
A new linogram algorithm for computerized tomographyDaniel PottsMedical University of L�ubeckInstitute of MathematicsWallstr. 40D{23560 L�ubeckpotts@math.mu-luebeck.deandGabriele SteidlUniversity of MannheimInstitute of Computer ScienceD{68131 Mannheimsteidl@math.uni-mannheim.deAbstract. In this paper, we propose a new linogram algorithm for the high quality Fourierreconstruction of digital N �N images from their Radon transform. The algorithm is basedon univariate fast Fourier transforms for nonequispaced data in the time domain and inthe frequency domain. The algorithm requires only O(N2 logN) arithmetic operations andpreserves the good reconstruction quality of the �ltered backprojection.1991 Mathematics Subject Classi�cation. 44A12, 65T50Key words and phrases. Fast Fourier transform for nonequispaced data, Radon transform,computerized tomography, gridding, linogram, chirp{z transform1 IntroductionWe are interested in e�cient and high quality reconstructions of digital N�N medical imagesfrom their Radon transform. The standard reconstruction algorithm, the �ltered backprojec-tion, ensures a good quality of the images at the expense of O(N3) arithmetic operations.Fourier reconstruction methods reduce the number of arithmetic operations to O(N2 logN),a feature which will be of particular interest for future three{dimensional image processing.Unfortunately, the straightforward Fourier reconstruction algorithm su�ers from unacceptableartifacts so that it is useless in practice. A better quality of the reconstructed images can beachieved by linogram algorithms [5, 21], the gridding algorithm [16, 20, 19], the uni�ed Fourierreconstruction algorithm (UFR{algorithm) [12, 13] or by recently developed algorithms by K.Fourmont [8], J. Walden [25] and D. Gottlieb et al. [9].The consideration of other algorithms than Fourier reconstruction algorithms for the inversionof the Radon transform, e.g. iterative algorithms, is beyond the scope of this paper. Here werefer to [15].In this paper, we propose a new Fourier reconstruction algorithm having better or at least thesame quality as the above algorithms. Our algorithm is based on recent developments in con-nection with the e�cient computation of discrete Fourier transforms for nonequispaced data(NFFTs). By using the linogram geometry, our algorithm requires only univariate NFFTs.1



Consequently, we can avoid the bivariate gridding step contained in the gridding algorithmand in the UFR{algorithm.This paper is organized as follows: In Section 2, we provide fast approximative algorithmsfor the computation of discrete Fourier transforms for nonequispaced data recently developedin [4, 1, 23]. We apply these algorithms for the numerical inversion of the Radon transformin Section 3. Special attention is paid to the comparison of the NFFT and the chirp z{transform, which can be used instead of the NFFT in the �rst step of our reconstructionalgorithm. Finally, Section 4 presents a numerical example.2 Fast Fourier Transforms for nonequispaced dataWhile gridding methods in connection with e�cient computations of discrete Fourier trans-forms for nonequispaced data were applied in digital signal processing for a long time [22, 16],the theoretical foundations for these methods, in particular the relation between the speedof the algorithm and the approximation error were developed only recently [4, 1, 23, 2]. Onthe other hand, the theoretical examinations lead to a couple of improved and modi�ed fastFourier transform algorithms for nonequispaced data [6, 17, 8, 26]. In the following, we shortlydescribe their basic idea.Let �d := [�12 ; 12)d and IN := fk 2 Zd : �N2 � k < N2 g, where the inequalities hold compo-nentwise. For vj 2 N�d, and fk 2 C , we are interested in the fast and robust computation ofthe discrete Fourier transformsf(vj) = Xk2IN fk e�2�ikvj=N (j 2 IM ) (2.1)and h(k) := Xj2IM fj e�2�ikvj=N (k 2 IN ) ; (2.2)i.e. either the nodes in time or frequency domain are equispaced. It is easy to check thatonce we have an algorithm for the e�cient computation of (2.1), we can simply design ane�cient algorithm for (2.2) which we will call the \transposed" algorithm. Therefore, werestrict our attention to (2.1). For an algorithm with both nonequispaced nodes in time andfrequency domain see [7]. Straightforward computation of (2.1) requires O(NdMd) arithmeticoperations, too much for the applications we have in mind. Only in case of equispaced nodesvj := j (j 2 IN ), the above values can be evaluated by the well{known fast Fourier transform(FFT) with only O(Nd logN) arithmetic operations. To speed up the computation of (2.1),we suggest the following approximate procedure:Instead of evaluating the 1{periodic trigonometric polynomialf(v) := Xk2IN fk e�2�ikv (2.3)at the nodes wj := vj=N 2 �d (j 2 IM ), we intend to evaluate a function of the forms1(v) :=Xl2In gl '(v � ln) :2



Here ' is an 1{periodic function which we will specify later and n := �N with an oversamplingfactor � > 1. Switching to the frequency domain, we obtains1(v) = Xk2In ĝk ck(') e�2�ikv + Xr2Zdnf0g Xk2In ĝk ck+nr(') e�2�i(k+nr)v (2.4)with ĝk := Xl2In gl e2�ikl=n; (2.5)ck(') := Z�d '(v)e2�ikv dv (k 2 Zd):Let ck(') 6= 0 (k 2 IN ). Since s1 should be a good approximation of f , we suggest bycomparing (2.3) with (2.4) to setĝk := � fk=ck(') k 2 IN ;0 k 2 InnIN : (2.6)Then the values gl can be obtained from (2.5) by the reduced inverse d{variate FFT of sizen. If ' is well{localized in time domain such that it can be approximated by a 1{periodicfunction  with supp \�d � mn�d (m� n), thenf(wj) � s1(wj) � s(wj) = Xl2In;m(wj) gl  (wj � ln) ; (2.7)where In;m(wj) := fl 2 IN : nwj �m � l � nwj +mg. For �xed wj 2 �d, the above sumcontains at most (2m+ 1)d nonzero summands.In summary, we obtain the following algorithm for the fast computation of (2.1) withO((�N)d log(�N) + (2m+ 1)dMd) arithmetic operations:Algorithm 2.1 (NFFT)Input: N 2 N, � > 1, n := �N , wj 2 �d, fk 2 C (j 2 IM ; k 2 IN ).Precomputation: ck(') (k 2 IN ),  (wj � ln) (j 2 IM ; l 2 In;m(wj)).1. Form ĝk := fk=ck(') (k 2 IN ):2. Compute by d{variate reduced FFTgl := n�d Xk2IN ĝk e�2�ikl=n (l 2 In):3. Set s(wj) := Xl2In;m(wj) gl  (wj � ln) (j 2 IM ) :
3



Output: s(wj) approximate value of f(wj) (j 2 IM ).The corresponding \transposed" algorithm for the fast computation of (2.2) reads as follows:Algorithm 2.2 (NFFTT)Input: N 2 N, � > 1, n := �N , wj 2 �d, fj 2 C (j 2 IM ).Precomputation: ck(') (k 2 IN ),  (wj � ln) (l 2 In; j 2 Jn;m(l)).1. Set ~gl := Xj2Jn;m(l) fj  (wj � ln) (l 2 In) ;where Jn;m := fj 2 IM : l �m � nwj � l +mg (l 2 In).2. Compute by d{variate reduced FFT~ck(g) := n�d Xl2In ~gl e�2�ikl=n (k 2 IN ):3. Form ~h(k) := ~ck(g)=ck(') (k 2 IN ):Output: ~h(k) approximate value of h(k) (k 2 IN ).Step 3 of Algorithm 2.1 and Step 1 of Algorithm 2.2 are called \gridding steps".Both algorithms introduce the same approximation error (cf. [7, 23]). For the NFFT thiserror is given by E(wj) := jf(wj)� s(wj)j � Ea(wj) +Et(wj)and splits by (2.4) and (2.7) into the aliasing error Ea(wj) := jf(wj) � s1(wj)j and thetruncation error Et(wj) := js1(wj) � s(wj)j. By (2.4) and (2.6), the aliasing error can beestimated by Ea(wj) � jjf jj1 maxk2IN Xr2Zdnf0g ����ck+nr(')ck(') ���� ;where jjf jj1 := Pk2IN jfkj. By (2.7), (2.6) and (2.5), the truncation error ful�llsEt(wj) � jjf jj1 n�d (maxk2IN jck(')j�1) Xl2In j'(wj � ln)�  (wj � ln)j:Note that the truncation error may be zero, i.e. ' =  , if ' has compact support.Thus, the whole approximation error E(wj) depends on the localization of the function 'in time and frequency domain. Clearly, by Heisenberg's uncertainty principle, there doesn'texist a window function ' with arbitrary good localization in both time and frequency domain.However, for various functions ', it was proved that the approximation error E(wj) decaysexponentially as a function of the \support width" m of  . In particular, we refer to� [4, 23, 6, 2] for estimates with (tensor products of) Gaussian bells, Gaussian bells taperedwith Hanning windows or with sinc{kernels,4



� [1, 18] for estimates with (tensor products of) B{splines and to [6] for estimates withthree{directional Box{splines,� [10, 8] for estimates with (tensor products of) Kaiser{Bessel functions.Note that other candidates for ' with good localization in time and frequency domain as forexample prolate spheroidal functions are not suited for our algorithms since their evaluationat various points wj � ln in the precomputation step is rather expensive. See also [2].In the following, we apply the Algorithms 2.1 and 2.2 with d = 1, the dilated periodizedGaussian bell '(v) = (�b)�1=2 Xr2Ze�(n(v+r))2=b (2.8)and its truncated version (v) = (�b)�1=2 Xr2Ze�(n(v+r))2=b �[�m;m](n(v + r)) ; (2.9)where b := 2�m(2��1)� and where �[�m;m] denotes the characteristic function of [�m;m]. By [7],it is su�cient to choose m = 5 to obtain an approximation error � 10�5 (single precision).Finally, it is remarkable that similar to the classical FFT the NFFT is more robust with respectto roundo� errors introduced by the �nite arithmetic of the computer than the straightforwardsummation of (2.1) or (2.2) [18].3 Application of NFFT and NFFTT in computerized tomog-raphyIn this section, we propose a new Fourier reconstruction algorithm for computerized tomo-graphy, where we restrict our attention to the standard parallel scanning geometry. Moreprecisely, we are interested in the inversion of the Radon transformR : L2(
)! L2([�1; 1] � S1; (1 � s2)�1=2),Rf(s; ') := Z(x;�)=s f(x) dx (� := (cos'; sin')T )based on the Fourier Slice Theoremf̂(��) = 1Z�1 Rf(s; ')e�2�is� ds = R̂f(�; '): (3.1)We suppose that supp f � 
 := fx 2 R2 : jjxjj � 1g. We want to reconstruct f on the grid(xj ; yk) := �j 2N ; k 2N� (j; k = �N2 ; : : : N2 � 1):Let Rf be given at the grid points(sr; 't) := �r 2R; t �T � (t = 0; : : : ; T � 1; r = �R2 ; : : : ; R2 � 1);5
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Figure 1: Linogram of Algorithm 3.2where, by [3], R � N and T � �R2 .The standard Fourier reconstruction method follows directly from (3.1) and consists of thefollowing three steps:Algorithm 3.11. Computation of̂f(m
 �t) = R̂f(m
 ;'t) := 2R R2 �1Xr=�R2 Rf(r 2R;'t)e�2�irm=(R
2 )for m = �R
4 ; : : : ; R
4 � 1; t = 0; : : : T � 1 by T univariate FFT's of length R
2 . Here
2 � 1 is an oversampling factor.2. Interpolation from the polar grid to the cartesian grid.3. Computation of f(xj; yk) (j; k = �N2 ; : : : ; N2 � 1) by bivariate FFT of size 
2N .The above algorithm produces essential artifacts so that it is useless in practice. In [14],F. Natterer proved that most of these artifacts result from the interpolation in the radialdirection in Step 2. This justi�es a couple of higher quality Fourier reconstruction algorithmsas: � Angular interpolation algorithm [8, 25]By applying T univariate NFFTs of length N in Step 1, the algorithm requires onlylinear interpolations in angular directions in Step 2.� Gridding algorithm / UFR{algorithm [16, 20, 12, 13, 21, 19]Here Step 1 of Algorithm 3.1 is computed with oversampling factor 
2 > 1, i.e., 
2 = 4[21]. Instead of Step 2, a bivariate gridding step is performed which approximatesthe values of f̂ on the cartesian grid. Step 3 coincides with the corresponding step ofAlgorithm 3.1.Note that [19] presents a new gridding algorithm based on bivariate NFFTT s. A similaralgorithm is also in progress by K. Fourmont and F. Natterer.6



� Linogram algorithms [5, 21]By T chirp{z transforms of length R
2 in Step 1, the algorithm requires only linearinterpolations in x{direction and in y{direction, respectively, i.e. in \nearly" angulardirections in Step 2. Another version of the Linogram algorithm [5] computes linearinterpolations in the Radon domain (sinogram). Then the linear interpolations in Step2 can be avoided by using chirp{z transforms in Step 3, too.In the following, we propose a Fourier reconstruction algorithm which is based on the linogramgeometry, but avoids linear interpolations by using NFFTs and NFFTT s. The algorithm in-cludes only univariate transforms so that a bivariate gridding step as in the gridding algorithmor in the UFR{algorithm is not necessary.We sketch the algorithm �rst and give some explanations later.Let T be divisible by 4.Algorithm 3.2 (NFFT/NFFTT)1. Computation off̂(m
 1cos't �t) = R̂f(m
 1cos't ; 't) := 2R R2 �1Xr=�R2 Rf(r 2R;'t)e�2�irm 1cos't =(R
2 )for t = 0; : : : ; T4 ; 3T4 ; : : : ; T � 1 and m = d�R
4 cos'te; : : : ; dR
4 cos'te � 1,f̂(m
 1sin't �t) = R̂f(m
 1sin't ; 't) := 2R R2 �1Xr=�R2 Rf(r 2R;'t)e�2�irm 1sin't =(R
2 )for t = T4 +1; : : : ; 3T4 �1 andm = d�R
4 sin'te; : : : ; dR
4 sin'te�1 by univariate NFFTs.Let the other values f̂(m
 1cos't �t) and f̂(m
 1sin't �t) m 2 (�R
4 ; : : : ; R
4 � 1) be zero.2. Computation off1(xj ; yk) := �
2T R
4 �1Xm=�R
4 �m T4 �1Xt=�T4 1cos2 't f̂(m
 ; m
 sin'tcos't )e2�i sin'tcos 'tmk=(N
2 )e2�ijm=(N
2 )f2(xj ; yk) := �
2T R
4 �1Xm=�R
4 �m T4Xt=�T4 +1 1cos2 't f̂(m
 sin'tcos't ; m
 )e2�i sin'tcos 'tmj=(N
2 )e2�ikm=(N
2 )(j; k = �N2 ; : : : ; N2 � 1) by R
2 univariate NFFTTs of length N
2 for the inner sums andN univariate FFTs of length N
2 for the outer sum, where�m := 8><>: �m m = �R
4 ; : : : ;�1 ;16
2 m = 0 ;m m = 1; : : : ; R
4 � 1 :Set f(xj; yk) := 12 Re(f1(xj ; yk) + f2(xj ; yk)) :7



The algorithms uses the fact that f̂(���) = f̂(��) : (3.2)Based on (3.2) further improvements are possible which are incorporated in our implementa-tion but will not be described in detail here. Further, as usual a \�lter step" in the Fourierdomain will be added after Step 1. Here we apply sinc �lter.Let us give some more comments concerning our algorithm.First stepFor arbitrary �xed 't, let h(s) := Rf(s; 't) and ĥ(�) := R̂f(�; 't). In the �rst step of ouralgorithm, we discretize the integralĥ(�) = 1Z�1 h(s)e�2�is� ds:By Poisson's summation formula, we obtainĥ(�) +Xn2Zn 6=0 ĥ(� + nR2 ) = 2R R2 �1Xr=�R2 h(r 2R )e�2�ir�=(R2 ) : (3.3)Since we want to reconstruct only details of f of size � 2N and R � N , we can assume byShannon's sampling theorem, that ĥ(�) is negligible small for j�j > R4 . Thus, the right{handside of (3.3) is a good approximation of ĥ(�) for � 2 [�R4 ; R4 ]:Second stepIn the second step of our algorithm, we compute a discretized form of the integralf(x; y) = 1Z�1 1Z�1 f̂(u; v)e2�i(ux+vy) dudv= 1Z0 � �Z�� f̂(� cos'; � sin')e2�i�(cos 'x+sin'y) d�d':Since the inner integral considered as function of � is even, the above formula can be rewrittenas f(x; y) = 12 �Z�� 1Z�1 j�jf̂(� cos'; � sin')e2�i�(cos 'x+sin'y) d'd� : (3.4)We consider the inner integral. For arbitrary �xed (x; y) 2 [�1; 1]2 and ' 2 [��; �], we setg(�) := j�jf̂(� cos'; � sin')e2�i�(cos 'x+sin'y);ĝ(v) := 1Z�1 g(�)e�2�iv� d�:8



Then we obtain by Poisson's summation formulaĝ(0) +Xn2Zn 6=0 ĝ(
 cos'n) = 1
 cos' Xm2Zg� m
 cos'� (' 2 [��4 ; �4 ])and since f̂(� cos'; � sin') is negligible small for j�j > R4 ,ĝ(0) +Xn2Zn 6=0 ĝ(
 cos'n) � 1
 cos' dR
4 cos'e�1Xm=d�R
4 cos'e g� m
 cos'� (' 2 [��4 ; �4 ]) :The aliasing error on the left{hand side becomes smaller with increasing 
. For example, sincecos' � p22 (' 2 [��4 ; �4 ])., the right{hand side is a good approximation of ĝ(0) if 
 = p2 andif ĝ(n) (n 2 Znf0g) is negligible small.Under the assumption that ~g(�) := �f̂(� cos'; � sin')e2�i�(cos 'x+sin'y) has \essential" band-width � 
 cos', the aliasing error can be estimated as in [15] byXn2Zn 6=0 ĝ(
 cos'n) � 16
2 cos2 'f̂(0; 0) : (3.5)Since we only want to reconstruct details of f of size � 2N , we can discretize the outer in-tegral in (3.4) with small aliasing error by the trapezoidal rule at the nodes 't = t �T (t =�T; : : : ; T � 1) if T � �R2 . This results in Step 2 of our Algorithms 3.2. In particular, (3.5)explains the coe�cient �0 of f̂(0; 0).In Step 1 of Algorithm 3.2, the NFFTs can be replaced by chirp z{transforms as follows: Wewant to compute f̂m = R2 �1Xr=�R2 fre�2�irmc=R (m = �R2 ; : : : ; R2 � 1) ; (3.6)where f̂m := f̂(m
 1cos't �t), fr := 2R Rf(r 2R ; 't), c := 1= cos('t) and 
 = 2. Usingrm = �(m� r)22 + r22 + m22 ;and setting gr := fre�2�ir2c=(2R) ; (3.7)~gm := f̂me2�im2c=(2R) ; (3.8)(3.6) can be rewritten as~gm = R2 �1Xr=�R2 gre2�i(m�r)2c=(2R) (m = �R2 ; : : : ; R2 � 1) : (3.9)9



Now (3.9) can be computed by the cyclic convolution (~gm)R�1m=�R := g �w of length 2R of thevectors w := �e�2�ir2c=(2R)�R�1r=�R and g := (gr)R�1r=�R, where gr := 0 if r 62 f�R2 ; R2 � 1g. Notethat we only need the inner R components of ~g. As usual, we can use FFTs for the e�cientcomputation of cyclic convolutions.In summary, the fast computation of (3.6) by the chirp z{transform requires1. R premultiplications (real number { complex number) (see (3.7))2. Cyclic convolution via2.1. reduced FFT of length 2R of the complex vector g2.2. FFT of length 2R of the complex, even vector w2.3. 2R multiplication of complex numbers2.4. reduced inverse FFT of length 2R of the complex vector\g �w3. R postmultiplications of complex numbers (see (3.8))In contrast, if we compute (3.6) by the NFFT with � = 2, (2.8), (2.9) and m = 5, we need1. R premultiplications (real number { complex number)2. reduced FFT of length 2R of a complex vector3. R(2m + 2) = 12R multiplications (real number { complex number) and R(2m + 1)additions of complex numbers, i.e., 2R(2m + 2) multiplications of real numbers and2R(2m+ 1) additions of real numbersThe arithmetic complexity of the Steps 1 and 2 of the NFFT is the same as the arithmeticcomplexity of the Steps 1 and 2.4 of the chirp z{transform. If we assume that the FFT oflength R for complex data can be computed with � R logR�3R multiplications (of real data)and � 3R logR� 3R additions (of real data), then the Steps 2.2 { 3 of the chirp{z transformrequire � 4R log(2R) multiplications and � 12R log(2R) additions. These are signi�cantlymore arithmetic operations than those needed in Step 3 of the NFFT for R � 32. Ournumerical results (Table 1) con�rm these considerations.4 Numerical examplesA commonly examined model in computerized tomography is the Shepp{Logan Phantom ofthe brain. This model consists of several ellipses so that its Radon transform can be evaluatedanalytically. In order to get a sampled version of the phantom and its Radon transform wehave used the software packages \RadonAna" [24]. The algorithms were implemented in Con a Sun Ultrasparc{II 248MHz.The original image (Figure 2 (left)) is of size N � N = 180 � 180 and its sinogram of sizeR�T = 180� 600. Figure 2 (right) presents the reconstructed image obtained by the �lteredbackprojection. Here we have used the software package \iradon" [24].The reconstructed image in (Figure 3 (left)) was computed by the linogram algorithm withlinear interpolation in x and y directions (NFFTL) [21], where we have used the �lter sinc3in the Fourier domain.Figure 3 (right) shows that our Algorithm 3.2 leads to higher quality images than the aboveconvenient linogram algorithm. Here Algorithm 3.2 was applied with the oversampling factor10



Figure 2: Shepp{Logan phantom, original (left) and reconstructed image by �ltered backpro-jection (right).

Figure 3: Reconstructed image by Algorithm NFFTL (left) and by Algorithm 3.2 (right).
2 = 256180 (� p2). Oversampling seems to be only necessary for arti�cial images containing highfrequencies. Step 1 of Algorithm 3.2 was realized by Algorithm 2.1 with d = 1, oversamplingfactor � = 2, m = 5 and b = 203� . We have chosen ' as dilated periodized Gaussian bell (2.8)and  as its truncated version (2.9). Step 2 of Algorithm 3.2 was computed by Algorithm 2.2with the same parameters as in Step 1. Further we have used the sinc �lter in the Fourierdomain.Next we compare the computation time of the �ltered backprojection and of di�erent linogramalgorithms. Note that our FFT algorithms are not fully optimized, i.e. the computation timemay be further improved e.g. by using the FFTW{library or reduced FFTs.11



We compare the following algorithms:FB Filtered backprojection (implementation by [24])ChirpL Linogram algorithm with chirp z{transforms in the �rst step, linear interpolation inx and y direction, respectively, and Step 3 of Algorithm 3.1 (twodimensional FFT)NFFTL Linogram algorithm with NFFTs (� = 2, m = 5, b = 203� ) in the �rst step, linearinterpolation in x and y direction, respectively, and Step 3 of Algorithm 3.1 (twodimen-sional FFT)Chirp/NFFTT Linogram algorithm with chirp z{transforms in the �rst step and NFFTT sin the second stepNFFT/NFFTT Linogram algorithm with NFFTs in the �rst step and NFFTT s in the secondstep, i.e. Algorithm 3.2The second column and third column of Table 1 show the size R�T of the given sinogram andthe forth column the size of the reconstructed image. Note that we have used oversamplingfactors 
 = 256180 and 
 = 512362 (� p2), respectively. The �fth column contains the computa-tion time in seconds. The last column presents the contribution of FFT algorithms to thetotal computation time. As expected, the algorithms with NFFTs in the �rst step (NFFTL,NFFT/NFFTT ) are much faster than the algorithms with chirp{z transforms in the �rst step(ChirpL, Chirp/NFFTT ). The quality of the reconstructed images is the same for ChirpL,NFFTL and for Chirp/NFFTT , NFFT/NFFTT , respectively.R T N time in s % FFTFB 180 600 180 20.2 11.7ChirpL 180 600 180 4.22 80.3NFFTL 180 600 180 2.08 43.6Chirp/NFFTT 180 600 180 5.63 66.7NFFT/NFFTT 180 600 180 3.5 32.6FB 362 900 362 127.81 3.49ChirpL 362 900 362 15.32 84.1NFFTL 362 900 362 8.44 45.6Chirp/NFFTT 362 900 362 19.15 70.4NFFT/NFFTT 362 900 362 10.59 36.3Table 1: Computation time of the �ltered backprojection and of di�erent linogram algorithmsFinally, note that we can detect di�erences in the quality of the reconstructed images muchbetter if we are given colored images. For this we refer to12
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