Fast Ordering Algorithm
for Exact Histogram Specification

Mila Nikolova (Senior Member IEEE), and Gabriele Steidl

Abstract—This paper provides a fast algorithm to order in  (i.e., n > L). Then the target histogram can almost never
a meaningful, strict way the integer gray values in digital pe satisfied exactly. Histogram specification is an ill-gbse
(quantized) images. It can be used in any exact histogram problem for digital images. The Matlab functidni st eq is

specification based application. Our algorithm is based onhe . . .
ordering procedure relying on the specialized variational ap- expected to produce HE but it usually fails. The importance

proach proposed in [1]. This variational method was shown to Of @ meaningful strict ordering of pixels prior to histogram
be superior to all other state-of-the art ordering algorithms in  specification is illustrated in Fig. 1; see the comments & th
terms of faithful total strict ordering but not in speed. Ind eed, the  caption.

relevant functionals are in general difficult to minimize because In this paper we focus omxact histogram specification

their gradient is nearly flat over vast regions. . s ~
In this paper we propose a simple and fast fixed point to a target histogrank = (h1,...,hr) for the gray values

algorithm to minimize these functionals. The fast convergece P = {0,...,L — 1}. If the pixels values of our image

of our algorithm results from known analytical properties of the —are pairwise different so that they can be strictly ascemdin
model. In particular the original image is a pertinent starting ordered, exact histogram specification can be easily done
point for the iterations and all functions involved in the algorithm by dividing the corresponding ordered list of indices ifto

were shown to admit a simple explicit form which is quite d o l0eo the firsth pixel
exceptional. Only few iteration steps of this algorithm provide groups and assigning gray valleo the nirsth, pixels, gray

images whose pixels can be ordered in a strict and faithful wa  Value 1 to the secondh, pixels and so on until gray value
Equivalently, our algorithm can be seen as iterative nonliear L — 1 is assigned to the last; pixels. However, this simple
filtering. Numerical experiments confirm that our algorithm  procedure requires meaningfulstrict ordering of all pixels

outperforms by far its main competitors. Our minimization j, the input image. Fig. 1 demonstrates the importance of
algorithm and ordering approach provide the background for derind for hist lizati
any exact histogram specification based application. ordering for nis ogr.am equalization.

Research on this problem has been conducted for four

Index Terms—Exact histogram specification, strict ordering, ~ftha.
variational methods, fully smoothed L;-TV models, nonlinear decades already [7]. State-of-the-art methods are

filtering, fast convex minimization - the local mean ordering (LM) of Coltuc, Bolon and
Chassery [8],
- the wavelet-based ordering (WA) of Wan and Shi [9],

. INTRODUCTION - the variational approach (VA) of Nikolova, Wen and
Histogram processing is a technique with numerous appli- Chan [1] based on the minimization of a fully smoothed
cations, e.g., in invisible watermarking, image normdiaa £1-TV functional.

and enhancement, object recognition [2]-[5]. The goal ghe first two methods extract for any pixg[i] in the input
exact histogram specification (HS) is to transform an inpithage K auxiliary informations, say«[i], k& € Ix, where
image into an output image having a prescribed histogramy,. := f. Then an ascending ordex" for all pixels could
For a uniform target histogram we speak about histogrageally be obtained using the rule
equalization (HE).

Consider digital (i.e. quantized)/ x N imagesf with L
gray valuesQ := {q,---,qr}.. For 8-bit images we have and
L = 256 and Q@ = {0,---,255}. We reorder the image kili] = kilj] forall 1<k <s. (1)

columnwise into a vector of size := M N and address the . . ) ]
pixels by the index sel, := {1,--- ,n}. The histogram off, 1he third method uses an iterative procedure to find the

denoted byh;, is given byh([q] = #{i € L, | fli] = qx}, minimizer of a specially designed functional related tarhich
k=1,...,L, wheret stands for cardinality. components can be ordered in a strict way. The numerical

In theory, histogram specification uses the relation betweEeSults in [1] have shown that VA clearly outperforms LM
the cumulative density function of an arbitrary distrititeon-  @nd WA in terms of quality of the ordering and memory
tinuous random variable and a uniformly distributed one, sééduirements. However, the minimizer was computed by the
[3]. However, for digital images we are confronted with ayfar Polak-Ribiére algorithm and the whole ordering algoritvas

number ofn discrete variables taking only possible values Slower than LM and WA. o o
The main contribution of this paper consists in providing a
M. Nikolova is with the CMLA - CNRS, ENS Cachan, 61 av. Preside simple fixed point algorithm that attains the minimizer with
Wilson, 94235 Cachan Cedex, France (email: nikolova@emtacachan.fr). remarkable speed and precision. Convergence and parameter
G. Steidl is with the Dept. of Mathematics, University of Kei- lecti di db d h ical Its. i
slautern, Paul Ehrlich str. 31, 67663 Kaiserslautern, Gesm (email: selection are discusse ased on theoretical results. @ur m

steidl@mathematik.uni-kl.de). mization scheme amounts to apply a particular nonlinearfilt

i =<7 if  ksli] < Ks[j] for somes € I
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Fig. 1. A meaningful strict ordering is indeed crucial fostoigram equalization (HE). First row: The pixels of a corngiie black image (left) are strictly
ordered using the Matlab routirgort which sorts equal pixels columnwise ascending. The restul#E image (right) is perfectly equalized and becomes
lighter from left to right. Second row: The original imagersl’ (http:/sipi.usc.edu/database/) of size2 x 512 and different equalizations: Matlatisteq,
Matlab sort and our sorting algorithm preceding the HE step (last twogies® The third image still has the lighting effects front fef right. Third row:
The corresponding histograms. Fourth row: Zooms of the @sdg the second row (rows from 1 to 64 and columns from 449 £).91 can be seen that
the texture generated by our HE algorithm is more regularlaokls more natural than the other ones.

In practice, only few iterations with this nonlinear filterea promising ordering results. Finally, conclusions are give
sufficient to provide the information needed for a meanihgf&ection V.

strict ordering of the values. In contrast to LM and WA our

algorithm requires just a single ordering of one image artd no Il. THE FULLY SMOOTHED£; — TV MODEL

the lexicographical ordering ok images needed for the Lm
and WA method. Our new algorithm provides the important
speedup technique which makes VA competitive with LM -1 1

and VA. Numerical tests confirm that the VA approach along -1 1

with the new fixed point algorithm outperforms by far all Dy = . e RV-LN,
other relevant ordering methods in terms of quality and dpee -
Some preliminary results of this paper were published in the

conference paper [10]. We will apply forward differences to the rows and columns
As already pointed out, one can design fast HS methogsimages, i.e., with respect to the horizontal and vertical
based on our ordering algorithm. Therefore, the presergmpagirections. Since we conside¥ x M images columnwise
provides the background for any exact HS based applicatioaordered into vectors of length = MN, the forward

e.g., invisible watermarking, image enhancement among otfifference operator applied to these images reads as
ers. We have used our algorithm successfully for hue ancerang

preserving HS based color image enhancement in [2]. G = I ® Dy c R
Dy @Iy ’

Let Dy denote the forward difference matrix

-1 1

The outline of the paper is as follows: In Section Il we review
the special variational approach in [1] and some of its propavhere Iy is the N x N identity matrix, © denotes the
ties proven in [11]. Then, in Section IIl, we propose a simpléronecker product and = 2M N — M — N. We consider
fixed point algorithm to find a minimizer of our functional. &@h functionals of the form

reasons for its efficiency and its effectiveness are expthin

Section IV contains numerical examples. We compare speed T, )= lu, )+ fo(u), 5>0 @
and accuracy in the sense of a faithful total strict ordenhg with

our algorithm with state-of-the art algorithms and provale U(u, f) = Z Y(uli] — f[i]),

histogram equalization inversion comparison. We will des t i€l, 3)

only few iterations of our algorithm are necessary to obtain O(u) = Z o ((Gu)[j]).
.j6H7‘



Here (Gu)[j] denotes theth component of the vectakru € of the minimizer differ in general pairwise from each other
R”. One could additionally use diagonal differences to improwso thatu provides an auxiliary information for ordering the
the rotation invariance ofb(u). However, our experiments pixels of f.

have shown that the simple forward differenceszirand y

directions are enough to enable the minimizer.Joto give Lete ande fulfill H1 and H2. Then there existsdense open

rise to a prompt sorting. " n n LN
Following [1], the essence for achieving a strict orderiag IsubsetK of R™ such that for anyf € K" the minimizeru

that the functions)(-) := ¢ (-, a1) andp(-) := (-, az) belong of J(:, f) satisfies
to afamily of functiong)(-, ) : R — R, o > 0, satisfying the ali] # alj], Vi, jel,, 47,
requirements in assumptions H1 and H2 described next. The ali] £ 1] Viel (6)
rationale for these choices was extensively discussed]in [1 ’ "
For simplicity, the parameters; and a, are omitted when  The fact thatK™ is dense and open iR" means that the
they are not explicitly involved in our derivations. property in (6) is generically true. This result is much sger
than saying that (6) holds true almost everywhereRsn *
) Therefore, the elements @™\ K™ are highly exceptional
0(0) = Lota) and 0"(ta) = - o(t, ). in R, , , -

dt dt? The second theorem provides an estimate|| ff— ||
H1 For any fixeda > 0 the functiont — 6(¢, o) is in C2(R) Which has been proven by the authors in [11, Theorems 1
and even, i.e.d(—t,a) = 0(t,a) for all ¢ € R. Its derivative and 2].
0'(t, a) is strictly increasing withim;,« 0'(t, @) = 1, where  1haorem 2. (Distance ofii from f)
the upper bound is set tb just for definiteness. The seconq_etw and o fulfill H1 and H2 and lets < %_ Then, for any

Theorem 1. (Strict ordering information)

Assumptions. In the following, we systematically denote

derivatived” (t, ) is decreasing ori0, +o0). f € R", the minimizeri of J(-, f) satisfies

H2 For fixedt > 0, the functiona — 0(t,«) is strictly

decreasing or{0, +-00) with [T — flloo < ()71 (48, 01) = £(48, 1), 7)
lim ¢'(t,a) =1 and Jim 0'(t,o) =0 . where¢ := (¢/)~!. Further it holds

Under these assumptiogsandy are smooth approximations 0= flloo /1 €(4B,a1) as a2 \,0 (8)

of the absolute value function. Hence the functioddl, ) . ) ) ) , ,

amounts to a fully smootheéi-TV model. if vy := maxier { min ([f[i] = f[i - 1][, | f[i] = fli = M]|) >

¢From H1 it follows that’ (¢, o) is odd and has an inverse2§_(45’0‘1)}' whereZ := {Z € int Ly« (f[i] = fli—=1)([f[i] -
function fli—M]) # 0} # 0. Hereint I, denotes the set of indices of

£t a) == ()" \(t, ). 4) non boundary pixels.
Clearly, ¢ + £(t,a) is also odd and strictly increasing on The upper bound (7) guarantees in our numerical examples

. . " .~ that|f[:] — ul:]| < 0.5 for any: € I,,. Consequently, if for
(—1,1). Moreover, since)”(t,«) is positive and decreasing .. : . ; .
on [0, +-00), the functioné is differentiable and fli] €40,...,255}, ¢ € I,,, the relationf[i] < f[j] holds true,

then alsou[:] < u[j] such that the initial ordering of pairwise

¢(t,a) = 1 -0 (5) different pixels is preserved. More precisely, we obtain fo
’ 0"(e(t)) ~ B =01anda; = ay = 0.05 that ||z — f|loe < 0.0976 if

Y =p=>0 and||u — fll < 0.0333 if ¥ = ¢ = 05.

Sot — &'(t,a) is also increasing oif0, 1). There are many i _
possible choices of functiorsmeeting H1 and H2, see [1]. Conce_rmng the_ Iower_ b_ound (8) we _empha3|z_e that _the
assumption orv; is realistic for natural images with 8 bit

Example 1.In our numerical tests we use the functichs-  gray values; see [11].
1 = ¢ with a1 = as = « given in the following table:

IIl. FAST MINIMIZATION AND SORTING ALGORITHMS

0 0/ 5 — (9/)71 5/
0 VZ+ta ¢ t\/L NG The functionu is a minimizer ofJ(-, f) in (2) if and only if
! o Vitta 1217 | (V123 VJ(u, f) = 0 which is equivalent t&v ¥ (u, ) = =8V (a).
02 || [t —alog (1 + U) A = (= By (3) this can be rewritten as
TABLE | P T T
CHOICES FORH(+, &) TOGETHER WITH THE USED DERIVATIVES AND (w'(u[z] o f[z]))izl = —pa" (‘pl ((Gu)l5]) )j:l'
INVERSE FUNCTIONS ) ) ) ] )
With & := (¢/)71(-, 1) as in (4) and sincé is odd we obtain
Since J(-, f) is a strictly convex, coercive functional it u=f-¢(BGY(Gn)),. 9)

has a unique minimizefi € R™. The following theorems

summarize several properties of this minimizer which are'An aimost everywhere true property requiresly that K is dense in
R™. But K™ may not contain open subsets. There are many examples. For

important for our faithful and fast sorting algorithm. Thesti siance ik .— [0,1]\ {z € [0,1] : « is rationa} is dense in0, 1] and K
theorem proven in [1, Theorem 1] guaranties that the entriéss not contain open subsets.



Here ' (Gu) := (¢’ ((Gﬂ)[j]));:1 and¢ is applied compo- we obtain

nentwise. This is a fixed point equation fewhich gives rise . T

to the followingfixed point algorithnmto compute: IVT ()2 <5 Hleag(? (ﬁGHSO (Gu))ll2
|G|z [|diag (¢" (Gu)) |2 | G]l2-

Since ¢” is monotone decreasing off), +00) we get

Algorithm 1 Minimization Algorithm

Initialization: «(*) = f, stopping parameter || diag(¢” (Gu))|l2 < ¢”(0). Further, we have by the defi-
Forr=1,... compute until|VJ|. <e nition of G that ||G"||2 |G|z = ||G"G]2 < 8. Note thatG"G
is a discrete Laplacian with Neumann boundary conditioms an
ul = f—¢(BGT (Gul"Y)) that the bound is sharp in the sense thafG||, approaches
8 asn — oo.

_ o . It remains to estimatet’ (8G7¢’'(Gu)). Regarding that
As stopping criterion we proposéV.J|. < 107° In /(1)) < 1forall t € R we conclude||GT¢' (Gu)|o <

all experiments with images of various content and size W[, < 4. Since¢’ increases orf0, 1) by (5) and43 < 1 we
realized that the required precision was reached in geneégkain_ﬁna"y ’

within less than 35 iterations. The efficiency of the aldorit . o )
relies on two clues: [diag (&' (BG™¢ (Gu))[l2 < €'(48).

- By Theorem 2 the vectou(®) = f is very close to the Multiplying the parts together we obtain the assertion. [l
fixed pointu and is therefore a good starting point.

- The functionsy’ and ¢ appearing in the algorithm are
given explicitly, see Table I. 01 ‘ 62

By the following corollary the sequence of iteratgs”)}, <y o 85
is bounded ifg < i. Consequently, it has a convergent sub- ACIRE
sequence. Moreover, for appropriately choganall iterates For a; = a, these values are smaller than 16if< 0.0976
fulfill again the important propertyf[i] — «("[i]| < 0.5, andj < 0.0670, for 6, and6., respectively.
1 € I, such that the original ordering of the pixels jhis
still pertinent inu(").

For ¢ = ¢ from Table | the left-hand side of (10) becomes

238 88
az (1-[48])2

Remark 1. The upper bound i10)is in fact an overestimate
since on hasy”(Gu,a2) = ¢"(0,az) only for constant
Corollary 1. (Distance ofu(") from f: upper bound) imagesu.

Let and ¢ fulfill H1 and let 8 < %. Then, for anyf € R",

. ; ) In practice, we are not really interested in the minimizer
all iteratesu(") generated by Algorithm 1 satisfy

of J(-, f), but want to use the sorting of its components to get

[u = fllo < W) (48, a1) = £(48, 1), a meaningful ordering of the original image. Here we obsérve
n that the ordering of pixels obtained after a small number of
Proof. By H1 we can estimate steps of the minimization algorithm does not change in the
) N1 T (r—1) subsequent steps except of very few pixels. This fact le@ us t
e Hloo < (&) (ﬂHG v (Gu )”00)' propose the following efficient ordering algorithm fBr< 35:

Using |¢'(t)] < 1 and the sparsity ofG" we obtain , i -

1GT¢! (Gu'™D)||s < 4 and since(y’)~! is increasing on Algorithm 2 Ordering Algorithm

—1,1] for g < 1 finall Initialization: «(®) = f, stopping parameteR
; B <i y

(r) N1 1. Forr=1,..., R compute
[0 = flloo < (¥') 77 (48, ).

0 ul? = f =BG (GuY))

2. Order the values irfi,, according to the corresponding

The following theorem provides a convergence result for . .
9 P g ascending entries af("),

our fixed point algorithm.

Theorem 3. (Convergence of fixed point algorithm)
Let ¢ and ¢ fulfill H1. Let oy, a2 > 0 and 3 < % be chosen
such that

Step 1 is an iterative nonlinear filtering procedure.

IV. NUMERICAL COMPARISON OFSORTING ALGORITHMS

8BE(48,a1) " (0, a2) < 1. (10) _ _ _ _
In this section we demonstrate that our Ordering Algorithm
Then, for anyf € R", the sequencdu”'}, generated by 2 with 4 = ¢ = 6, is actually the best way (in terms of
Algorithm 1 converges to the minimizerof J(-, f). speed and quality) to order pixels in digital images. No#t th

Proof. Let T'(u) := f—f(ﬂ GT@/(GU(T—l)))_ By Ostrowski's extensive qualitative comparisons of the variational drde
theorem [12] it is enough to prove that the Jacobian matrfiRethod (VA) with the (fully iterated) Polak-Ribiére algim

VT'(u) becomes smaller than 1 in some norm&h for all were done in [1]. These experiments have already shown that
u € R™. Since VA clearly outperforms other state-of-the-art algorithrs

LM [8] and WA [9] concerning quality. Here we want to
VT (u) = Bdiag(¢' (BGT¢' (Gu))) G diag(¢” (Gu)) G demonstrate that our new ordering algorithm ensures the sam



quality, in particular a faithful strict ordering, but is mlu increasing sizéV x N, whereN = 256,512, 1024, 2048. The

faster than the previous implementations. images are presented in Fig. 2. The tables give the average
We apply LM with K = 6, WA with K = 9 and VA with computation time of 50 runs of the algorithms.
parametersf, a1, a2) = (0.1,0.05,0.05) in the variants We present two numerical experiments:

- VA-PR: with Polak-Ribiére algorithm, functiof; and 1. Ordering of natural images: The results are reported in Ta
stop if [VJ|« < 107¢ but at most 35 iterations asll. Here Fai | gives the percentage of image pixels which

proposed in [1], cannot be faithfully ordered. The fast VA algorithm with a
- VA-0,(R): with fixed point algorithm with functiorg;,, reduced number of 5 iterations clearly outperform the LM and
k € {1,2} and R iterations. WA algorithms.

Recall thatK = 6 for LM and K = 9 for WA were 2. Histogram equalization inversion: first the original i8-b
recommended by the authors. Further, we want to mention tiragage f with histogramh, is mapped to an 8-bit image
the estimate in Theorem 3 is too restrictive (see Remark d)which histogram resembles a uniform distribution. This
and we have chosef slightly larger which still provides a requires the first application of an ordering algorithm. ifge
convergent iteration scheme. is transformed to an 8-bit imagéwith histogran ; which re-
quires a second time an ordering algorithm. Tab. 11l showes th
PSNR201log,,(255M - N/||f — f||2), the percentage of pixels
i | %which cannot be faithfully ordered averaged over the
two applied ordering procedures and the computational time
of the whole histogram equalization inversion processcé&in
VA-PR and VA¥;(R) give qualitatively, in terms of PSNR and
FAIL, the same results as VAz(R) but VA-62(R) is faster,

Remark 2. (Filtering versus sorting)

The above algorithms contain a filtering and a sorting st
which behave quite differently:

- LM and WA: Both algorithms applyK’ — 1 simple linear
fiters which is cheap. For example, f = N?2 is the
number of image pixels, thehin, 44n, 64n (mainly) additions

are necessary for the LM-filtering procedure in the cases, . consider only VAG,(R), R  {5,35}. The VA-algorithms

K = 4,5, 6, respectively. Note that this filtering can be als%utperform LM and WA wrt PSNR and EAIL. Moreover. VA-
done in a cheaper way using thefilters employed in [8] 0(5) is the fastest algorithm ’ '

for the theoretical study of the LM algorithm. The resulting , . . . .
K images must be lexicograpically ordered, see (1). This canThe quality of our VA algorithms is emphasized by Fig. 3

. which shows three difference images of the original imgge
be done inO(nlogn) but the concrete factor depends &nh . 5 . . g  onging ﬁg
. . . and the imageg obtained by histogram equalization inversion.
and on the image content. In our numerical experiments

. ) “fRe first row presents the original image ui and zooms
have used thesor t rows Matlab functlon which (_:alls for of st ones andchur ch. The second and third rows show
K >4 aC program. In our numerical examples witti = 6

this sorting procedure was three to twelve times (incr sirt1he resultsf — / obtained by the LM and WA ordering,
o 9p ) ( TR respectively. The fourth and the fifth rows depict the défeze
with increasing number of pixels) slower than the filterin ;

procedure. Finally, we mention that larger images, e.gsjzd# gmagesf — [ corresponding 1o VAG,(35) and VA#,(5),

; respectively. Both VA methods are able to reconstruct the
5616 x 3744 taken by usual commercial cameras, cannot bé b y

handled bysort r ows. Here a more sophisticated sequenti%?glggélsmage more precisely than its competitors in adr

sorting implementation in a better adapted programming lan
guage may be used with storage requireniant However,
the speed relation between linear filtering and lexicogicgh V. CONCLUSIONS AND FUTURE WORK

sorting will be kept. In this paper we have proposed a fast and meaningful strict
- VA: The nonlinear filtering in the VA procedure is more deordering algorithm for integer values in natural images. We
manding than the above linear one. However,jfor ¢ = ¢> intend to apply this algorithm as the basis in various image
we have (up to absolute values) only to compute additions apbcessing applications, one example is the enhancement of
multiplications. In summary, we have to perfoii3n additions color images in [2]. Further we want to extend the error
or multiplications in each iteration step. Indeed our nuo@r estimates in Theorem 2 and Corollary 1 to other functionals
experiments have confirmed that our filtering behaveS(@s. relevant in imaging and to use these estimates to find
The subsequent sorting procedsrer t of one image which appropriate regularization parameters.

requiresn logn is faster than the filtering step, in our examples

with R = 5 nearly 4 times. Acknowledgements.The work of Mila Nikolova was sup-

We summarize our findings for images up to sBI8 x ported in part by the “FMJH Program Gaspard Monge in
2048: For LM and WA the lexicographical sorting &f images optimization and operation research”, and by the support to
is more time consuming than the simple linear filtering. Fahis program from EDF.
our ordering algorithm the nonlinear filtering requires mor
time than the sorting step. Nevertheless the running time fo
our filtering for 0 is linear in the number of pixels.
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Fail % Computation Time
VA VA
method M WA PR | 0:(35) | 02(35) | 02(5) || LM | WA PR | 0:(35) | 62(35) | 02(5)
chemical 0.01 0.06 0.00 0.00 0.00 0.00 0.03 | 0.04 0.59 0.08 0.06 0.01
clock 1.57 4.52 0.00 0.00 0.00 0.00 0.03 | 0.04 0.27 0.08 0.06 0.01
elaine 0.00 0.02 | 0.00 0.00 0.00 0.00 0.03 | 0.03 | 0.61 0.08 0.07 0.01
moon 0.00 0.00 | 0.00 0.00 0.00 0.00 0.03 | 0.04 | 0.61 0.08 0.06 0.01
tree 0.02 0.19 | 0.00 0.00 0.00 0.00 0.03 | 0.04 | 0.59 0.08 0.06 0.01
trui 0.00 0.00 0.00 0.00 0.00 0.00 0.03 | 0.04 0.30 0.08 0.06 0.01
means 0.27 0.80 0.00 0.00 0.00 0.00 0.03 | 0.04 0.50 0.08 0.06 0.01
aerial 0.00 0.00 | 0.00 0.00 0.00 0.00 013 | 0.16 | 2.28 0.40 0.29 0.05
airplane 5.30 17.70 | 0.00 0.00 0.00 0.00 0.16 | 0.31 1.16 0.40 0.29 0.05
boat 0.00 0.00 0.00 0.00 0.00 0.00 0.12 | 0.15 1.40 0.40 0.29 0.05
mandrill 0.00 0.00 | 0.00 0.00 0.00 0.00 0.12 | 0.14 | 225 0.40 0.29 0.05
raffia 13.66 | 16.05 | 0.00 0.00 0.00 0.00 020 | 0.35 | 1.04 0.39 0.29 0.05
stream 0.41 0.75 | 0.00 0.00 0.00 0.14 0.13 | 0.19 | 1.03 0.41 0.29 0.05
means 3.23 575 | 0.00 0.00 0.00 0.02 0.14 | 0.22 | 1.53 0.40 0.29 0.05
bark 0.00 0.00 | 0.00 0.00 0.00 0.00 0.64 | 0.80 | 10.16 1.79 1.33 0.25
man 0.34 0.68 | 0.00 0.00 0.00 0.00 0.61 | 0.82 | 4.47 1.62 1.22 0.24
pentagon 0.00 0.00 0.00 0.00 0.00 0.00 0.66 | 0.87 9.48 1.80 1.32 0.22
smarties 0.08 0.05 0.00 0.00 0.00 0.00 0.68 | 0.90 9.43 1.82 1.46 0.24
stones 1.14 1.39 | 0.00 0.00 0.00 0.09 0.66 | 0.90 | 4.76 1.78 1.32 0.22
traffic 0.10 0.07 | 0.00 0.00 0.00 0.00 0.65 | 0.88 | 4.96 1.80 1.44 0.24
means 0.28 0.36 | 0.00 0.00 0.00 0.01 0.65 | 086 | 7.21 1.77 1.35 0.24
eifel 0.57 0.37 0.00 0.00 0.00 0.01 4.24 | 6.55 | 22.29 8.08 6.58 1.23
boys 0.02 0.00 | 0.00 0.00 0.00 0.00 3.84 | 5.46 | 42.64 8.06 6.60 1.20
plants 0.00 0.00 | 0.00 0.00 0.00 0.00 3.74 | 474 | 21.61 8.08 6.62 1.20
pont 1.96 5.77 0.00 0.00 0.00 0.00 3.98 | 5.70 | 43.15 8.08 6.63 1.20
church 0.61 0.78 0.13 0.05 0.07 0.30 3.62 | 516 | 20.74 8.08 6.60 1.21
violine 0.25 0.23 | 0.00 0.00 0.00 0.00 3.76 | 5.95 | 43.25 8.07 6.59 1.19
means 0.57 1.19 0.02 0.01 0.01 0.05 3.86 | 559 | 32.28 8.07 6.60 1.20
TABLE Il
COMPARISON OF DIFFERENT ORDERING METHODS FOR THE IMAGES IRIG. 2.
PSNR Fail % Computation Time
VA VA VA
method M WA | 02(35) | 02(5) || LM | WA | 62(35) | 02(5) || LM | WA | 05(35) | 62(5)
chemical 49.34 | 48.90 49.67 49.67 0.03 | 0.10 0.00 0.00 0.06 0.07 0.13 0.03
clock 51.69 | 51.56 51.78 51.78 0.87 | 241 0.00 0.02 0.06 0.08 0.14 0.02
elaine 49.51 | 49.66 | 49.90 49.90 || 0.00 | 0.02 0.00 0.00 0.06 | 0.07 0.13 0.03
moon 47.36 | 46.50 | 47.82 47.77 || 0.06 | 0.11 0.00 0.00 0.05 | 0.07 0.13 0.03
tree 51.94 | 51.84 52.01 52.01 0.03 | 0.18 0.00 0.00 0.05 0.07 0.12 0.03
trui 52.70 | 52.51 52.86 52.85 0.04 | 0.06 0.00 0.00 0.05 0.07 0.13 0.03
means 50.42 | 50.16 50.67 50.67 0.17 | 0.48 0.00 0.00 0.05 0.07 0.13 0.03
aerial 48.36 | 48.06 50.05 50.05 0.00 | 0.02 0.00 0.00 0.25 0.33 0.57 0.11
airplane 46.74 | 46.26 47.25 47.25 2.68 | 8.96 0.00 0.01 0.27 0.49 0.56 0.10
boat 49.51 | 49.58 49.89 49.89 0.07 | 0.09 0.00 0.00 0.24 0.32 0.57 0.11
mandrill 48.27 | 49.47 | 49.75 49.76 || 0.00 | 0.00 0.00 0.00 0.23 | 0.30 0.56 0.10
raffia 41.12 | 4112 | 41.12 41.12 || 6.85 | 8.18 0.00 0.00 0.32 | 0.54 0.57 0.11
stream 4475 | 45.00 45.07 45.08 0.40 | 0.71 0.00 0.13 0.24 0.36 0.56 0.10
means 46.46 | 46,58 | 47.19 4719 [ 1.67 | 2.99 0.00 0.02 0.26 | 0.39 0.57 0.11
bark 51.28 | 51.17 | 51.30 51.30 |[ 0.00 | 0.01 0.00 0.00 1.29 | 1.60 2.60 0.48
man 49.22 | 49.18 49.44 49.44 0.19 | 0.40 0.00 0.00 1.20 1.59 2.55 0.46
pentagon || 50.69 | 50.62 51.35 51.35 0.01 | 0.01 0.00 0.00 1.29 1.66 2.53 0.48
smarties 51.47 | 51.09 51.64 51.60 0.63 | 0.91 0.00 0.03 1.34 1.77 2.55 0.49
stones 51.28 | 50.95 | 51.60 51.60 || 0.97 | 1.22 0.00 0.04 131 | 178 2.52 0.44
traffic 50.73 | 50.58 | 51.01 51.00 || 0.25 | 0.30 0.00 0.01 131 | 173 2.53 0.47
means 50.78 | 50.60 | 51.06 51.05 [[ 0.34 | 0.48 0.00 0.01 1.29 [ 1.69 2.55 0.47
eifel 48.61 | 48.48 | 48.74 48.73 |[ 0.88 | 0.97 0.00 0.05 8.17 | 12.36 | 13.15 241
boys 51.63 | 51.43 | 51.71 51.71 || 0.09 | 0.13 0.00 0.00 7.45 | 10.44 | 13.15 2.38
plants 48.96 | 48.86 49.52 49.52 0.18 | 0.24 0.00 0.02 7.35 9.29 13.15 2.39
pont 51.48 | 51.30 51.55 51.51 1.42 | 3.50 0.00 0.09 7.78 | 10.90 13.24 2.39
church 50.94 | 50.80 51.28 51.27 1.23 | 1.73 0.06 0.28 7.16 | 10.23 13.16 2.40
violine 51.66 | 51.34 | 51.85 51.75 || 1.22 | 1.59 0.10 0.22 7.25 | 11.29 | 13.12 2.37
means 50.55 | 50.37 | 50.78 50.75 || 0.84 | 1.36 0.03 0.11 753 ] 10.75 | 13.16 2.39
TABLE Il

COMPARISON OF HISTOGRAM EQUALIZATION INVERSION ALGORITHMS




original t r ui zoom ofst ones zoom ofchur ch
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WA: (f — f) for trui WA: zoom(f — f) for stones ~ WA: zoom(f — f) for chur ch

VA-02(35): (f — f) for trui VA-02(85): zoom(f-f) / stones  VA-02(85): zoom(f-f) / chur ch
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Fig. 3. Comparison of ordering methods for histogram egatibn inversion. First row: true images or parts of theme Tdillowing rows show the difference
images between the original one and those obtained aftesghisn equalization inversion. Top down: LM, WA, (35), VA-62(5). The variational

methods (VA) contain much less errors than those achievedMbyand WA. Moreover there is no visual difference between VABS5 iterations and its
faster variant with only 5 iterations.



