field plays a very
important role for the diagnosis of multiple sclerosis and stroke. For de-
tailed information about the acquisition of this type of data, the reader
is referred to [2] and the literature cited therein. Second, in the field of
technical sciences such as civil engineering and solid mechanics or geology,
anisotropic behaviour is often described satisfactorily by inertia, diffusion,
stress, and permitivity tensors. Third, tensors have been recognized as a
useful concept in image analysis itself [18]. The structure tensor [16], for
instance, has been employed not only for corner detection [19], but also
for texture analysis [32] and motion estimation [5].

In the following, we want to transfer the techniques from the previous
section to matrix fields. When designing filters for these fields, treating
the channels independently is a simple though not recommended strategy.
Any relation between the different matrix channels is ignored which leads
to serious shortcomings. In a straightforward approach, which we call
component-based, we relate the matrix components by the Frobenius norm
which takes only the vector space structure of matrices into account. We
will see that for this approach, the denoising methods from the previous
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section can be directly applied. However, specific questions appear, e.g.,
whether these methods preserve positive definiteness. A second approach
which we call operator-based is more adapted to the operator structure of
the matrices. The first ’operator-based’ method in the context of PDEs
can be found in [7].

4.1. Component-based regularization

In the following, let F : R
2 ⊃ Ω → Symm(R) be a matrix field, where

Symm(R) is the vector space of real symmetric m×m matrices. This space
can be treated as a Euclidian vector space with respect to the trace inner
product 〈A, B〉 := trAB = (vecA, vecB), where (·, ·) on the right-hand
side denotes the Euclidian inner vector product. Then 〈A, A〉 = trA2 =
‖A‖2

F = ‖vecA‖ℓ22
is the squared Frobenius norm of A. In Symm(R), the

positive semi-definite matrices Sym+
m(R) form a closed convex set whose

interior consists of the positive definite matrices. More precisely, Sym+
m(R)

is a cone with a base.

Analogously to (1), we consider

argmin
U

∫

Ω

‖F − U‖2
F + α Φ

(

tr (U2
x + U2

y )
)

dxdy, (22)

where the partial derivatives are taken componentwise. The penalizing
term J(U) in (22) was introduced by Deriche and D. Tschumperlé [41].
Rewriting this term as

J(U) =

∫

Ω

Φ
(

‖Ux‖2
F +‖Uy‖2

F

)

dxdy =

∫

Ω

Φ
(

m
∑

j,k=1

∇uT

jk∇ujk

)

dxdy, (23)

we see its component-based structure implied by the Frobenius norm.
However, due to the sum on the right–hand side, Φ is indeed applied
to coupled matrix coefficients. By [6], the Euler–Lagrange equation of
(23) is given by

0 = F − U + α
(

∂x(Φ′(tr(U2
x + U2

y ))Ux + ∂y(Φ′(tr(U2
x + U2

y ))Uy

)

. (24)

Again, we are only interested in the ROF–function Φ given by (2). More
precisely, since Φ in (2) is not differentiable at zero, we have to use its
modified version

Φ(s2) =
√

s2 + ε2, (25)

with a small additional parameter ε.

For computations we consider the discrete counterpart of (22), where
we once again replace the derivative operators by simple forward difference
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operators

argmin
U

N−1
∑

i,j=0

1

2
‖F (i, j) − U(i, j)‖2

F + α J(U), (26)

J(U) :=

N−1
∑

i,j=0

(

‖U(i, j) − U(i − 1, j)‖2
F + ‖U(i, j) − U(i, j − 1)‖2

F

)1/2

with U(−1, j) = U(i,−1) = 0. The functional in (26) is strictly convex
and coercive, and thus has a unique minimizer.

We say that the discrete matrix field F : Z
2
n → Sym+

m(R) has all
eigenvalues in an interval I if all the eigenvalues of every matrix F (i, j)
of the field lie in I. By the following proposition, the minimizer of (26)
preserves positive definiteness. The proof is based on Courant’s Min-Max
principle and the projection theorem for convex sets, and can be found in
[39].

Proposition 1. Let all eigenvalues of F : Z
2
n → Sym+

m(R) be contained in

the interval [λmin, λmax]. Then the minimizer Û of (26) has all eigenvalues

in [λmin, λmax].

To see how the methods from previous section carry over to matrix
fields, we rewrite (26) in matrix-vector form. To this end, let N = n2 and
M := m(m + 1)/2. We reshape F : Z

2
n → Symm(R) into the vector

f :=





























ε1,1 vec (F1,1)
...
ε1,m vec (F1,m)
ε2,2 vec (F2,2)
...
ε2,m vec (F2,m)
...
εm,m vec (Fm,m)





























∈ R
MN ,

where Fk,l := (Fk,l(i, j))
n−1
i,j=0 and εk,l :=

{ √
2, for k 6= l

1, otherwise.
Then (26) becomes

argmin
u∈RMN

1

2
‖f − u‖2

ℓ2 + α‖ | (IM ⊗D1)u| ‖ℓ1 .

This problem has the structure of (14) with L := IM ⊗ D1 ∈ R
2MN,MN

and p = 2M . Thus it can be solved by applying SOCP to its dual given
by (15).
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Similarly, we can transfer the inf–convolution approach to the matrix-
valued setting. Obviously, we have to compute

argmin
u

1

2
‖f − u‖2

ℓ2 + (J1�J2)(u),

with J1(u) := α1‖ | (IM ⊗D1)u| ‖ℓ1 and J2(u) := α2‖ | (IM ⊗D2)u| ‖ℓ1.
In our numerical examples we solve the corresponding modified dual prob-
lem (18), which reads

‖f − (IM ⊗DT

2 ) V ‖2
ℓ2 → min, subject to

‖ |
(

IM ⊗
(

Dx 0
0 Dy

))

V | ‖∞ ≤ α1,

‖ |V | ‖∞ ≤ α2. (27)

4.2. Operator-based regularization

In this subsection, we introduce a regularization term that emphasizes the
operator structure of matrices. In addition to their vector space structure,
matrices can be multiplied. Unfortunately, the original matrix multiplica-
tion does not preserve the symmetry of the matrices. The Jordan–product
of matrices A, B ∈ Symm(R) defined by

A • B :=
1

2
(AB + BA)

preserves the symmetry of the matrices but not the positive semi-definite-
ness. For A ∈ Symm(R) with eigenvalue decomposition A = QΛQT, let
Φ(A) = QΦ(Λ)QT, where Λ := diag (λ1, . . . , λm) and Φ(Λ) := diag (Φ(λ1),
. . . , Φ(λm)). We consider the following minimization problem

argmin
U

∫

Ω

‖F − U‖2
F + α tr

(

Φ(U2
x + U2

y )
)

dxdy. (28)

In contrast to (22), the trace is taken after applying Φ to the matrix
U2

x + U2
y .

The next proposition, which can be found in [39], shows that the func-
tional (28) has an interesting Gâteaux derivative.

Proposition 2. Let Φ be a differentiable function. Then the Euler-

Lagrange equations for minimizing the functional (28) are given by

0 = F − U + α
(

∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

))

. (29)

In contrast to (24), the Jordan product of matrices appears in (29),
and the function Φ′ is applied to matrices. Note that in [44] an anisotropic
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diffusion concept for matrix fields was presented, where the function Φ was
also applied to a matrix.

We apply Proposition 2 to compute a minimizer of (28) by solving
the corresponding reaction–diffusion equation for t → ∞ by a difference
method:

Ut = F − U + α
(

∂x

(

Φ′(U2
x + U2

y ) • Ux

)

+ ∂y

(

Φ′(U2
x + U2

y ) • Uy

))

with Φ as in (25), homogeneous Neumann boundary conditions and initial
value F . More precisely, we use the iterative scheme

U (k+1) = (1 − τ)U (k) + τF + τα
(

∂x

(

G(k) • U (k)
x

)

+ ∂y

(

G(k) • U (k)
y

))

(30)

with sufficiently small time step size τ and G(k) := Φ′((U
(k)
x )2 + (U

(k)
y )2).

The inner derivatives including those in G are approximated by forward
differences, and the outer derivatives by backward differences, so that the
penalizing term becomes

1

h1

(

G(i, j) • U(i + 1, j) − U(i, j)

h1
− G(i − 1, j) • U(i, j) − U(i − 1, j)

h1

)

+

1

h2

(

G(i, j) • U(i, j + 1) − U(i, j)

h2
− G(i, j − 1) • U(i, j) − U(i, j − 1)

h2

)

,

where hi, i = 1, 2 denote the pixel distances in x and y–direction. Alterna-
tively, we have also worked with symmetric differences for the derivatives.
In this case we have to replace, e.g., G(i, j) in the first summand by
(G̃(i + 1, j) + G̃(i, j))/2, and G̃ is now computed with symmetric differ-
ences.

4.3. Numerical Results

Finally, we present numerical results demonstrating the performance of
the different methods for matrix-valued data. All algorithms were im-
plemented in MATLAB. Moreover, we have used the software package
MOSEK for SOCP and an OpenGL–based routine for visualizing the el-
lipsoids.

SOCP amounts to minimizing a linear objective function subject to
the constraints that several affine functions of the variables have to lie in
a second-order cone Cn+1 ⊂ R

n+1 defined by

Cn+1 =

{(

x
x̄n+1

)

= (x1, . . . , xn, x̄n+1)
T : ‖x‖2 ≤ x̄n+1

}

.

With this notation, the general form of a SOCP is given by

inf
x∈Rn

fTx s.t.

(

Aix + bi

cT

i x + di

)

∈ Cn+1 , i = 1, . . . , r. (31)
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Alternatively, one can also use the rotated version of the standard cone

Kn+2 :=
{

(

x, x̄n+1, x̄n+2

)T ∈ R
n+2 : ‖x‖2

2 ≤ 2 x̄n+1x̄n+2

}

,

which allows us to incorporate quadratic constraints. Problem (31) is a
convex program for which efficient, large scale solvers are available [31].
For rewriting our minimization problems as a SOCP see [39].

We start by considering the matrix–valued function F :Z2
32→Sym+

2 (R)
in Fig. 5. The 2× 2 matrices are visualized by the corresponding ellipses.
The components of the original data lie in the interval [0,2]. We have added
white Gaussian noise with standard deviation 0.6 to all components. We
compare the minimizer of the component-based approach (22) resp. (26)
with those of the operator-based approach (28). For computing the mini-
mizer of the first functional, we applied SOCP while the minimizer of the
second one was computed via the reaction–diffusion equation (30) with
time step size τ = 0.00025. The iterations were stopped when the relative
error in the ℓ2-norm between two consecutive iterations became smaller
than 10−8 (approximately 20000 iterations) although the result becomes
visually static much earlier. The middle row of the figure contains the er-
ror plots for both methods. The actual minima w.r.t. the Frobenius norm
are given for (26) by 12.19 at α = 1.75 and for (28) by 10.79 at α = 1.2.
Hence, with respect to the computed errors, the operator-based method
outperforms the component-based one. The corresponding denoised im-
ages are shown at the bottom of the figure.

Fig. 6 shows a function F : Z
2
12 → Sym3(R), where the matrix compo-

nents lie in the interval [−0.5, 0.5]. We have added white Gaussian noise of
standard deviation 0.06 to all components. The denoising results are dis-
played in the last two rows of Fig. 6. We have computed the minimizers of
the component-based method (26) by SOCP. The smallest error, measured
in the Frobenius-norm, is 1.102, and was obtained for the regularization
parameter α = 0.11. The minimizer of the inf–convolution approach (27)
is depicted at the bottom of the figure. Here the optimal regularization
parameters are α1 = 0.14 and α2 = 0.08. The corresponding Frobenius-
norm error is 0.918. We see that the inf-convolution approach is also
suited for matrix-valued data. For the operator-based approach which is
not illustrated in the figure, we obtain as smallest Frobenius-norm error
1.0706 at α = 0.12. This lies between the error of the approach (26) and
the error of the inf–convolution method.

In our final experiment, we applied the two component-based methods
(26) and (27) to a real world data set. Fig. 7 shows the orginal data and
the minimizers of (26) and (27). The components of the original data lie
in [−4000, 7000], and we have used the regularization parameters α = 600
for (26) and α1 = 500, α2 = 600 for (27), respectively.



20 S. Setzer and G. Steidl

0 0.5 1 1.5 2 2.5
10

15

20

25

30

35

40
error (Frobenius norm)

0 0.5 1 1.5 2 2.5
10

15

20

25

30

35

40
error (Frobenius norm)

Fig. 5. Denoising of a Sym2(R)–valued image. Top: Original image (left),
noisy image (right). Middle: Error of the Frobenius norm as a function of the
regularization parameter α for the minimizers of the component-based functional
(26) (left) and the operator-based functional (28) (right). Bottom: Denoised
image for α corresponding to the smallest error in the Frobenius norm for the
component-based functional (left) and the operator-based functional (right).
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Fig. 6. Denoising of a Sym3(R)-valued image. Top to Bottom: Original im-
age, noisy image, minimizer of the component-based method (26) for α = 0.11,
minimizer of the component-based inf–convolution approach (27) with param-
eters α1 = 0.14, α2 = 0.08. Visualization: ellipsoids (left), components of the
matrix-valued data (right). The color of the ellipsoid associated with a matrix
A is chosen with respect to the normalized eigenvector corresponding to the
largest eigenvalue of A.
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Fig. 7. Denoising of a real-world DT-MRI matrix field with values in Sym3(R).
Top: Original image. Middle: Minimizer of the component-based method (26)
for α = 600. Bottom: Minimizer of the inf–convolution approach (27) for
α1 = 500, α2 = 600.
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