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Abstract. This paper considers supervised multi-class image segmentation: from a labeled set
of pixels in one image, we learn the segmentation and apply it to the rest of the image or to
other similar images. We study approaches with p-Laplacians, Reproducing Kernel Hilbert Spaces
(RKHSs) and combinations of both. In all approaches we construct segment membership vectors. In
the p-Laplacian model the segment membership vectors have to fulfill a certain probability simplex
constraint. Interestingly, we could prove that this is not really a constraint in the case p = 2
but is automatically fulfilled. While the 2-Laplacian model gives a good general segmentation, the
case of the 1-Laplacian tends to neglect smaller segments. The RKHS approach has the benefit
of fast computation. This direction is motivated by image colorization, where a given dab of
color is extended to a nearby region of similar features or to another image. The connection
between colorization and multi-class segmentation is explored in this paper with an application to
medical image segmentation. We further consider an improvement using a combined method. Each
model is carefully considered with numerical experiments for validation, followed by medical image
segmentation at the end.

1. Introduction

Image segmentation has been extensively studied in recent years. Some of the well-known models
include mixture random-field models [25], the Mumford-Shah variational model [40], the Monte-
Carlo Markov chain model [55] and the graph-cutting and spectral method [47]. Many of the initial
segmentation models focused on two-class segmentation such as the active contour approach [12, 33]
and the Chan-Vese model [15]. Later multi-class segmentation models followed such as [4, 9, 14,
19, 32, 43, 53, 36, 46, 57, 60, 63].
In this paper, we focus on supervised multi-class segmentation considering single images as well
as collections of images. Given some labeled pixels in one image, we study different models which
can find the relevant regions in the remaining parts. Recently, the authors in [35] extended the
multi-class segmentation with a fuzzy membership function [38] to the segmentation of a collection
of images. We compare our model to this setting.
In [28] the authors proposed to use a Reproducing Kernel Hilbert Space (RKHS) approach for
image colorization. In this paper we transfer the idea to multi-class image segmentation: in image
colorization different colors represent different regions, and in multi-class segmentation different
labels represent different classes.
There is a clear connection with the machine learning literature where one of the objectives is
to generalize the information based on limited sampled data. RKHS-methods have also made
an impact on the machine learning literature both from algorithmic and theoretical perspectives.
In learning, there are numerous works using RKHS methods, e.g., techniques to train the labels,
classification using Support Vector Machines, probabilistic approaches or hierarchical methods.
The objective and the contribution of this paper is to study the effect of the p-Laplacian model
and the RKHS method for multi-class segmentation given a set of labels. Further, we propose a
novel model that combines both approaches and benefits from advantages of both methods.
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We explore the p-Laplacian model for multi-class segmentation in Section 3. In particular, the
graph 2-Laplacian was applied in image processing and learning for a long time. We contribute to
the field in Section 3 by (i) showing that the segment membership vector obtained by this approach
automatically lies in a probability simplex, and (ii) we extend the approach to p-Laplacians with
p ≥ 1. We demonstrate the properties of the model for p = 1, 3

2 , 2 by a numerical example. Then in
Section 4, we apply a RKHS approach for multi-class segmentation. This approach is based on [28]
and we study the similarities and differences to the p-Laplacian model. A novel combined projection
model is proposed in Section 5. In Section 6, we show the performance of our methods applied to
collections of medical images. Since medical images typically have a low contrast with a high level
of noise, it is challenging to find a method which works well in practice. For example, a series of
papers in MICCAI’09 on the left-ventricle segmentation challenge [1] discusses the difficulties of
such images. See also [41] for a detailed review of segmentation methods for short axis cardiac MR
images. We compare the performances of our methods.

2. Notation

Let Ω be the discrete n1 × n2 image domain, where the image B : Ω → Rd is defined (d = 1 for
gray scale image, and d = 3 for color image). For a simple matrix-vector notation, we assume the
image to be column-wise reshaped as a vector such that B ∈ RN×d, where N := n1n2. We retain
the notation B for both the original and the reshaped image since its meaning becomes clear from
the context.
Let IN := {1, . . . , N} be the set of integers from 1 to N (the total number of the pixel), L ⊂ IN be
the set of labeled points, and U ⊂ IN be the set of unlabeled points. Of course, the label determines
which class the point j belongs to: let Lk ⊂ IN be the set of points belonging to class k so that
L :=

⋃c
k=1 Lk. Here, the number of different classes (segments, phases) is denoted by c. In l ∈ RcN

we collect the characteristic functions of each Lk denoted by

l :=

l
1

...
lc

 , lk = (lk(j))j∈L, where lk(j) =

{
1 if j ∈ Lk,
0 otherwise.

(1)

Further, we use the notation lL := (l(j))j∈L for the indicator function of each Lk only at the labeled
points. To indicate which class an arbitrary point j belongs to, we denote the segment membership
vector by

u :=

u
1

...
uc

 , uk :=
(
uk(j)

)N
j=1

, k = 1, . . . , c,

where each uk(j) indicates the degree of membership of pixel j to class k. We set u(j) := (uk(j))ck=1,
j ∈ IN . We sort the components of u according to the labeled and unlabeled points such that

u =

(
uL
uU

)
.

Using the notation uI = (u(j))j∈I for some index set I, the given labels arise as constraint uL = lL.
Further we define the probability simplex Sc by

Sc := {x ∈ Rc :

c∑
k=1

xk = 1, xk ≥ 0}
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and its n-fold version by Snc := Sc × . . .× Sc︸ ︷︷ ︸
n

. Finally, the indicator function ιC of a nonempty set

C is given by

ιC(x) =

{
0 if x ∈ C,

+∞ otherwise.

For a matrix A with rows and columns indexed by some sets I and J , resp., we use the shorthand
notation AIJ := (ai,j)i∈I,j∈J . Further, In is the n× n identity matrix, 0n,m the n×m matrix with
entries 0, and 1n the vector with n entries 1. By A ⊗ B, we denote the Kronecker product of the
matrices A and B. Further, for x ∈ Rn the inequality x ≥ α ∈ R is meant component-wise, i.e.,
xi ≥ α for all i = 1, . . . , n. We use analogous notation for ≤, <,>.

3. Supervised Multi-Class Segmentation with p-Laplacians

For the transductive multi-class segmentation, we assume that some labeled points are given (L 6=
∅). This information needs to be extended to the unlabeled points U for the segmentation. This
extension/diffusion process is governed by some similarities and differences among the points, which
can be measured in the p-Laplacian model.
First we present the general set-up in Subsection 3.1. In Subsection 3.2, we handle the 2-Laplacian
case. Using properties of M -matrices we show in Theorem 3.1 that the resulting segment mem-
bership vectors satisfy a probability simplex condition. The p-Laplacian model for p ≥ 1 with
probability simplex constraints is considered in Subsection 3.3. In particular, we focus on p = 1.
In this case alternating direction algorithms can be used to find a minimizer of the corresponding
functional. We present the numerical setting for each case, and compare the effects of p-Laplacian
models for p = 1, 3

2 , 2 in Subsection 3.4.

3.1. General Model. To define the p-Laplacian we measure the similarity of the features of two
pixels i, j ∈ IN by appropriately chosen weights wi,j fulfilling

wi,j ≥ 0, wi,j = wj,i, i, j ∈ IN . (2)

We restrict our attention to symmetric weights but the approach can be easily generalized to the
non-symmetric setting. Since N is large in our applications, only the weights in a ‘neighborhood’
Ni of every pixel f(i) will be nonzero, i.e., Ni := {j ∈ IN : wi,j > 0} and |Ni| � N . For p ≥ 1 we
consider the objective function

Qp(u) :=
2

p

c∑
k=1

〈uk,4pu
k〉 =

1

p

c∑
k=1

N∑
i,j=1

wi,j |uk(i)− uk(j)|p, (3)

where 4p denotes the (graph) p-Laplacian 4p : RN → RN defined by

(4px)i :=

N∑
j=1

wi,jφ(x(i)− x(j)), φ(t) := |t|p−1sign(t),

see [2, 10]. Then, the segmentation model becomes

argmin
uU

Qp(

(
lL
uU

)
) subject to uk(j) ∈ {0, 1},

c∑
k=1

uk(j) = 1 ∀j ∈ U.
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Since the solution of this discrete problem appears to be NP-hard, the binary constraint uk(j) ∈
{0, 1} is relaxed to uk(j) ∈ [0, 1], and we obtain our general convex model for multi-class segmen-
tation using p-Laplacians

argmin
uU

Qp(

(
lL
uU

)
) subject to uU ∈ S|U |c . (4)

In general, we assume that the labels are correctly chosen, since the supervision depends on these
chosen labels. The p-Laplacian and RKHS show differences in how much the labeled or unlabeled
points effect the segmentation result. In the next subsections, we consider the model in more detail.

3.2. The 2-Laplacian model. For p = 2, the graph 2-Laplacian was applied in image processing
and learning for a long time. For supervised learning applications and two classes, the graph 2-
Laplacian has been considered, e.g., by [65]. We refer to [58] and the references therein for an
overview of various aspects of spectral clustering up to 2007 and to [47] for the application of 2-
Laplacians in image segmentation. The recent work [35] on multi-class segmentation applies also a
2-Laplacian model although Laplacians are not mentioned there.
Here we use the matrix notation (sorted according to the labeled and unlabeled components),

W := (wi,j)
N
i,j=1; =

(
WLL WLU

WUL WUU

)
and D := diag(di)

N
i=1 with di :=

N∑
j=1

wi,j . (5)

Then the model can be reformulated as

Q2(

(
lL
uU

)
) =

1

2

c∑
k=1

(
lkL
ukU

)T(
DLL −WLL −WLU

−WUL DUU −WUU

)
︸ ︷︷ ︸

=:∆2

(
lkL
ukU

)
. (6)

Note that WLU = WT
UL by the symmetry of our weights. For c = 1, the function (6) can be simply

written as Q2(u) = 1
2u

T(D −W )u.
The following theorem states that under mild conditions on the weights, problem (4) with p = 2
has a unique solution which can be obtained by just minimizing the summands in (6) separately.
In particular, these minimizers will automatically meet the simplex constraint.
To prove the theorem we need the notion of an M -matrix. A matrix A ∈ Rn×n is called an M -matrix
if ai,j ≤ 0 for all i 6= j and if it is inverse isotonic, i.e., A−1 exists and A−1 ≥ 0 component-wise. In
general it is hard to see if a matrix is inverse isotonic. However it is for example well-known that
any strictly diagonally dominant or irreducible diagonally dominant matrix A which fulfills ai,i > 0
for all i = 1, . . . , n and ai,j ≤ 0 for all i 6= j is an M -matrix, see [31, p.113ff] and [50, p. 303].

Theorem 3.1. Assume that the weights in Q2 are chosen such that Ni ∩ L 6= ∅ for all i ∈ U , i.e.,
for every i ∈ U there exists at least one j ∈ L such that wi,j > 0. Then problem (4) with p = 2 has

a unique solution ûU given by the solutions ûkU of the linear systems of equations

(DUU −WUU )ûkU = WULl
k
L, k = 1, . . . , c.

Proof. The function Q2 can be rewritten as

Q2(

(
lL
uU

)
) =

c∑
k=1

(
1

2
(ukU )T(DUU −WUU )ukU − (ukU )TWULl

k
L +

1

2
(lkL)T(DLL −WLL)lkL

)
.

Now ûU is a minimizer of this convex function if and only if ∇uUQ2 = 0. This condition is fulfilled
if and only if

(DUU −WUU )ûkU = WULl
k
L (7)
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for all k = 1, . . . , c. By our assumption on the weights (2) and (5), the matrix DUU − WUU

has positive diagonal entries and non-diagonal entries smaller or equal than zero. Moreover, it is
strictly diagonally dominant such that it is an M -matrix. Thus (DUU −WUU )−1 exists and the
linear systems in (7) have unique solutions ûkU , k = 1, . . . , c. Moreover, since lL ≥ 0, WUL ≥ 0 and

(DUU −WUU )−1 ≥ 0 we conclude that ûU ≥ 0. To show that ûU ∈ S|U |c it remains to prove that

c∑
k=1

ûkU = 1|U |. (8)

Summing up the equations in (7) we obtain

(DUU −WUU )
c∑

k=1

ûkU −WUL

c∑
k=1

lkL = 0

and by the choice of the labeled components in (1) further

(DUU −WUU )
c∑

k=1

ûkU −WUL1|L| = 0.

By (5) we know that (−WUL|DUU −WUU )

(
1|L|
1|U |

)
= 0 so that

(DUU −WUU )

c∑
k=1

ûkU − (DUU −WUU )1|U | +WUL1|L| −WUL1|L| = 0,

(DUU −WUU )

(
c∑

k=1

ûkU − 1|U |

)
= 0.

Since DUU −WUU is invertible, this implies (8). �

We note that this model for c = 2 has been used for machine learning, e.g., by [65]. For multi-class
segmentation it has been considered in [35] without mentioning relations to the 2-Laplacians. The
authors of [35] have chosen sophisticated weights which in particular meet the assumption of this
theorem. Their analysis uses duality considerations with Karush-Kuhn-Tucker conditions to prove
that the solution fulfills the simplex constraints.

Remark 3.2. Graph Laplacians were considered in learning theory and image processing for a long
time. By construction (5), the matrix D−W is symmetric and positive semi-definite with smallest
eigenvalue 0 corresponding to the eigenspace spanned by its eigenvector 1N (if we suppose that the
matrix is irreducible). It is well-known that the eigenvector corresponding to the second smallest
eigenvalue of the 2-Laplacian (normalized 2-Laplacian) corresponds to relaxations of the ratio cut
(normalized cut) [29, 47] of the corresponding graph. This eigenvector has found applications
in two-class segmentation/learning and the other eigenvectors in multi-class segmentation. [16,
26, 42, 47]. A reformulation of normalized cut segmentation that in a unified way can handle
linear equality constraints for an arbitrary number of classes was given in [22]. Motivated by the
generalized isoperimetric inequality of Amghibech [2] which relates the second eigenvalues of the
graph p-Laplacian to the optimal Cheeger cut, further connections between the Cheeger cut and the
second eigenvectors of the graph p-Laplacian were established and applied in machine learning in a
couple of recent papers [10, 30].
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3.3. The p-Laplacian model, p ≥ 1. We consider the model involving general p-Laplacians with
p ≥ 1. We note that a recent preprint [8] considers the 1-Laplacian method, called Mumford-
Shah-Potts model for multi-class learning. For 2-class machine learning, p-Laplacians have been
considered in [37]. A p-Laplacian which differs from those used in this paper was applied for semi-
supervised learning in [61]. Moreover, p-Laplacians were studied in the context of machine learning
in [10, 30, 37, 52]. Here, we discuss an application to multi-class image segmentation.
For a simple formation, we describe problem (4) in matrix-vector form. For simplicity, we assume
that all neighborhoods Ni have the same cardinality ν = |Ni| for all i ∈ IN . Let A ∈ RνN×N denote
the matrix corresponding to the linear mapping

x 7→
((

w
1/p
i,j (x(i)− x(j))

)
j∈Ni

)N
i=1

, (9)

and let AU ∈ RνN,|U | and AL ∈ RνN,|L| denote the matrices containing the columns of A corre-
sponding to the indices in U and L, respectively. Then our minimization problem (4) becomes

argmin
uU

1

p

c∑
k=1

∥∥∥AUukU +ALl
k
L

∥∥∥p
p

subject to uU ∈ S|U |c . (10)

Using the notation MU := Ic⊗AU and y := (ALl
k
L)ck=1 and the indicator function ι

S
|U|
c

of S
|U |
c this

problem can be further rewritten as

argmin
uU

1

p
‖MUuU + y‖pp + ι

S
|U|
c

(uU )

and equivalently as

argmin
uU ,v

1

p
‖v + y‖pp + ι

S
|U|
c

(uU ) s.t. MUuU = v. (11)

To solve this minimization problem, we apply the primal dual hybrid gradient algorithm with
modified (extrapolated) dual variable (PDHGMp) proposed in [13, 43], see also [23, 62]. For other
primal-dual algorithms we refer to [17, 18, 56] and for the application of multi-grid or domain
decomposition methods to [54]. PDHGMp was proved to converge for our setting if the parameters

γ and τ are chosen such that γτ ≤ 1/ ‖MU‖2.

Input: MU = Ic ⊗AU , y = (ALl
k
L)ck=1, and two parameters γ and τ .

Output: Segment membership vector u.

Initialization of u
(1)
U , v(1), b(1) and b(0);

for r = 1, 2, . . . until a stopping criterion is reached do

u
(r+1)
U = argmin

uU

ι
S
|U|
c

+
1

2τ

∥∥∥uU − (u
(r)
U − γτM

T
U (2b(r) − b(r−1)))

∥∥∥2

2

v(r+1) = argmin
v

1

p
‖v + y‖pp +

1

2γ

∥∥∥v − (b(r) +MUu
(r+1)
U )

∥∥∥2

2

b(r+1) = b(r) +MUu
(r+1)
U − v(r+1)

end
.

Algorithm 1: PDHGMp for solving (11)

The first minimization step requires a projection of (u
(r)
U − γτMT

U (2b(r) − b(r−1))) onto the simplex

S
|U |
c which can be done separately for all j ∈ U , cf. [20]. The second minimization step can be
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rewritten by setting z = v + y as

ẑ = argmin
z

1

p
‖z‖pp +

1

2γ

∥∥∥z − (y + b(r) +MUu
(r+1)
U )

∥∥∥2

2
.

In the case p = 1 the minimizer ẑ can be computed by the component-wise soft shrinkage of

a := y + b(r) +MUu
(r+1)
U with threshold γ, cf. [59]. For p > 1, the minimizer can be computed for

every component separately by

ẑi = argmin
x∈R

1

p
|x|p +

1

2γ
(x− ai)2 which gives sign(x)|x|p−1 +

1

γ
(x− ai) = 0.

This can be solved by a semi-implicit (Weiszfeld-like) method. For p = 3
2 , the solution is given

analytically by

ẑi =


ai + γ

2 −
√

(ai + γ
2 )− a2

i if ai > 0,

0 if ai = 0,

ai − γ
2 +

√
(ai − γ

2 )− a2
i if ai < 0.

Remark 3.3. Model (4) can be rewritten as

argmin
u∈RcN

Qp(u) subject to uL = lL, and u ∈ SNc .

One can also study

argmin
u∈RcN

1

2

∑
j∈L
‖l(j)− Ic ⊗ Ju‖22 + λQp(u) subject to u ∈ SNc ,

where J :=
(
I|L||0|L|,|U |

)
. The minimizer of this convex functional can be found similarly as above.

For p = 2 the minimizer is for example given by the solutions of the linear systems of equations

(JTJ + λL)ûk = JTlkL, k = 1, . . . , c.

Assuming that L is irreducible, we see that JTJ +λL is again an M -matrix and following the lines
of Theorem 3.1 we can conclude that the solution û automatically fulfills the simplex constraints.

3.4. Effects of the different p-Laplacian models via numerical examples. We are interested
in the influence of different values p in multi-class segmentation. Typically, we observe that when
a smaller value of p is used, the results are more regular and have smoother boundaries. Figure
1 illustrates this effect, when the same parameters within the weights are used. Image (A) is the
given image B, image (E) illustrates the true segmentation superposed with the 9 labeled points.
The first row is the segment membership matrix u which is a n1 × n2 × 3-dimensional matrix in
this case (c = 3). The color red (vector (1, 0, 0)T) represents class 1, the color green class 2, and
the color blue class 3. The second row shows the discretization, i.e., the final segmentation which
is achieved by taking argmaxk u

k pixel-wise. Comparing different p-Laplacian models, we see that
the 1-Laplacian approach gives smoother boundaries, appears to generate more regular results, and
the segment-membership-matrix u is closest to hard clustering.
There are parameters involved in the weights wi,j . In the following, we carefully describe the
details of how the weights are chosen. The main idea is to capture the geometric and photometric
properties around the pixels for a good comparison. We consider geometric weights based on pixel
locations and photometric weights based on color features similar to [35]. The geometric similarity
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p = 1 p = 3
2 p = 2

(A) Input νpho = 100

(E) Truth

νpho = 0

Figure 1. Effect of different p and νpho : (A) Input image. (E) The ground truth
superposed with the 9 labeled points. For every νpho, the first row (color) shows the
segment membership matrix u and the second row shows the resulting segmentation
which is achieved by taking argmaxuk pixel-wise. The other parameters are νlab =
1
2 , r = 5, ρ2 = s = 363. Notice that the 1-Laplacian approach provides smoother
boundaries, appears to generate more regular results, and the segment membership
matrix u is closest to hard clustering. Decreasing νpho decreases the influence of the
photometric neighborhood and increases the influence of the geometric neighborhood
in (13).

between two pixels i, j ∈ IN is defined by

wgeo
i,j :=


e−‖i−j‖

2
2∑

j∈N geo
i

e−‖i−j‖
2
2

if j ∈ N geo
i ,

0 otherwise,

where the N geo
i := {j ∈ IN : ‖i− j‖∞ ≤ 1} denotes the geometric neighborhood. The photometric

neighborhood N pho
i of the pixel i is defined to be the 4 most similar pixels j in a 17× 17 window

around pixel i with respect to the Euclidean norm of the feature vectors F (i) and F (j). The feature
vector F (i) ∈ Rs is given by a (2r+ 1)× (2r+ 1) window around pixel i where s = d(2r+ 1)2. The
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p = 1 p = 3
2 p = 2

νlab = 100

νlab = 0.5

νlab = 0.005

Figure 2. Effect of νlab: the parameters νpho = 1, r = 5, ρ2 = s = 363 are fixed.
For every νlab, the first row (color) shows the segment membership matrix u and the
second row shows the resulting segmentation which is achieved by taking argmaxk u

k

pixel-wise. The resulting segment membership matrices for p = 1 are closest to hard
clustering. With decreasing νlab, the influence of the labeled pixels decreases, and we
obtain smoother results due to a stronger impact of weights between not necessarily
labeled but similar pixels. For p = 1 in difference to p = 2 sharp edges are preserved.
So in case νlab = 0.005 we end up with a constant image with only the sharp edges
to the labeled pixels left.
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weights are given by

wpho
i,j :=

κie−
‖F (i)−F (j)‖22

ρi if j ∈ N pho
i ,

0 otherwise,

where we normalize as in the geometric case with κi := 1/
∑

j∈Npho
i

e
− ‖F (i)−F (j)‖22

ρi . For the parameter

ρi we use either a constant ρ independent of i or we use the Euclidean norm of the component-wise

sample variance of the color features F (j), j ∈ N pho
i . The variance is defined by

ρi :=

∥∥∥∥∥∥
( 1

|N pho
i | − 1

∑
j∈Ni

(Fm(j)− Fm)
)s
m=1

∥∥∥∥∥∥
2

(12)

where the mean is given by Fm :=
∑

j∈Npho
i

Fm(j)/|N pho
i |.

We define the labeled neighborhood N lab
i to be the 4 labeled pixels with smallest Euclidean distance

to pixel i. The weights are defined analogously to the photometric weights. If there are too many
pixels labeled, we choose a random sample of equal size for each segment. The neighborhood of

a pixel i is given by Ni := N geo
i ∪ N pho

i ∪ N lab
i . In summary, the weight matrix is computed as

follows: the geometric and photometric weights are added

W ∗ =
1

1 + νpho
W geo +

νpho

1 + νpho
W pho. (13)

Then, they are compared with the labeled weights via the element-wise maximum

Ẁ = max

{
νlab

1 + νlab
W lab,

1

1 + νlab
W ∗
}
. (14)

Finally, we use the symmetric weight matrix

W = max
{
Ẁ , Ẁ T

}
.

Figure 1 shows the effect of changing p as well as νpho. Decreasing νpho decreases the influence
of the photometric neighborhood and increases the influence of the geometric neighborhood (13),
resulting in smoother results.
A more severe effect can be shown by changing νlab in (14). We use the input image shown in
Figure 1 (A) and (E). In Figure 2, we fix νpho and vary νlab. This comparison illustrates that
decreasing νlab decreases the influence of the labeled pixels, which is clear from the definition of the
weights (14). With decreasing νlab we obtain smoother results due to stronger impact of weights
between not necessarily labeled but similar pixels.
Comparing among the same parameters, the resulting segment membership matrices u for p = 1 are
closest to hard clustering and have smoother boundaries. By choosing different weight parameters,
p-Laplacians with p > 1 can give similar results to p = 1: In Figure 2 the segmentation result
νlab = 0.5 with p = 1 is similar to the segmentation result νlab = 0.005 with p = 2. However,
comparing the segment membership matrices u (shown in color) the one for p = 1 is sharper.

4. Supervised Multi-class Segmentation with RKHS

Let H be a RKHS with kernel K and norm ‖ · ‖H, cf. [3]. In [28] RKHS regularizers were used for
image colorization. In the following we will adopt the idea for multi-class segmentation.
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4.1. RKHS segmentation model. Instead of the segment membership vector u in the previous
section, we consider a segment membership function g = (gk)ck=1 : R2 → Rc belonging to Hc. Given
a a label vector l as defined in (1), we find the segment membership function ĝ : R2 → Rc as the
solution of

argmin
gk∈H

∑
i∈L

∥∥∥lk(i)− gk(xi)∥∥∥2

2
+ λ

∥∥∥gk∥∥∥2

H
, k = 1, . . . , c, (15)

where λ > 0. This is also known as quadratic support vector machine (SVM) [51] in learning
theory. Alternatively, we can consider the minimizers of

argmin
gk∈H

∥∥∥gk∥∥∥
H

subject to gk(xi) = lk(i), ∀i ∈ L, k = 1, . . . , c. (16)

Then by representer theorem [34], the minimizers of (15) and (16) have the following form:

ĝk =
∑
j∈L

K(·, xj)αk(j), k = 1, . . . , c. (17)

Thus, by (15), we can find the vector

α :=
(
α1, . . . , αc

)T
, αk = (αk(j))j∈L

by solving

argmin
αk

∥∥∥lkL −KLLα
k
∥∥∥2

2
+ λ(αk)TKLLα

k, k = 1, . . . , c, (18)

where KLL :=
(
K(xi, xj)

)
i,j∈L. The minimizers α̂k of (18) are given by the solution of the linear

system of equations

(KLL + λI) α̂k = lkL. (19)

Note that the coefficient matrix is positive definite so that the solution is unique. Similarly, a
minimizer of (16) follows by the solution of (19) with λ = 0, if KLL is positive definite. Clearly, the
segment membership function ĝ can be evaluated at any x ∈ R2 by (17). In particular, we obtain
the values of our segment membership function ĝ at the labeled and unlabeled points xi = i ∈ L∪U
by

ĝk =

(
KLL

KUL

)
α̂k, k = 1, . . . , c, (20)

where KUL := (K(i, j))i∈U,j∈L .

4.2. Effects of the RKHS model via numerical examples. For the elements of K, we use in
our experiments

K(i, j) := exp

(
−
‖F (i)− F (j)‖2

σ2
1d

)
exp

−
∥∥∥∥(ix − jxiy − jy

)∥∥∥∥
2

σ2
2

√
n2

1 + n2
2


where 1/∞ = 0 and (ix, iy)

T denotes the pixel position of an image in matrix form, i.e., i =
n1(iy − 1) + ix. Here F is the same feature vector as in Subsection 3.4.
Since their number of columns |L| is small, both the solution of the linear system and the matrix-
vector multiplications become simple computations. This gives the efficiency of this RKHS ap-
proach. Also, different from the p-Laplacian approach, the result depends only on the labeled
points. We observe this from the following numerical experiments.
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(A) (B) (C)

Figure 3. Effect of λ in the RKHS model (18): Figure 1 (A) and (E) are the input
images. The top row (color) shows the segment membership function ĝ and the
second row the resulting segmentation achieved by taking argmaxk u

k component-
wise. (A) λ = 0, (B) λ = 0.1 and (C) λ = 0.4. The kernel parameters are r =
5, σ2

1 = 1, σ2
2 =∞.

(A) Input (B) RKHS (C) 1-Lap. (D) 2-Lap.

Figure 4. (A) Input image from [27], only 6 pixels per class are labeled. (B) Result
of RKHS with σ2

1 = 1, σ2
2 = 250, r = 3, λ = 0. (C) Result of 1-Laplacian (10)

with νpho = 1, νlab = 0.15, ρ2 = 49, r = 3. (D) Result of 2-Laplacian (6) with
νpho = 1, νlab = 0.001, ρ2 = 49, r = 3.

Figure 3 shows an experiment of using different regularization parameters λ in the minimization
problem (18). For larger λ the contrast of the segment membership function ĝ decreases while the
segmentation result stays quite similar. Hence, we will use λ > 0 only if a bad conditioning of the
linear system forces us to.
Since the RKHS approach only uses the information from the labeled points L, the regularity of
the result can be worse compared to p-Laplacian models, as shown in Figure 4. The p-Laplacian
models utilize the information from the unlabeled similar points, which gives more regularization
(also compare Figure 3 with Figure 1 and 2).
However, the RKHS approach can provide more accurate results as illustrated in Figure 5 and 6.
Figure 5 shows the results for a natural image taken from [27]. The results of the RKHS (18) and the
p-Laplacian model (10) for p = 1 are depicted in Figure 5B and 5C, respectively. Although Figure
5A has many details and the ground and zebras are hard to distinguish, the RKHS approach recovers
the location of many different zebras correctly. Other values for the parameters ρ, νlab, νpho, r did
not improve the result of the 1-Laplacian model significantly. Also with the 2-Laplacian model (6)
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(A) Input (B) RKHS (C) 1-Lap.

Figure 5. (A) Labeled input image. (B) Segmentation result of RKHS with σ2
1 =

1, σ2
2 =∞, r = 3, λ = 0. (C) Result of model (10) with p = 1 and νpho = 1, νlab =

1, ρ2 = 49, r = 3.

(A) Input (B) RKHS (C) Using 1-Lap. (D) Using 2-Lap.

Figure 6. (A) Labeled input image. (B) Segmentation result of RKHS with σ2
1 =

1, σ2
2 = 50, r = 5. (C) Result of the 1-Laplacian model with νpho = 1, νlab =

0.05, ρ2 = 121, r = 5. (D) Result of the 2-Laplacian model with νpho = 10, νlab =
0.001, ρ2 = 121, r = 5.

one does not obtain better results. In fact, for the parameters of Figure 5C the segmentations for
p = 1 and p = 2 are quite similar.
Figure 6 shows an example of a landscape. Notice that sky, grass, and the small tree are better
captured by the RKHS model. In both Figures 5 and 6 the RKHS model provides a more accurate
segmentation. One difference between the RKHS and the Laplacian models is that, for the Laplacian
models, computationally we can only cope with few labeled pixels. Each pixel has only 4 labeled
pixels in his neighborhood, see Section 3.4 for more details. For a number of labeled pixels a little
larger than 4, e.g., 16, we did not observe significant improvements.

5. A combined p-Laplacian and RKHS approach

As noticed from previous sections, the RKHS uses only the information from the labeled points L,
while the p-Laplacian model also incorporates the similarity information between unlabeled points.
Therefore the p-Laplacian approach can have a stronger regularization effect. On the other hand,
the RKHS approach leads often to more accurate/detailed segmentation results. We consider a
combined model to benefit from both approaches. We will provide a projection approach which
makes a combined model practicable for segmentation tasks.
First, we review a straightforward combined approach proposed in [5, 48] for two-class learning
which couples the least squares RKHS with 2-Laplacians. In those papers the least squares RKHS
was addressed as RLP (regularized least squares). Since only two labels were considered one can
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restrict the attention to just one segmentation function f : R2 → R and set a threshold on f to get
the two classes. The optimal function f̂ was obtained as the minimizer of the following functional

argmin
f∈H

∑
j∈L

1

2
‖l(j)− f(xj)‖22 +

λ

2
‖f‖2H +

µ

2

N∑
i,j=1

wi,j |f(xi)− f(xj)|2. (21)

Following the idea of the representer theorem it is not hard to check that the minimizer f̂ depends
on all values xj , j ∈ IN , i.e.,

f̂ =
N∑
j=1

K(·, xj)β(j). (22)

Substituting this expression into (21) and using the definition of the RKHS norm we conclude that

the optimal β̂ must be a solution of

argmin
β

1

2
‖lL − JKβ‖22 +

λ

2
βTKβ +

µ

2
βTK42Kβ,

where K := (K(xi, xj))
N
i,j=1 =

(
KLL KLU

KLU KUU

)
and J is defined as in Remark 3.3. Considering the

gradient with respect to β and using that K is invertible, we obtain β̂ by solving a linear system
of equations

(JTJK + λIN + µ∆2K)β̂ = JTlL.

This means that one has to incorporate the whole fully populated matrix K, in particular KUU into
the computations. In segmentation tasks the number of unlabeled points is huge (nearly N = n1n2

for images of size n1 × n2) and the above model is not practicable both with respect to storage
and computation time. However, this model is still applicable to learning tasks with fewer data
points. This has been investigated in the very recent preprint [7] that has appeared during the
review process of this paper.

5.1. A projection model. To avoid the computation with the huge matrix KUU , we propose a
combined model which uses a projection idea. In contrast to the generalization ability (22), this
model is again transductive with respect to the image grid points xi = i, i ∈ IN = L ∪ U . Let
KLL := Ic⊗KLL and KUL := Ic⊗ (K(i, j))i∈U,j∈L. We consider the subspace H of RcN defined by

H :=
{(KLL

KUL

)
︸ ︷︷ ︸

K

α : α ∈ Rc|L|
}

with square norm

‖h‖2H := αTKLLα for h := Kα.

We are looking for vectors ĥ ∈ H and û ∈ RcN solving the combined model

argmin
h∈H,u∈RNc

1

2

∑
i∈L
‖l(i)− h(i)‖22 +

λ

2
‖h‖2H +

µ

p

c∑
k=1

∑
i,j∈IN

wi,j |uk(i)− uk(j)|p,

subject to h = Pu.

(23)

Here P : RcN → H denotes the orthogonal projector from RcN onto H. More precisely, we expect
that ĥ has similar properties as (ĝ(xi))i∈IN from the RKHS approach and that û, which is the
vector we are really looking for, adopts smoothing effects from the Laplacian regularization.
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By definition of H this orthogonal projector is given by P = KK†, where K† := (KTK)−1KT is
the Moore-Penrose inverse of K. Note that KTK is positive definite and thus invertible. Then,
for h := Kα, the constraint can be written as Kα = KK†u. Since K has full column rank this is
equivalent to

α = K†u.

Substituting this into (23) we obtain

argmin
u∈RNc

1

2

∥∥∥lL −KLLK†u
∥∥∥2

2
+
λ

2
uT(K†)TKLLK†u+

µ

p

c∑
k=1

∑
i,j∈IN

wi,j |uk(i)− uk(j)|p. (24)

For p = 2, the solution û of (24) can be obtained by considering the gradient, i.e., û is given by the
solution of the linear system of equations(

(K†)TKLL(KLL + λIc|l|)K
† + µ∆2

)
u = K†KLLlL. (25)

We use the conjugate gradient method (CG) to solve (25). Note that the huge matrix KUU does not
appear in the above linear system, we are able to implement this matrix multiplication efficiently.
For p = 1, we can be rewrite (24) with M := Ic ⊗A and A defined in (9) as

min
u∈RNc

1

2

∥∥∥lL −KLLK†u
∥∥∥2

2
+
λ

2
uT(K†)TKLLK†u+ µ ‖v‖1

subject to Mu = v.
(26)

To solve this problem we apply the alternating direction method of multipliers (ADMM), see, e.g.,
[6, 21, 23, 45].

Input: M(= Ic ⊗A in (9)) and γ.
Output: segment membership vector u.

Initialization of u(0) ∈ RNc and b(0), v(0) ∈ RN2c;
for r = 0, 1, . . . until a stopping criterion is reached do

u(r+1) = argmin
u

1

2

∥∥∥lL −KLLK†u
∥∥∥2

2
+
λ

2
uT(K†)TKLLK†u+

1

2γ

∥∥∥b(r) +Mu− v(r)
∥∥∥2

2
; (27)

v(r+1) = argmin
v

µ ‖v‖1 +
1

2γ

∥∥∥b(r) +Mu(r+1) − v
∥∥∥2

2
; (28)

b(r+1) = b(r) +Mu(r+1) − v;

end
Algorithm 2: ADMM for solving (26).

The minimizer of (28) follows by soft-shrinkage of b(r) +Mg with threshold γµ. The minimizer of
(27) can be obtained by considering the derivative: we solve a system similar to (25) namely(

(K†)TKLL

(
KLL + λIc|L|

)
K† +

1

γ
MTM

)
u = (K†)TKLLlL +

1

γ
MT(v(r) − b(r)).

Alternatively, one could use the PDHGMp. The only difference to the ADMM is that the first step
reads

u(r+1) = argmin
u

1

2

∥∥∥lL −KLLK†u
∥∥∥2

2
+
λ

2
uT(K†)TKLLK†u+

1

2τ

∥∥∥∥∥∥u−
u(r) − τγMT(2b(r) − b(r−1))︸ ︷︷ ︸

z

∥∥∥∥∥∥
2

2
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where τ > 0 and τγ ≤ 1/ ‖M‖2.

Remark 5.1. The various models we considered up to now can be summarized as follows (not
considering the simplex condition). The general p-Laplacian model (4) can be understood as

min
uU

Qp(u) subject to uL = lL

where Qp is defined in (3), which can be approximated by a non-constraint problem

min
u
λQp(u) +

1

2
‖lL − uL‖2, λ > 0.

As illustrated in Theorem 3.1 for p = 2, the solution of p-Laplacian is effected by both labeled
and unlabeled points. This is witnessed in the numerical comparison with the RKHS approach.
Different weight on the graph gives different effect, and smaller p values, such as p = 1, give more
smoother boundaries and more regular result, while the segment membership matrix u is closest to
hard clustering.
In the RKHS model in (15) and (16), the regularization appears from the reproducing kernel Hilbert
space norm, i.e.,

min
g∈H
‖g‖2H subject to (g(xi))i∈L = lL,

and

min
u
λ ‖g‖2H +

1

2
‖lL − (g(xi))i∈L‖2, λ > 0,

respectively. This can be solved by (18) simply using (19). From (20) it is clear, RKHS is fully
determined from the labeled points, and the regularization is defined only by the labeled points.
By using few labeled points, the computation becomes very fast, and numerical results show it can
handle complicated image segmentation accurately.
The combined model (23) has the form

min
u,h

µQp(u) + λ ‖h‖2H +
1

2
‖lL − h‖2 subject to Pu = h.

Here u represents the segment membership vector regularized by the p-Laplacian, and h is the
segment-membership vector regularized by the RKHS norm with the labeled point constraint. The
two vectors u and h are connected by an orthogonal projection P : RcN → H, which has an explicit
form given by the kernel K. Therefore, in the combined model (23), we can consider the result û

and its projection ĥ = Pû. This combined model further regularizes the RKHS result and give a
good result, having benefits from both approaches.

5.2. Numerical experiments for the combined projection model. Figure 7 shows the results
using the combined model (23) compared to the RKHS results. The projection ĥ = Pû computed
for both p = 1 and p = 2 is quite similar to the result of the RKHS approach (not only the depicted
segmentation, but also the segment membership function itself). On the other hand, û provides for
both p = 1 and p = 2 significantly smoother segmentations than ĝ. Figure 8 depicts the result of
the combined model (discretization of u) for p = 2. The segmentation for p = 1 looks quite similar.
Note that, besides the smoothing, a larger part of the leg is identified as part of the elephant. The
combined model can improve the results, where the RKHS method is not smooth enough but more
accurate than the Laplacian model, see Figure 17. The computation time for the combined model is
a drawback of the current algorithm. However, there is a lot of potential to speed up computation,
e.g., by a parallel implementation on a GPU.
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(A) û, (p = 1) (B) Pû (p = 1) (C) û (p = 2)

(D) Pû (p = 2) (E) ĝ
from
RKHS

Figure 7. The combined model (23) using νpho = 1, νlab = 0.2, σ2
1 = 0.5, σ2

2 =

∞, r = 4, λ = 0, µ = 0.001. (A) û with p = 1. (B) ĥ = Pû with p = 1. (C)

û with p = 2. (D) ĥ = Pû with p = 2. (E) RKHS as defined in (20). By adding
the Laplacian regularization, the segmentation result û has smoother boundaries
compared to ĝ from the RKHS model. As expected Pû is similar to the result ĝ
from the RKHS method.

(A) Input (B) RKHS (C) Comb. p =
2, µ = 0.001

Figure 8. The combined model compared to the RKHS approach for a natural
image with νpho = 0, νlab = 0.5, σ2

1 = 1, σ2
2 = 250, r = 2, λ = 0.

6. Application to Medical Images

Medical images are often very challenging for segmentation since they suffer from low contrast and
heavy noise with many fine details. The models discussed in this paper are good candidates for
segmenting such images, since it can handle fine details while regularizing the result. In contrast
to our previous numerical experiments, we apply the segmentation models to a collection of similar
images, where only a single input image has got some labeled points in advance.
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(A) (B)

Figure 9. Input and ground truth.
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Figure 10. Comparison of retina images. The percentage of correctly segmented
pixels is averaged over all 5 results for each row. The parameter ρi was computed
by (12). σ2

1 = 1
2 , σ

2
2 =∞, νpho = 0.001, νlab = 0.01, r = 1.

Figures 9 and 10 show a collection of retina images, cf. [35, 24]. The labels for the segmentation
were only taken from Figure 9 (A). More precisely, they are randomly sampled from the ground
truth in Figure 9 (A). This example illustrates that in cases where the objective of the segmentation
(the ground truth of images) has a relative simple structure with smooth boundaries the 1-Laplacian
model is most appropriate. As illustrated earlier, the 1-Laplacian model gives the most regularized
results and it works well for these applications.
Next images show cardiac MR heart images taken from [64]. The objective is to find the endocardial
wall of both right and left ventricles (gray region) which is separated by epicardium walls (darker
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Figure 11. Input for the segmentation in Fig. 12 and 13.

Figure 12. Solutions of the RKHS method with parameters σ2
1 = 1, σ2

2 = 5, r = 3
for six images. The left top image is the one from Fig. 11. The segmentation result
is shown in the two images next to the given image.

gray), while discarding the complicated background. This is a 3-phase segmentation: background,
surrounding region and inner region. Only the first image, Figure 11 is labeled, and all the images
in Figure 12 are segmented using the same labels from the first image.
The images are taken from a stack of the same heart. Hence, the segments can expected to be
approximately in the same part of the image. Hence, it useful to work with the spatial param-
eter σ2

2 < ∞. For this example, although the objective is to find relatively smooth objects, the
RKHS method gives good results. Figure 13 shows the comparison with the 1-Laplacian model
(2-Laplacian behaves similar), which fails in this case: The labeled points are taken from the image
in Figure 13A and this image itself is well segmented. However, a similar image in Figure 13C fails
to be well segmented with the same labels. This maybe due to the fact that the unlabeled points
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(A) (B) (C) (D)

Figure 13. Solutions of 1-Laplacian. ρ2 = s = 49, νpho = 1 νlab = 0.1 r = 3.

U bring a lot of similarity details from the background into play which erroneously influences the
resulting segmentation, as it was also the case in Figure 5.
For the various models considered in this paper Table 1 shows time comparisons. The algorithms

time for weights comp. time for actual method
RKHS 24.7s 0.36s

1-Laplacian 32.3s 6.7s
2-Laplacian 28.7s 0.6s

Combined, p = 1 49s 196.5s
Combined, p = 2 45.5s 33.6s

Table 1. Time comparison for single image segmentation using Figure 11 as input.

were implemented in MATLAB and executed on an Intel Core i7 CPU with 2.93GHz. Our ap-
proaches require the computation of the weight (or kernel) before the algorithms can run. We show
time comparisons for both the weight computation and the algorithms. The first column states
the approximate amount of time needed to create the weight or kernel matrices corresponding to
the methods. The second column shows the approximate amount of time the actual minimization
process. For the 1-Laplacian and the combined model (23) with p = 1, we have used the stopping

criterion
∥∥(u(r) − u(r−1))

∥∥
2
/
∥∥u(r−1)

∥∥
2
< 0.001. This table clearly shows that the RKHS approach

is the most efficient one with respect to the computation time.
Figure 14 shows the input and the ground truth images for the test in Figure 17. For the labels
L, we have used random elements from the ground truth in Figure 14 (A). In Figure 17, the top
row shows the collection of images similar to Figure 14 (B), but the labels are only taken from
Figure 14 (A). Although all the images in the collection stem from retina data the results show
various differences: notice that in the fourth column the image orientation is opposite from the
other images. The second row shows the ground truths. The original images and the ground truth
were taken from [35], see also [49]. The third row depicts the result of the RKHS method: although
it may look noisy, it keeps a lot of fine details. The fourth and fifth rows show the results of the
combined method which are smoother than RKHS results while keeping the details. The last two
rows show the results of the p-Laplacian method for p = 1, 2. These segmentation results are the
smoothest ones. Although very clean, we are missing many small details. This visual effects are
underpined by the relative frequency of true and false positive pixels with respect to vessel pixels,
i.e., a pixel on the vessel classified as vessel pixel is true positive while a pixel classified as vessel
pixel not lying on the vessel is false positive. Higher true positive values indicate the existence of
fine details while higher false positive values come with more noise in the image. Figure 15 shows
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(A) (B)

Figure 14. Input and ground truth.

(A) truth (B) RKHS (C) Comb. p = 1 (D) 2-Lap

Figure 15. These images are zoom-in of the second column results in Figure 17.
It is only showing (B) RKHS, where the result keeps the most details. (C) The
combined model with p = 1, which is more regularized compared to RKHS and
the combined model with p = 2. (D) 2-Laplacian model which lost fine details.
1-Laplacian even looses more details in this case.

(A) RKHS (B) median filter (C) truth

Figure 16. Result of RKHS and its post-processing with median filter of size 1.

the zoom-in of some of the images in the second column of Figure 17. Since the RKHS method
keeps many of the fine details, one can also post-process these images for further denoising. To
show the effect, we simply experimented with a median filter in Figure 16.

21



In
p
u
t

G
ro

u
n
d

tr
u
th

True
positives

False
positives

R
K
H
S 0.7242 0.1776

C
o
m
b
in
e
d
,
p
=

1

0.6889 0.1532

C
o
m
b
in
e
d
,
p
=

2

0.7261 0.1793

1
-L

a
p
la
c
ia
n

0.5194 0.0874

2
-L

a
p
la
c
ia
n

0.5588 0.1107

Figure 17. Comparison of retina images. The true and false positive values are
determined with respect to the correct classification of vessel pixels and averaged
over all five images in each row. In the combined model we used µ = 0.0001 for
p = 1 and µ = 0.01 for p = 2. The parameter ρi was computed by (12). σ2

1 =
1
2 , σ

2
2 =∞, νpho = 1 , νlab = 0.8, λ = 0, r = 1.
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7. Concluding remarks

In this paper various methods for multi-class segmentation were developed and studied. The work
was inspired by the colorization method based on RKHSs in [28] and has applied the method to
multi-class image segmentation. We have explored other approaches as 2-Laplacians which were
also considered in [35] without using the Laplacian notation. We have extended this method to
p-Laplacian models with p ≥ 1.
We have observed that p-Laplacians utilize similarity information between the unlabeled points
which can result in a more regular segmentation. Roughly speaking, the 1-Laplacian model gave
the smoothest results compared to larger values of p > 1. However, there are flexibilities in choosing
various weights wi,j and this results in different smoothing effect. The RKHS approach is the most
efficient method, only utilizing small amount of labeled pixels. For some complicated images as
in Figure 5 and 12, the RKHS method excelled the Laplacian methods. However, since RKHS
only utilizes the information from the labeled points, often the result can be noisy and less regular.
If there are correlations between the labels, it may be beneficial to use vector-valued RKHSs, cf.
[11, 39, 44]. This will be addressed in our future work. Further, we proposed a combined method
that benefits from advantages of both approaches. Our methods were applied to various collections
of medical images.

Acknowledgment. We want to thank the authors of [35] for providing us the input and ground truth
images in the Figures 17 and 10.
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