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Abstract. We propose various novel embedded approaches for (simulta-
neous) feature selection and classification within a general optimisation
framework. In particular, we include linear and nonlinear SVMs. We ap-
ply difference of convex functions programming to solve our problems
and present results for artificial and real-world data.

1 Introduction

Overview and related work. Given a pattern recognition problem as a train-
ing set of labelled feature vectors, our goal is to find a mapping that classifies
the data correctly. In this context, feature selection aims at picking out some of
the original input dimensions (features) (i) for performance issues by facilitating
data collection and reducing storage space and classification time, (ii) to per-
form semantics analysis helping to understand the problem, and (iii) to improve
prediction accuracy by avoiding the ”curse of dimensionality” (cf. [6]).

Feature selection approaches divide into filters that act as a preprocessing
step independently of the classifier, wrappers that take the classifier into account
as a black box, and embedded approaches that simultaneously determine features
and classifier during the training process (cf. [6]). In this paper, we deal with the
latter method and focus on direct objective minimisation. Our linear classifica-
tion framework is based on [4], but takes into account that the Support Vector
Machine (SVM) provides good generalisation ability by its `2-regulariser. There
exist only few papers on nonlinear classification with embedded feature selection.
An approach for the quadratic 1-norm SVM was suggested in [12]. An example
for a wrapper method employing a Gaussian kernel SVM error bound is [11].
Contribution. We propose a range of new embedded methods for feature se-
lection regularising linear embedded approaches and construct feature selection
methods for nonlinear SVMs. To solve the non-convex problems, we apply the
general difference of convex functions (d.c.) optimisation algorithm.
Structure. In the next section, we present various extensions of the linear em-
bedded approach proposed in [4] and consider feature selection methods in con-
junction with nonlinear classification. The d.c. optimisation approach and its
application to our problems is described in Sect. 3. Numerical results illustrat-
ing and evaluating various approaches are given in Sect. 4.



2 Feature Selection by Direct Objective Minimisation

Given a training set {(xi, yi) ∈ X × {−1, 1} : i = 1, . . . , n} with X ⊂ Rd, our
goal is both to find a classifier F : X → {−1, 1} and to select features.

2.1 Linear Classification

The linear classification approaches construct two parallel bounding planes in Rd
such that the differently labelled sets are to some extent in the two opposite half
spaces determined by these planes. More precisely, one solves the minimisation
problem

min
w∈Rd,b∈R

(1− λ)

n∑

i=1

(1− yi(wTxi + b))+ + λρ(w) (1)

with λ ∈ [0, 1), regulariser ρ and x+ := max(x, 0). Then the classifier is F (x) =
sgn(wTx + b). For ρ = 0, the linear method (1) was proposed as Robust Linear
Programming (RLP) by Bennett and Mangasarian [2]. Note that these authors
weighted the training errors by 1/n±1, where n±1 = |{i : yi = ±1}|.

In order to maximise the margin between the two parallel planes, the original
SVM penalises the `2-norm ρ(w) = 1

2‖w‖22. Then (1) can be solved by a convex
Quadratic Program (QP).

In order to suppress features, `p-norms with p < 2 are used. In [4], the
`1-norm (lasso penalty) ρ(w) = ‖w‖1 leads to good feature selection and classi-
fication results. Moreover, for the `1-norm, (1) can be solved by a linear program.

The feature selection can be further improved by using the so-called `0-
“norm” ‖w‖0 = |{i : wi 6= 0}| [4, 10]. Since the `0-norm is non-smooth, it was
approximated in [4] by the concave functional

ρ(w) = eT
(

e−
(
e−α|wi|

)d
i=1

)
≈ ‖w‖0 (2)

with approximation parameter α ∈ R+ and e = (1, . . . , 1)T . Problem (1) with
penalty (2) is known as Feature Selection concaVe (FSV). Now the solution of
(1) becomes more sophisticated and can be obtained, e.g., by the Successive
Linearization Algorithm (SLA) as proposed in [4].

New feature selection approaches. Since the `2 penalty term leads to very
good classification results while the `1 and `0 penalty terms focus on feature
selection, we suggest using combinations of these terms. As common, to eliminate
the absolute values in the `1-norm or in the approximate `0-norm, we introduce
additional variables vi ≥ |wi| (i = 1, . . . , d) and consider νρ(v) + χ[−v,v](w)
instead of λρ(w), where χC denotes the indicator function χC(x) = 0 if x ∈ C
and χC(x) =∞ otherwise (cf. [7, 8]). As a result, for µ, ν ∈ R+, we minimise

f(w, b,v) :=
µ

n

n∑

i=1

(1− yi(wTxi + b))+ +
1

2
‖w‖22 + νρ(v) + χ[−v,v](w) . (3)

In case of the `1-norm, problem (3) can be solved by a convex QP. For the
approximate `0-norm an appropriate method is presented in Sect. 3.



2.2 Nonlinear Classification

For problems which are not linearly separable a so-called feature map φ which
usually maps the set X ⊂ Rd onto a higher dimensional space φ(X ) ⊂ Rd′

(d′ ≥ d) is used. Then the linear approach (1) is applied in the new feature
space φ(X ). This results in a nonlinear classification in the original space Rd,
i.e., in nonlinear separating surfaces.

Quadratic feature map. We start with the simple quadratic feature map

φ : X → Rd
′
, x 7→ (xα : α ∈ Nd0 , 0 < ‖α‖1 ≤ 2) ,

where d′ = d(d+3)
2 , and apply (1) in Rd′ with the approximate `0-penalty (2):

f(w, b,v) :=(1− λ)
n∑

i=1

(1− yi(wTφ(xi) + b))+ + λeT (e− e−αv)

+

d′∑

i=1

∑

φi(ej )6=0

χ[−vj ,vj ](wi) −→ min
w∈Rd′ ,b∈R,v∈Rd

,

(4)

where ej ∈ Rd denotes the j-th unit vector. We want to select features in the
original space Rd due to (i)-(ii) in Sect. 1. Thus we include the appropriate
indicator functions. A similar approach in [12] does not involve this idea and
achieves only a feature selection in the transformed feature space Rd′ . We will
refer to (4) as quadratic FSV. In principle, the approach can be extended to
other feature maps φ, especially to other polynomial degrees.

Gaussian kernel feature map. Next we consider SVMs with the feature map
related to the Gaussian kernel

K(x, z) = Kθ(x, z) = e−‖x−z‖22,θ/2σ2

(5)

with weighted `2-norm ‖x‖22,θ =
∑d

k=1 θk|xk |2 by K(x, z) = 〈φ(x),φ(z)〉 for
all x, z ∈ X . We apply the usual SVM classifier. For further information on
nonlinear SVMs see, e.g., [9]. Direct feature selection, i.e., the setting of as many
θk to zero as possible while retaining or improving the classification ability, is
a difficult problem. One possible approach is to use a wrapper as in [11]. In
[5], the alignment Â(K,yyT ) = yTKy/(n‖K‖F ) was proposed as a measure of
conformance of a kernel with a learning task. Therefore, we suggest to maximise
in a modified form yTnKyn where yn = (yi/nyi)

n
i=1. Then, with penalty (2), we

define our kernel-target alignment approach for feature selection as

f(θ) := −(1− λ)
1

2
yTnKθyn + λ

1

d
eT (e− e−αθ) + χ[0,e](θ) −→ min

θ∈Rd
. (6)

The scaling factors 1
2 , 1

d ensure that both objective terms take values in [0, 1].



3 D.C. Programming and Optimisation

A robust algorithm for minimising non-convex problems is the Difference of
Convex functions Algorithm (DCA) proposed in [7]. Its goal is to minimise a
function f : Rd → R ∪ {∞} which reads

f(x) = g(x)− h(x) −→ min
x∈Rd

, (7)

where g, h : Rd → R ∪ {∞} are lower semi-continuous, proper convex functions
cf. [8]. In the next subsections, we first introduce the DCA and then apply it to
our non-convex feature selection problems.

3.1 D.C. Programming

For g as assumed above, we introduce the domain of g, its conjugate function
at x̃ ∈ Rd and its subdifferential at z ∈ Rd by dom g := {x ∈ Rd : g(x) < ∞},
g∗(x̃) := supx∈Rd{〈x, x̃〉 − g(x)} and ∂g(z) := {x̃ ∈ Rd : g(x) ≥ g(z) + 〈x −
z, x̃〉 ∀x ∈ Rd}, respectively. For differentiable functions we have that ∂g(z) =
{∇g(z)}. According to [8, Theorem 23.5], it holds

∂g(x) = arg max
x̃∈Rd
{xT x̃− g∗(x̃)} , ∂g∗(x̃) = arg max

x∈Rd
{x̃Tx− g(x)} . (8)

Further assume that dom g ⊂ domh and domh∗ ⊂ dom g∗. It was proved in [7]
that then every limit point of the sequence

(
xk
)
k∈N0

produced by the following

algorithm is a critical point of f in (7):

Algorithm 3.1: D.C. minimisation Algorithm (DCA)(g, h, tol)

choose x0 ∈ dom g arbitrarily
for k ∈ N0

do





select x̃k ∈ ∂h(xk) arbitrarily
select xk+1 ∈ ∂g∗(x̃k) arbitrarily

if min
(∣∣xk+1

i − xki
∣∣ ,
∣∣∣x
k+1
i −xki
xki

∣∣∣
)
≤ tol ∀ i = 1, . . . , d

then return (xk+1)

We can show – but omit this point due to lack of space – that the DCA applied
to a particular d.c. decomposition (7) of FSV coincides with the SLA.

3.2 Application to our Feature Selection Problems

The crucial point in applying the DCA is to define a suitable d.c. decomposition
(7) of the objective function. The aim of this section is to propose such decom-
positions for our different approaches.

`2-`0-SVM. A viable d.c. decomposition for (3) with (2) reads

g(w, b,v) =
µ

n

n∑

i=1

(1− yi(wTxi + b))+ +
1

2
‖w‖22 + χ[−v,v](w) ,

h(v) = −νeT (e− e−αv)



which gives rise to a convex QP in each DCA step.

Quadratic FSV. To solve (4) we use the d.c. decomposition

g(w, b,v) = (1− λ)

n∑

i=1

(1− yi(wTφ(xi) + b))+ +

d′∑

i=1

∑

φi(ej)6=0

χ[−vj ,vj ](wi) ,

h(v) = −λeT (e− e−αv) ,

which leads to a linear problem in each DCA step.

Kernel-target alignment approach. For the function defined in (6), as the
kernel (5) is convex in θ, we split f as

g(θ) =
1− λ

2n+1n−1

n∑

i,j=1
yi 6=yj

e−‖xi−xj‖22,θ/2σ2

+ χ[0,e](θ) ,

h(θ) =
1− λ

2

n∑

i,j=1
yi=yj

1

n2
yi

e−‖xi−xj‖22,θ/2σ2 − λ

d
eT (e− e−αθ) .

Now h is differentiable, so applying the DCA we find the solution in the first

step of iteration k as θ̃
k

= ∇h(θk). In the second step, we are looking for

θk+1 ∈ ∂g∗(θ̃
k
)

(8)
= arg maxθ{θT θ̃

k − g(θ)} which leads to solving the convex
non-quadratic problem

min
θ∈Rd

1− λ
2n+1n−1

n∑

i,j=1
yi 6=yj

e−‖xi−xj‖22,θ/2σ2 − θT θ̃k subject to 0 ≤ θ ≤ e

with a valid initial point 0 ≤ θ0 ≤ e. We efficiently solve this problem by a
penalty/barrier multiplier method with logarithmic-quadratic penalty function
as proposed in [1].

4 Evaluation

4.1 Ground Truth Experiments

In this section, we consider artificial training sets in R2 and R4 where y is a func-
tion of the first two features x1 and x2. The examples in Fig. 1 show that our
quadratic FSV approach indeed performs feature selection and finds classifica-
tion rules for quadratic, not linearly separable problems. For the non-quadratic
chess board classification problems in Fig. 2, our kernel-target alignment ap-
proach performs very well, in contrast to all other feature selection approaches
presented. Remarkably, the alignment functional incorporates implicit feature
selection for λ = 0. In both cases, only relevant feature sets are selected as can
be seen in the bottom plots.
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right: projection onto selected features. Bottom: Features determined by (4)
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λ = 0.1, left: in R2, right: projection onto selected features. Bottom: Features deter-
mined by (6)



4.2 Real-World Data

To test all our methods on real-world data, we use several data sets from the UCI
repository [3] resumed in Table 1. We rescaled the features linearly to zero mean
and unit variance and compare our approaches with RLP and FSV favoured in
[4].

Table 1. Statistics for data sets used

data set number of features d number of samples n class distribution n+1/n−1

wpbc60 32 110 41/ 69
wpbc24 32 155 28/127

liver 6 345 145/200
cleveland 13 297 160/137

ionosphere 34 351 225/126
pima 8 768 500/268
bcw 9 683 444/239

Choice of parameters. We set α = 5 in (2) as proposed in [4] and σ =
√
d

2 in
(5) which maximises the problems’ alignment. We start the DCA with v0 = 1
for the `2-`0-SVM, FSV and quadratic FSV and with θ0 = e/2 for the kernel-
target alignment approach, respectively. We stop on v with tol = 10−5 resp.
tol = 10−3 for θ. We retain one half of each run’s cross-validation training set
for parameter selection. The parameters are chosen to minimise the validation
error from lnµ ∈ {0, . . . , 10}, ln ν ∈ {−5, . . . , 5}, λ ∈ {0.05, 0.1, 0.2, . . . , 0.9, 0.95}
for (quadratic) FSV and λ ∈ {0, 0.1, . . . , 0.9} for the kernel-target alignment
approach. In case of equal validation error, we choose the larger values for (ν, µ)
resp. λ. In the same manner, the SVM weight parameter λ is chosen according
to the smallest 1−λ

λ ∈ {e−5, e−4, . . . , e5} independently of the selected features.
The results are summarised in Table 2 where the number of features is deter-

mined as |{j = 1, . . . , d : |vj | > 10−8}| resp. |{j = 1, . . . , d : |θj | > 10−2}|. It is
clear that all proposed approaches perform feature selection: linear FSV discards
most features followed by the kernel-target alignment approach and then the `2-
`0-SVM, then the `2-`1-SVM. In addition, for all approaches the test error is
often smaller than for RLP. The quadratic FSV performs well mainly for special
problems (e.g., ’liver’ and ’ionosphere’), but the classification is good in general
for all other approaches.

Table 2. Feature selection and classification tenfold cross-validation performance (av-
erage number of features, average test error [%]); bold numbers indicate lowest errors

linear classification nonlinear classification
RLP FSV `2-`1-SVM `2-`0-SVM quad. FSV k.-t. align.

data set dim. err dim. err dim. err dim. err dim. err dim. err

wpbc60 32.0 40.9 0.4 36.4 12.4 35.5 13.4 37.3 3.2 37.3 3.9 35.5
wpbc24 32.0 27.7 0.0 18.1 12.6 17.4 2.9 18.1 0.0 18.1 1.9 18.1

liver 6.0 31.9 2.1 36.2 6.0 35.1 5.0 34.2 3.2 32.5 2.5 35.4
cleveland 13.0 16.2 1.8 23.2 9.9 16.5 8.2 16.5 9.2 30.3 3.2 23.6

ionosphere 33.0 13.4 2.3 21.7 24.8 13.4 14.0 15.7 32.9 10.8 6.6 7.7
pima 8.0 22.5 0.7 28.9 6.6 25.1 6.1 24.7 4.7 29.9 1.6 25.7
bcw 9.0 3.4 2.4 4.8 8.7 3.2 7.9 3.1 5.4 9.4 2.8 4.2



5 Summary and Conclusion

We proposed several novel methods that extend existing linear embedded feature
selection approaches towards better generalisation ability by improved regular-
isation and constructed feature selection methods in connection with nonlinear
classifiers. In order to apply the DCA, we found appropriate splittings of our
non-convex objective functions. In the experiments with real data, effective fea-
ture selection was always carried out in conjunction with a small classification
error. So direct objective minimisation feature selection is profitable and viable
for different types of classifiers. In higher dimensions, the curse of dimensional-
ity affects the classification error even more such that our methods will become
more important here. A further evaluation of high-dimensional problems as well
as the incorporation of other feature maps is future work.
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