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Fast Ordering Algorithm
for Exact Histogram Specification

Mila Nikolova (Senior Member IEEE), and Gabriele Steidl

Abstract—This paper provides a fast algorithm to order in
a meaningful, strict way the integer gray values in digital
(quantized) images. It can be used in any exact histogram
specification based application. Our algorithm is based on the
ordering procedure relying on the specialized variational ap-
proach proposed in [1]. This variational method was shown to
be superior to all other state-of-the art ordering algorithms in
terms of faithful total strict ordering but not in speed. Ind eed, the
relevant functionals are in general difficult to minimize because
their gradient is nearly flat over vast regions.

In this paper we propose a simple and fast fixed point
algorithm to minimize these functionals. The fast convergence
of our algorithm results from known analytical properties of the
model. In particular the original image is a pertinent starting
point for the iterations and all functions involved in the algorithm
were shown to admit a simple explicit form which is quite
exceptional. Only few iteration steps of this algorithm provide
images whose pixels can be ordered in a strict and faithful way.
Equivalently, our algorithm can be seen as iterative nonlinear
filtering. Numerical experiments confirm that our algorithm
outperforms by far its main competitors. Our minimization
algorithm and ordering approach provide the background for
any exact histogram specification based application.

Index Terms—Exact histogram specification, strict ordering,
variational methods, fully smoothed L1-TV models, nonlinear
filtering, fast convex minimization

I. I NTRODUCTION

Histogram processing is a technique with numerous appli-
cations, e.g., in invisible watermarking, image normalization
and enhancement, object recognition [2]–[5]. The goal of
exact histogram specification (HS) is to transform an input
image into an output image having a prescribed histogram.
For a uniform target histogram we speak about histogram
equalization (HE).

Consider digital (i.e. quantized)M × N imagesf with L
gray valuesQ := {q1, · · · , qL}.. For 8-bit images we have
L = 256 and Q = {0, · · · , 255}. We reorder the image
columnwise into a vector of sizen := MN and address the
pixels by the index setIn := {1, · · · , n}. The histogram off ,
denoted byhf , is given byhf [qk] = ♯ {i ∈ In | f [i] = qk},
k = 1, . . . , L, where ♯ stands for cardinality.

In theory, histogram specification uses the relation between
the cumulative density function of an arbitrary distributed con-
tinuous random variable and a uniformly distributed one, see
[3]. However, for digital images we are confronted with a large
number ofn discrete variables taking onlyL possible values
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(i.e., n ≫ L). Then the target histogram can almost never
be satisfied exactly. Histogram specification is an ill-posed
problem for digital images. The Matlab functionhisteq is
expected to produce HE but it usually fails. The importance
of a meaningful strict ordering of pixels prior to histogram
specification is illustrated in Fig. 1; see the comments in the
caption.

In this paper we focus onexact histogram specification
to a target histogram̂h = (ĥ1, . . . , ĥL) for the gray values
P = {0, . . . , L − 1}. If the pixels values of our image
are pairwise different so that they can be strictly ascending
ordered, exact histogram specification can be easily done
by dividing the corresponding ordered list of indices intoL
groups and assigning gray value0 to the firstĥ1 pixels, gray
value 1 to the second̂h2 pixels and so on until gray value
L− 1 is assigned to the last̂hL pixels. However, this simple
procedure requires ameaningfulstrict ordering of all pixels
in the input image. Fig. 1 demonstrates the importance of
ordering for histogram equalization.

Research on this problem has been conducted for four
decades already [7]. State-of-the-art methods are

- the local mean ordering (LM) of Coltuc, Bolon and
Chassery [8],

- the wavelet-based ordering (WA) of Wan and Shi [9],
- the variational approach (VA) of Nikolova, Wen and

Chan [1] based on the minimization of a fully smoothed
ℓ1-TV functional.

The first two methods extract for any pixelf [i] in the input
imageK auxiliary informations, sayκk[i], k ∈ IK , where
κ1 := f . Then an ascending order “≺ ” for all pixels could
ideally be obtained using the rule

i ≺ j if κs[i] < κs[j] for somes ∈ IK

and

κk[i] = κk[j] for all 1 ≤ k < s. (1)

The third method uses an iterative procedure to find the
minimizer of a specially designed functional related tof which
components can be ordered in a strict way. The numerical
results in [1] have shown that VA clearly outperforms LM
and WA in terms of quality of the ordering and memory
requirements. However, the minimizer was computed by the
Polak-Ribiére algorithm and the whole ordering algorithmwas
slower than LM and WA.

The main contribution of this paper consists in providing a
simple fixed point algorithm that attains the minimizer with
remarkable speed and precision. Convergence and parameter
selection are discussed based on theoretical results. Our mini-
mization scheme amounts to apply a particular nonlinear filter.
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Fig. 1. A meaningful strict ordering is indeed crucial for histogram equalization (HE). First row: The pixels of a completely black image (left) are strictly
ordered using the Matlab routinesort which sorts equal pixels columnwise ascending. The resultant HE image (right) is perfectly equalized and becomes
lighter from left to right. Second row: The original image ’sand’ (http://sipi.usc.edu/database/) of size512× 512 and different equalizations: Matlabhisteq,
Matlab sort and our sorting algorithm preceding the HE step (last two images). The third image still has the lighting effects from left to right. Third row:
The corresponding histograms. Fourth row: Zooms of the images in the second row (rows from 1 to 64 and columns from 449 to 512). It can be seen that
the texture generated by our HE algorithm is more regular andlooks more natural than the other ones.

In practice, only few iterations with this nonlinear filter are
sufficient to provide the information needed for a meaningful
strict ordering of the values. In contrast to LM and WA our
algorithm requires just a single ordering of one image and not
the lexicographical ordering ofK images needed for the Lm
and WA method. Our new algorithm provides the important
speedup technique which makes VA competitive with LM
and VA. Numerical tests confirm that the VA approach along
with the new fixed point algorithm outperforms by far all
other relevant ordering methods in terms of quality and speed.
Some preliminary results of this paper were published in the
conference paper [10].
As already pointed out, one can design fast HS methods
based on our ordering algorithm. Therefore, the present paper
provides the background for any exact HS based application,
e.g., invisible watermarking, image enhancement among oth-
ers. We have used our algorithm successfully for hue and range
preserving HS based color image enhancement in [2].

The outline of the paper is as follows: In Section II we review
the special variational approach in [1] and some of its proper-
ties proven in [11]. Then, in Section III, we propose a simple
fixed point algorithm to find a minimizer of our functional. The
reasons for its efficiency and its effectiveness are explained.
Section IV contains numerical examples. We compare speed
and accuracy in the sense of a faithful total strict orderingof
our algorithm with state-of-the art algorithms and providea
histogram equalization inversion comparison. We will see that
only few iterations of our algorithm are necessary to obtain

promising ordering results. Finally, conclusions are given in
Section V.

II. T HE FULLY SMOOTHEDℓ1−TV MODEL

Let DN denote the forward difference matrix

DN :=




−1 1
−1 1

. . .
−1 1


 ∈ R

N−1,N .

We will apply forward differences to the rows and columns
of images, i.e., with respect to the horizontal and vertical
directions. Since we considerN × M images columnwise
reordered into vectors of lengthn = MN , the forward
difference operator applied to these images reads as

G :=

(
IM ⊗DN

DM ⊗ IN

)
∈ R

r,n,

where IN is the N × N identity matrix, ⊗ denotes the
Kronecker product andr = 2MN −M − N . We consider
functionals of the form

J(u, f) := Ψ(u, f) + βΦ(u), β > 0 (2)

with
Ψ(u, f) :=

∑

i∈In

ψ(u[i]− f [i]),

Φ(u) :=
∑

j∈Ir

ϕ ((Gu)[j]).
(3)
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Here (Gu)[j] denotes thejth component of the vectorGu ∈
R

r. One could additionally use diagonal differences to improve
the rotation invariance ofΦ(u). However, our experiments
have shown that the simple forward differences inx and y
directions are enough to enable the minimizer ofJ to give
rise to a prompt sorting.

Following [1], the essence for achieving a strict ordering is
that the functionsψ(·) := ψ(·, α1) andϕ(·) := ϕ(·, α2) belong
to a family of functionsθ(·, α) : R → R, α > 0, satisfying the
requirements in assumptions H1 and H2 described next. The
rationale for these choices was extensively discussed in [1].
For simplicity, the parametersα1 and α2 are omitted when
they are not explicitly involved in our derivations.

Assumptions. In the following, we systematically denote

θ′(t, α) :=
d

dt
θ(t, α) and θ′′(t, α) :=

d2

dt2
θ(t, α).

H1 For any fixedα > 0 the functiont 7→ θ(t, α) is in C2(R)
and even, i.e.,θ(−t, α) = θ(t, α) for all t ∈ R. Its derivative
θ′(t, α) is strictly increasing withlimt→∞ θ′(t, α) = 1, where
the upper bound is set to1 just for definiteness. The second
derivativeθ′′(t, α) is decreasing on[0,+∞).
H2 For fixed t > 0, the functionα 7→ θ(t, α) is strictly
decreasing on(0,+∞) with

lim
α→0

θ′(t, α) = 1 and lim
α→∞

θ′(t, α) = 0 .

Under these assumptionsψ andϕ are smooth approximations
of the absolute value function. Hence the functionalJ(·, f)
amounts to a fully smoothedℓ1-TV model.

¿From H1 it follows thatθ′(t, α) is odd and has an inverse
function

ξ(t, α) := (θ′)−1(t, α). (4)

Clearly, t 7→ ξ(t, α) is also odd and strictly increasing on
(−1, 1). Moreover, sinceθ′′(t, α) is positive and decreasing
on [0,+∞), the functionξ is differentiable and

ξ′(t, α) =
1

θ′′(ξ(t))
> 0. (5)

So t 7→ ξ′(t, α) is also increasing on(0, 1). There are many
possible choices of functionsθ meeting H1 and H2, see [1].

Example 1. In our numerical tests we use the functionsθ =
ψ = ϕ with α1 = α2 = α given in the following table:

θ θ′ ξ = (θ′)−1 ξ′

θ1
√
t2 + α t√

t2+α
t
√

α

1−t2

√
α

(
√

1−t2)3

θ2 |t| − α log
(

1 +
|t|
α

)

t
α+|t|

αt
1−|t|

α

(1−|t|)2

TABLE I
CHOICES FORθ(·, α) TOGETHER WITH THE USED DERIVATIVES AND

INVERSE FUNCTIONS.

Since J(·, f) is a strictly convex, coercive functional it
has a unique minimizer̂u ∈ R

n. The following theorems
summarize several properties of this minimizer which are
important for our faithful and fast sorting algorithm. The first
theorem proven in [1, Theorem 1] guaranties that the entries

of the minimizer differ in general pairwise from each other
so thatû provides an auxiliary information for ordering the
pixels of f .

Theorem 1. (Strict ordering information)
Letψ andϕ fulfill H1 and H2. Then there exists adense open
subsetKn of Rn such that for anyf ∈ K

n the minimizerû
of J(·, f) satisfies

û[i] 6= û[j], ∀ i, j ∈ In, i 6= j,

û[i] 6= f [i], ∀ i ∈ In.
(6)

The fact thatKn is dense and open inRn means that the
property in (6) is generically true. This result is much stronger
than saying that (6) holds true almost everywhere onR

n. 1

Therefore, the elements ofRn \Kn are highly exceptional
in R

n.
The second theorem provides an estimate of‖f − û‖∞

which has been proven by the authors in [11, Theorems 1
and 2].

Theorem 2. (Distance ofû from f )
Let ψ andϕ fulfill H1 and H2 and letβ < 1

4 . Then, for any
f ∈ R

n, the minimizer̂u of J(·, f) satisfies

‖û− f‖∞ ≤ (ψ′)−1
(
4β, α1

)
= ξ

(
4β, α1

)
, (7)

whereξ := (ψ′)−1. Further it holds

‖û− f‖∞ ր ξ
(
4β, α1

)
as α2 ց 0 (8)

if νf := maxi∈I

{
min

( ∣∣f [i]− f [i− 1]
∣∣,
∣∣f [i]− f [i−M ]

∣∣) >
2ξ
(
4β, α1

)}
, whereI :=

{
i ∈ int In : (f [i]−f [i−1])(|f [i]−

f [i−M ]) 6= 0
}
6= ∅. Here int In denotes the set of indices of

non boundary pixels.

The upper bound (7) guarantees in our numerical examples
that |f [i] − û[i]| < 0.5 for any i ∈ In. Consequently, if for
f [i] ∈ {0, . . . , 255}, i ∈ In, the relationf [i] < f [j] holds true,
then alsoû[i] < û[j] such that the initial ordering of pairwise
different pixels is preserved. More precisely, we obtain for
β = 0.1 and α1 = α2 = 0.05 that ‖û − f‖∞ ≤ 0.0976 if
ψ = ϕ = θ1 and‖û− f‖∞ ≤ 0.0333 if ψ = ϕ = θ2.

Concerning the lower bound (8) we emphasize that the
assumption onνf is realistic for natural images with 8 bit
gray values; see [11].

III. FAST MINIMIZATION AND SORTING ALGORITHMS

The functionû is a minimizer ofJ(·, f) in (2) if and only if
∇J(û, f) = 0 which is equivalent to∇Ψ(û, f) = −β∇Φ(û).
By (3) this can be rewritten as

(
ψ′(û[i]− f [i])

)n
i=1

= −βGT
(
ϕ′ ((Gû)[j])

)r
j=1

.

With ξ := (ψ′)−1(·, α1) as in (4) and sinceξ is odd we obtain

û = f − ξ
(
β GTϕ′(Gû)

)
, . (9)

1An almost everywhere true property requiresonly that Kn is dense in
R
n. But Kn may not contain open subsets. There are many examples. For

instance,K := [0, 1] \ {x ∈ [0, 1] : x is rational} is dense in[0, 1] andK

does not contain open subsets.
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Hereϕ′(Gû) :=
(
ϕ′ ((Gû)[j])

)r
j=1

and ξ is applied compo-
nentwise. This is a fixed point equation forû which gives rise
to the followingfixed point algorithmto computêu:

Algorithm 1 Minimization Algorithm

Initialization: u(0) = f , stopping parameterε
For r = 1, . . . compute until‖∇J‖∞ ≤ ε

u(r) = f − ξ
(
β GTϕ′(Gu(r−1))

)

As stopping criterion we propose‖∇J‖∞ ≤ 10−6. In
all experiments with images of various content and size we
realized that the required precision was reached in general
within less than 35 iterations. The efficiency of the algorithm
relies on two clues:

- By Theorem 2 the vectoru(0) = f is very close to the
fixed point û and is therefore a good starting point.

- The functionsϕ′ and ξ appearing in the algorithm are
given explicitly, see Table I.

By the following corollary the sequence of iterates{u(r)}r∈N

is bounded ifβ < 1
4 . Consequently, it has a convergent sub-

sequence. Moreover, for appropriately chosenα1 all iterates
fulfill again the important property|f [i] − u(r)[i]| < 0.5,
i ∈ In such that the original ordering of the pixels inf is
still pertinent inu(r).

Corollary 1. (Distance ofu(r) from f : upper bound)
Let ψ andϕ fulfill H1 and let β < 1

4 . Then, for anyf ∈ R
n,

all iteratesu(r) generated by Algorithm 1 satisfy

‖u(r) − f‖∞ ≤ (ψ′)−1
(
4β, α1

)
= ξ

(
4β, α1

)
.

Proof. By H1 we can estimate

‖u(r) − f‖∞ ≤ (ψ′)−1
(
β‖GTϕ′(Gu(r−1))‖∞

)
.

Using |ϕ′(t)| ≤ 1 and the sparsity ofGT we obtain
‖GTϕ′(Gu(r−1))‖∞ ≤ 4 and since(ψ′)−1 is increasing on
[−1, 1] for β < 1

4 finally

‖u(r) − f‖∞ ≤ (ψ′)−1
(
4β, α1

)
.

The following theorem provides a convergence result for
our fixed point algorithm.

Theorem 3. (Convergence of fixed point algorithm)
Let ψ andϕ fulfill H1. Let α1, α2 > 0 and β < 1

4 be chosen
such that

8β ξ′(4β, α1)ϕ
′′(0, α2) < 1. (10)

Then, for anyf ∈ R
n, the sequence{u(r)}r generated by

Algorithm 1 converges to the minimizerû of J(·, f).

Proof. Let T (u) := f − ξ
(
β GTϕ′(Gu(r−1))

)
. By Ostrowski’s

theorem [12] it is enough to prove that the Jacobian matrix
∇T (u) becomes smaller than 1 in some norm onR

n for all
u ∈ R

n. Since

∇T (u) = β diag
(
ξ′(βGTϕ′(Gu))

)
GT diag

(
ϕ′′ (Gu)

)
G

we obtain

‖∇T (u)‖2 ≤ β ‖diag
(
ξ′(βGTϕ′(Gu)

)
‖2

‖GT‖2 ‖diag
(
ϕ′′(Gu)

)
‖2 ‖G‖2.

Since ϕ′′ is monotone decreasing on[0,+∞) we get
‖ diag

(
ϕ′′(Gu)

)
‖2 ≤ ϕ′′(0). Further, we have by the defi-

nition of G that ‖GT‖2 ‖G‖2 = ‖GTG‖2 < 8. Note thatGTG
is a discrete Laplacian with Neumann boundary conditions and
that the bound is sharp in the sense that‖GTG‖2 approaches
8 asn→ ∞.

It remains to estimateξ′ (βGTϕ′(Gu)). Regarding that
|ϕ′(t)| ≤ 1 for all t ∈ R we conclude‖GTϕ′(Gu)‖∞ ≤
‖G‖1 ≤ 4. Sinceξ′ increases on(0, 1) by (5) and4β < 1 we
obtain finally

‖diag
(
ξ′(βGTϕ′(Gu)

)
‖2 ≤ ξ′(4β).

Multiplying the parts together we obtain the assertion.

For ψ = ϕ from Table I the left-hand side of (10) becomes

θ1 θ2
√

α1

α2

8β
√

(1−(4β)2)3

α1

α2

8β
(1−|4β|)2

.

For α1 = α2 these values are smaller than 1 ifβ < 0.0976
andβ < 0.0670, for θ1 andθ2, respectively.

Remark 1. The upper bound in(10) is in fact an overestimate
since on hasϕ′′(Gu, α2) = ϕ′′(0, α2) only for constant
imagesu.

In practice, we are not really interested in the minimizerû
of J(·, f), but want to use the sorting of its components to get
a meaningful ordering of the original image. Here we observed
that the ordering of pixels obtained after a small number of
steps of the minimization algorithm does not change in the
subsequent steps except of very few pixels. This fact led us to
propose the following efficient ordering algorithm forR ≪ 35:

Algorithm 2 Ordering Algorithm

Initialization: u(0) = f , stopping parameterR
1. For r = 1, . . . , R compute

u(r) = f − ξ
(
β GTϕ′(Gu(r−1))

)

2. Order the values inIn according to the corresponding
ascending entries ofu(R).

Step 1 is an iterative nonlinear filtering procedure.

IV. N UMERICAL COMPARISON OFSORTING ALGORITHMS

In this section we demonstrate that our Ordering Algorithm
2 with ψ = ϕ = θ2 is actually the best way (in terms of
speed and quality) to order pixels in digital images. Note that
extensive qualitative comparisons of the variational ordering
method (VA) with the (fully iterated) Polak-Ribiére algorithm
were done in [1]. These experiments have already shown that
VA clearly outperforms other state-of-the-art algorithmsas
LM [8] and WA [9] concerning quality. Here we want to
demonstrate that our new ordering algorithm ensures the same
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quality, in particular a faithful strict ordering, but is much
faster than the previous implementations.

We apply LM withK = 6, WA with K = 9 and VA with
parameters(β, α1, α2) = (0.1, 0.05, 0.05) in the variants

- VA-PR: with Polak-Ribiére algorithm, functionθ1 and
stop if ‖∇J‖∞ < 10−6 but at most 35 iterations as
proposed in [1],

- VA-θk(R): with fixed point algorithm with functionθk,
k ∈ {1, 2} andR iterations.

Recall thatK = 6 for LM and K = 9 for WA were
recommended by the authors. Further, we want to mention that
the estimate in Theorem 3 is too restrictive (see Remark 1)
and we have chosenβ slightly larger which still provides a
convergent iteration scheme.

Remark 2. (Filtering versus sorting)
The above algorithms contain a filtering and a sorting step
which behave quite differently:
- LM and WA: Both algorithms applyK − 1 simple linear
filters which is cheap. For example, ifn = N2 is the
number of image pixels, then24n, 44n, 64n (mainly) additions
are necessary for the LM-φ filtering procedure in the cases
K = 4, 5, 6, respectively. Note that this filtering can be also
done in a cheaper way using theψ-filters employed in [8]
for the theoretical study of the LM algorithm. The resulting
K images must be lexicograpically ordered, see (1). This can
be done inO(n logn) but the concrete factor depends onK
and on the image content. In our numerical experiments we
have used thesortrows Matlab function which calls for
K ≥ 4 a C program. In our numerical examples withK = 6
this sorting procedure was three to twelve times (increasing
with increasing number of pixels) slower than the filtering
procedure. Finally, we mention that larger images, e.g., ofsize
5616 × 3744 taken by usual commercial cameras, cannot be
handled bysortrows. Here a more sophisticated sequential
sorting implementation in a better adapted programming lan-
guage may be used with storage requirement2n. However,
the speed relation between linear filtering and lexicographical
sorting will be kept.
- VA: The nonlinear filtering in the VA procedure is more de-
manding than the above linear one. However, forϕ = ψ = θ2
we have (up to absolute values) only to compute additions and
multiplications. In summary, we have to perform13n additions
or multiplications in each iteration step. Indeed our numerical
experiments have confirmed that our filtering behaves asO(n).
The subsequent sorting proceduresort of one image which
requiresn logn is faster than the filtering step, in our examples
with R = 5 nearly 4 times.

We summarize our findings for images up to size2048 ×
2048: For LM and WA the lexicographical sorting ofK images
is more time consuming than the simple linear filtering. For
our ordering algorithm the nonlinear filtering requires more
time than the sorting step. Nevertheless the running time for
our filtering for θ2 is linear in the number of pixelsn.

All algorithms are implemented in Matlab and executed on
a computer with an Intel Core i7-870 Processor (8M Cache,
2.93 GHz) and 8 GB physical memory, 64 Bit Linux. The
tests are performed for four groups of digital 8-bit images of

increasing sizeN ×N , whereN = 256, 512, 1024, 2048. The
images are presented in Fig. 2. The tables give the average
computation time of 50 runs of the algorithms.

We present two numerical experiments:
1. Ordering of natural images: The results are reported in Tab.
II. Here Fail gives the percentage of image pixels which
cannot be faithfully ordered. The fast VA algorithm with a
reduced number of 5 iterations clearly outperform the LM and
WA algorithms.
2. Histogram equalization inversion: first the original 8-bit
image f with histogramhf is mapped to an 8-bit image
g which histogram resembles a uniform distribution. This
requires the first application of an ordering algorithm. Then g
is transformed to an 8-bit imagẽf with histogramhf which re-
quires a second time an ordering algorithm. Tab. III shows the
PSNR20 log10(255M ·N/‖f− f̃‖2), the percentage of pixels
Fail% which cannot be faithfully ordered averaged over the
two applied ordering procedures and the computational time
of the whole histogram equalization inversion process. Since
VA-PR and VA-θ1(R) give qualitatively, in terms of PSNR and
FAIL, the same results as VA-θ2(R) but VA-θ2(R) is faster,
we consider only VA-θ2(R), R ∈ {5, 35}. The VA-algorithms
outperform LM and WA wrt PSNR and FAIL. Moreover, VA-
θ2(5) is the fastest algorithm.

The quality of our VA algorithms is emphasized by Fig. 3
which shows three difference images of the original imagef
and the images̃f obtained by histogram equalization inversion.
The first row presents the original imagetrui and zooms
of stones and church. The second and third rows show
the resultsf − f̃ obtained by the LM and WA ordering,
respectively. The fourth and the fifth rows depict the difference
imagesf − f̃ corresponding to VA-θ2(35) and VA-θ2(5),
respectively. Both VA methods are able to reconstruct the
original image more precisely than its competitors in particular
at edges.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a fast and meaningful strict
ordering algorithm for integer values in natural images. We
intend to apply this algorithm as the basis in various image
processing applications, one example is the enhancement of
color images in [2]. Further we want to extend the error
estimates in Theorem 2 and Corollary 1 to other functionals
relevant in imaging and to use these estimates to find
appropriate regularization parameters.
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Fail % Computation Time
VA VA

method LM WA PR θ1(35) θ2(35) θ2(5) LM WA PR θ1(35) θ2(35) θ2(5)
chemical 0.01 0.06 0.00 0.00 0.00 0.00 0.03 0.04 0.59 0.08 0.06 0.01

clock 1.57 4.52 0.00 0.00 0.00 0.00 0.03 0.04 0.27 0.08 0.06 0.01
elaine 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.03 0.61 0.08 0.07 0.01
moon 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.61 0.08 0.06 0.01
tree 0.02 0.19 0.00 0.00 0.00 0.00 0.03 0.04 0.59 0.08 0.06 0.01
trui 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.30 0.08 0.06 0.01

means 0.27 0.80 0.00 0.00 0.00 0.00 0.03 0.04 0.50 0.08 0.06 0.01
aerial 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.16 2.28 0.40 0.29 0.05

airplane 5.30 17.70 0.00 0.00 0.00 0.00 0.16 0.31 1.16 0.40 0.29 0.05
boat 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.15 1.40 0.40 0.29 0.05

mandrill 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 2.25 0.40 0.29 0.05
raffia 13.66 16.05 0.00 0.00 0.00 0.00 0.20 0.35 1.04 0.39 0.29 0.05

stream 0.41 0.75 0.00 0.00 0.00 0.14 0.13 0.19 1.03 0.41 0.29 0.05
means 3.23 5.75 0.00 0.00 0.00 0.02 0.14 0.22 1.53 0.40 0.29 0.05
bark 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.80 10.16 1.79 1.33 0.25
man 0.34 0.68 0.00 0.00 0.00 0.00 0.61 0.82 4.47 1.62 1.22 0.24

pentagon 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.87 9.48 1.80 1.32 0.22
smarties 0.08 0.05 0.00 0.00 0.00 0.00 0.68 0.90 9.43 1.82 1.46 0.24
stones 1.14 1.39 0.00 0.00 0.00 0.09 0.66 0.90 4.76 1.78 1.32 0.22
traffic 0.10 0.07 0.00 0.00 0.00 0.00 0.65 0.88 4.96 1.80 1.44 0.24
means 0.28 0.36 0.00 0.00 0.00 0.01 0.65 0.86 7.21 1.77 1.35 0.24
eifel 0.57 0.37 0.00 0.00 0.00 0.01 4.24 6.55 22.29 8.08 6.58 1.23
boys 0.02 0.00 0.00 0.00 0.00 0.00 3.84 5.46 42.64 8.06 6.60 1.20
plants 0.00 0.00 0.00 0.00 0.00 0.00 3.74 4.74 21.61 8.08 6.62 1.20
pont 1.96 5.77 0.00 0.00 0.00 0.00 3.98 5.70 43.15 8.08 6.63 1.20

church 0.61 0.78 0.13 0.05 0.07 0.30 3.62 5.16 20.74 8.08 6.60 1.21
violine 0.25 0.23 0.00 0.00 0.00 0.00 3.76 5.95 43.25 8.07 6.59 1.19
means 0.57 1.19 0.02 0.01 0.01 0.05 3.86 5.59 32.28 8.07 6.60 1.20

TABLE II
COMPARISON OF DIFFERENT ORDERING METHODS FOR THE IMAGES INFIG. 2.

PSNR Fail % Computation Time
VA VA VA

method LM WA θ2(35) θ2(5) LM WA θ2(35) θ2(5) LM WA θ2(35) θ2(5)
chemical 49.34 48.90 49.67 49.67 0.03 0.10 0.00 0.00 0.06 0.07 0.13 0.03

clock 51.69 51.56 51.78 51.78 0.87 2.41 0.00 0.02 0.06 0.08 0.14 0.02
elaine 49.51 49.66 49.90 49.90 0.00 0.02 0.00 0.00 0.06 0.07 0.13 0.03
moon 47.36 46.50 47.82 47.77 0.06 0.11 0.00 0.00 0.05 0.07 0.13 0.03
tree 51.94 51.84 52.01 52.01 0.03 0.18 0.00 0.00 0.05 0.07 0.12 0.03
trui 52.70 52.51 52.86 52.85 0.04 0.06 0.00 0.00 0.05 0.07 0.13 0.03

means 50.42 50.16 50.67 50.67 0.17 0.48 0.00 0.00 0.05 0.07 0.13 0.03
aerial 48.36 48.06 50.05 50.05 0.00 0.02 0.00 0.00 0.25 0.33 0.57 0.11

airplane 46.74 46.26 47.25 47.25 2.68 8.96 0.00 0.01 0.27 0.49 0.56 0.10
boat 49.51 49.58 49.89 49.89 0.07 0.09 0.00 0.00 0.24 0.32 0.57 0.11

mandrill 48.27 49.47 49.75 49.76 0.00 0.00 0.00 0.00 0.23 0.30 0.56 0.10
raffia 41.12 41.12 41.12 41.12 6.85 8.18 0.00 0.00 0.32 0.54 0.57 0.11

stream 44.75 45.00 45.07 45.08 0.40 0.71 0.00 0.13 0.24 0.36 0.56 0.10
means 46.46 46.58 47.19 47.19 1.67 2.99 0.00 0.02 0.26 0.39 0.57 0.11
bark 51.28 51.17 51.30 51.30 0.00 0.01 0.00 0.00 1.29 1.60 2.60 0.48
man 49.22 49.18 49.44 49.44 0.19 0.40 0.00 0.00 1.20 1.59 2.55 0.46

pentagon 50.69 50.62 51.35 51.35 0.01 0.01 0.00 0.00 1.29 1.66 2.53 0.48
smarties 51.47 51.09 51.64 51.60 0.63 0.91 0.00 0.03 1.34 1.77 2.55 0.49
stones 51.28 50.95 51.60 51.60 0.97 1.22 0.00 0.04 1.31 1.78 2.52 0.44
traffic 50.73 50.58 51.01 51.00 0.25 0.30 0.00 0.01 1.31 1.73 2.53 0.47
means 50.78 50.60 51.06 51.05 0.34 0.48 0.00 0.01 1.29 1.69 2.55 0.47
eifel 48.61 48.48 48.74 48.73 0.88 0.97 0.00 0.05 8.17 12.36 13.15 2.41
boys 51.63 51.43 51.71 51.71 0.09 0.13 0.00 0.00 7.45 10.44 13.15 2.38
plants 48.96 48.86 49.52 49.52 0.18 0.24 0.00 0.02 7.35 9.29 13.15 2.39
pont 51.48 51.30 51.55 51.51 1.42 3.50 0.00 0.09 7.78 10.90 13.24 2.39

church 50.94 50.80 51.28 51.27 1.23 1.73 0.06 0.28 7.16 10.23 13.16 2.40
violine 51.66 51.34 51.85 51.75 1.22 1.59 0.10 0.22 7.25 11.29 13.12 2.37
means 50.55 50.37 50.78 50.75 0.84 1.36 0.03 0.11 7.53 10.75 13.16 2.39

TABLE III
COMPARISON OF HISTOGRAM EQUALIZATION INVERSION ALGORITHMS.
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original trui zoom ofstones zoom ofchurch

LM : (f − f̃) for trui LM : zoom(f − f̃) for stones LM : zoom(f − f̃) for church

WA : (f − f̃) for trui WA : zoom(f − f̃) for stones WA : zoom(f − f̃) for church

VA-θ2(35): (f − f̃) for trui VA-θ2(35): zoom(f−f̃) / stones VA-θ2(35): zoom(f−f̃) / church

VA-θ2(5): (f − f̃) for trui VA-θ2(5): zoom(f−f̃) / stones VA-θ2(5): zoom(f−f̃) / church

Fig. 3. Comparison of ordering methods for histogram equalization inversion. First row: true images or parts of them. The following rows show the difference
images between the original one and those obtained after histogram equalization inversion. Top down: LM, WA, VA-θ2(35), VA-θ2(5). The variational
methods (VA) contain much less errors than those achieved byLM and WA. Moreover there is no visual difference between VA with 35 iterations and its
faster variant with only 5 iterations.


