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Manuel Gräf1, Daniel Potts1, and Gabriele Steidl2

1 Faculty of Mathematics, Chemnitz University of Technology, Germany
{m.graef,potts}@mathematik.tu-chemnitz.de
http://www.tu-chemnitz.de/~{grman,potts}/

2 Department of Mathematics, University of Kaiserslautern, Germany
steidl@mathematik.uni-kaiserslautern.de

http://www.mathematik.uni-kl.de/~steidl/

Abstract. The stippling technique places black dots such that their
density gives the impression of tone. This is the first paper that relates
the distribution of stippling dots to the classical mathematical question
of finding ’optimal’ nodes for quadrature rules. More precisely, we con-
sider quadrature error functionals on reproducing kernel Hilbert spaces
(RKHSs) with respect to the quadrature nodes and suggest to use opti-
mal distributions of these nodes as stippling dot positions. Interestingly,
in special cases, our quadrature errors coincide with discrepancy func-
tionals and with recently proposed attraction-repulsion functionals. Our
framework enables us to consider point distributions not only in R2 but
also on the torus T2 and the sphere S2. For a large number of dots the
computation of their distribution is a serious challenge and requires fast
algorithms. To this end, we work in RKHSs of bandlimited functions,
where the quadrature error can be replaced by a least squares functional.
We apply a nonlinear conjugate gradient (CG) method on manifolds to
compute a minimizer of this functional and show that each step can be
efficiently realized by nonequispaced fast Fourier transforms. We present
numerical stippling results on S2.

1 Introduction

The traditionally artistic stippling technique places black dots to approximate
different tones. For an illustration see Fig. 1. Stippling is closely related to
dithering, where the dots have to lie on the image grid, see, e.g. [17] and the
references therein. A popular stippling method proposed in [18] is based on
weighted centroidal Voronoi tessellations and Lloyd’s iterative algorithm [13, 5].
A capacity-constrained variant of Lloyd’s algorithm was introduced in [3]. Re-
cently, a novel stippling approach was proposed in [21]: Consider a gray-value
image u : G → [0, 1] on a grid G := 1

n (Z/nZ)× 1
m (Z/mZ). Since ’black’ is 0 and

’white’ 1, we use the weight w := 1 − u. Now one intends to find the positions
pi ∈ [0, 1]2, i = 1, . . . ,M , of M black dots by minimizing the attraction-repulsion
functional

E(p) :=

M∑
i=1

∑
x∈G

w(x)‖pi − x‖2 −
λ

2

M∑
i,j=1

‖pi − pj‖2, p :=
(
pi
)M
i=1
∈ R2M . (1)



Here λ := 1
M

∑
x∈G w(x) is an equilibration parameter between the first sum

which describes attracting forces caused by the image gray values and the second
one which enforces repulsion between dots. The original idea for considering

Fig. 1. Left: Original image. Right: Stippling result on T2 with M = 20000 dots.

minimizers of this functional as ’good’ dot positions comes from electrostatic
principles used in [17]. This paper is related to the continuous version of the above
attraction-repulsion functional with more general functions ϕ : [0,∞)→ R:

Eϕ(p) :=
λ

2

M∑
i,j=1

ϕ(‖pi − pj‖2)−
M∑
i=1

∫
[0,1]2

w(x)ϕ(‖pi − x‖2) dx. (2)

where w : [0, 1]2 → [0, 1] and λ := 1
M

∫
[0,1]2

w(x) dx. The function ϕ(r) = −r
was used in (1) and ϕ(r) = − log(r) in [17] . In [21] the authors mentioned
ϕ(r) = −rτ , 0 < τ < 2 and ϕ(r) = r−τ , τ > 0 for r 6= 0.

Contribution. In this paper we relate stippling processes with the classical math-
ematical question of finding best nodes for quadrature rules. We provide theo-
retical results on the connection between seemingly different concepts, namely
quadrature rules, attraction-repulsion functionals, L2–discrepancies and least
squares functionals. For the later approach we provide numerical minimization
algorithms.

In the theoretical part, we start with worst case quadrature errors on RKHSs
in dependence on the quadrature nodes. While in the literature, this was mainly
done for constant weights w ≡ 1, see [10, 15], we incorporate a weight function
related to the image into the quadrature functional. The corresponding quadra-
ture error errK(p) which depends on the reproducing kernel K can be defined
for RKHSs on X ∈ {R2, [0, 1]2} as well as for RKHSs on compact manifolds



like X ∈ {T2,S2}. We aim to minimize this quadrature error in order to obtain
optimal quadrature nodes p. It turns out that for special kernels K (on special
spaces X ) this quadrature error (or at least its minimizers) covers the following
approaches:

1. Attraction-Repulsion Functionals
An interesting case of RKHSs appears for radial kernels K(x, y) = ϕ(‖x −
y‖2) depending only on the distance of the points. We will show that in this
case the quadrature error errK(p) can be considered as a generalization of
(2) which works not only on [0, 1]2 but also to compact manifolds. Hence
our approach goes far beyond the setting in [21] or [17]. To get the special
functional (1) from our general quadrature error we must stress conditionally
positive definite, radial kernels of order 1.

2. L2–Discrepancies
We prove that for X ∈ {[0, 1]2,T2,S2} and discrepancy kernels K, the
quadrature errors on RKHSs defined by these kernels coincide with L2–
discrepancy functionals. For various applications of L2–discrepancy functio-
nals, see [15] and the references therein. Interestingly, this is also related
to ’capacity constraints’ in stippling techniques, see [2, 3]. Note that a rela-
tion between the distance kernels K(x, y) = ‖x− y‖2 on T2 and S2 and the
corresponding discrepancy kernels was shown numerically in [9].

3. Least Squares Functionals
Finally, we consider RKHSs of bandlimited functions with bandlimited ker-
nels on X ∈ {T2,S2}. The reason for addressing these spaces is that we want
to approximate functions on X by bandlimited functions in order to apply
fast Fourier techniques. We prove that for these RKHSs the quadrature error
can be rewritten as a least squares functional.

In the numerical part we approximate functions and kernels on X ∈ {T2,S2}
by their bandlimited versions and minimize the corresponding quadrature error
which takes in this case the form of a least squares functional. Due to the page
limitation we restrict our attention to the sphere S2. We are not aware of any
results on S2–stippling in the literature. Note that a stippling example on the
torus T2 was given in Fig. 1. We propose a nonlinear CG method on manifolds
to compute a minimizer of the least squares functional on S2. This method was
also successfully used for the approximation of spherical designs, i.e., for w ∼ 1
in [8] and is generalized in this paper. In particular, each CG step can be re-
alized in an efficient way by the nonequispaced fast spherical Fourier transform
(NFSFT). This reduces the asymptotic complexity of the proposed algorithm
drastically, e.g., from O(MN2) to O(N2 log2N +M log2(1/ε)) arithmetic oper-
ations per iteration step, where ε is the described accuracy and N corresponds to
the bandwidth. In other words, only by the help of the NFSFT the computation
becomes possible in a reasonable time.

Organization of the paper. In Sect. 2 we introduce our quadrature framework
in RKHSs and show the relation to the attraction-repulsion functional. Sect. 3
relates this approach to discrepancy functionals. Sect. 4 deals with band-limited



functions on S1,T2 and S2. We show that in this case the quadrature error can
be written as a least squares functional. Moreover, we address the topic that
bandlimited functions can be evaluated at a point set in a fast way by using the
nonequispaced fast (spherical) Fourier transform. The same holds true for the
evaluation of the functional itself. In Sect. 5, we propose a minimizing procedure
on S2 by the CG method, where each iteration step can be efficiently computed
by the NFSFT. Finally, Sect. 6 shows stippling results on S2 and Sect. 7 concludes
the paper. Due to the page limitation proofs of certain theorems of this paper
are given in the preprint [9].

2 Quadrature Errors in RKHSs

Let X ∈ {R2, [0, 1]2,T2,S2}. For notational reasons, we restrict our attention
to two dimensions although the results are also true for arbitrary dimensions.
A symmetric function K : X × X → R is said to be positive semi-definite
if for any M ∈ N points x1, . . . , xM ∈ X and any a = (a1, . . . , aM )T 6= 0 the

relation aT (K(xi, xj))
M
i,j=1 a ≥ 0 holds true and positive definite if we have strict

inequality. A (real) reproducing kernel Hilbert space (RKHS) is a Hilbert space
having a reproducing kernel, i.e., a function K : X × X → R which fulfills

Kx := K(·, x) ∈ HK and f(x) = 〈f,K(·, x)〉HK , ∀x ∈ X ,∀f ∈ HK .

To every RKHS there corresponds a unique positive semi-definite kernel and
conversely given a positive semi-definite function K there exists a unique RKHS
of real-valued functions having K as its reproducing kernel. By ‖·‖HK we denote
the norm of HK . For more information on RKHSs we refer to [1].

In the following, let w : X → R≥0 be a nontrivial, continuous function which
fulfills hw(x) :=

∫
X w(y)K(x, y) dy ∈ HK . We are interested in approximating

Iw(f) :=

∫
X
f(x)w(x) dx for f ∈ HK

by a quadrature rule

Q(f,p) := λ

M∑
i=1

f(pi), λ :=
1

M

∫
X
w(x) dx

for appropriately chosen points pj ∈ X . In the literature mainly the case w ≡ 1
was considered, see [10, 15] and the references therein. In this paper, we have
incorporated an image related weight w into the functional. The worst case
quadrature error is given by

errK(p) := sup
f∈HK
‖f‖HK≤1

|Iw(f)−Q(f,p)| = ‖Iw −Q(·,p)‖H∗K . (3)

In the following we will see that this quadrature error covers various known
functionals if we choose the kernel in an appropriate way. To start with, the
following theorem shows a relation between the quadrature error functional and
the attraction-repulsion functional (2). For a proof we refer to [9].



Theorem 1. (Quadrature Error and Attraction-Repulsion Functional)
Let K be a positive semi-definite function and HK the associated RKHS. Then
the relation

errK(p)2 = 2λEK(p) + ‖hw‖2HK

holds true, where

EK(p) :=
λ

2

M∑
i,j=1

K(pi, pj)−
M∑
i=1

∫
X
w(x)K(pi, x) dx. (4)

In particular, the minimizers of errK and EK coincide.

We see that for radial kernels K(x, y) := ϕ(‖x − y‖2) with some function ϕ :
[0,∞)→ R, the functional (4) has the form of an attraction-repulsion functional,
where the first sum steers the repulsion of the dots and the second one the
attraction. However, we have to ensure that the kernel is positive semi-definite.
Positive definite, radial kernels on R2 are for example the inverse multiquadrics
K(x, y) := (ε2 + ‖x− y‖22)−τ , ε > 0, τ > 1 related to ϕ(r) := r−τ in (2). These
kernels and other positive semi-definite kernels do not lead to the functional (1).

Nevertheless, in the rest of this section, we will see how the attraction-
repulsion functional in (1) fits into our quadrature setting. Of course choosing
X := R2 and the radial kernel K(x, y) := −‖x − y‖2 yields exactly (1). Un-
fortunately, this kernel is not positive semi-definite. However, it is conditionally
positive definite of order 1. Recall that a radial function Φ(x) := ϕ(‖x‖2) is con-
ditionally positive definite of order 1 if for any M ∈ N points x1, . . . , xM ∈ R2

the relation

aT (Φ(xi − xj))Mi,j=1 a > 0 ∀a = (a1, . . . , aM )T 6≡ 0 with

M∑
i=1

ai = 0.

holds true. Although these kernels are in general not positive semi-definite, the
following slight modification of such kernels given by

K̃Φ(x, y) := Φ(x− y)− Φ(y)− Φ(x) + Φ(0) + 1 (5)

defines again a positive semi-definite kernel K̃Φ(x, y) which gives rise to a RKHS
HK̃Φ

. The spaces HK̃Φ
can be characterized as in [23]. Now it is not hard to show

that the modification K̃ of a kernel K(x, y) = Φ(x− y) by (5) does not change
the minimizer of the functional, i.e., then the minimizers of EK and EK̃ coincide.
In particular, we have for K(x, y) := −‖x− y‖2 that EK and EK̃ have the same
minimizers, so that we can work with the original kernel K.

Finally, we mention with respect to various choices of ϕ in (2) that other
examples of conditionally positive definite, radial functions of order 1 are Φ(x) :=
−‖x‖τ2 , 0 < τ < 2 and the multiquadrics Φ(x) := −(ε2 + ‖x‖22)τ , 0 < τ < 1.



3 Discrepancies

The quadrature errors considered in the previous section are closely related to
discrepancies which adds another interesting point of view. In the following we
consider X ∈ {[0, 1]2,S1,T2,S2} as metric spaces with measure µX and metric
dX . Let D := X × [0, R] and let B(c, r) := {x ∈ X : dX (c, x) ≤ r} be the ball
centered at c ∈ X with radius 0 ≤ r ≤ R. By 1B(c,r) we denote the characteristic
function of B(c, r). Then the kernel defined by

KB(x, y) :=

∫ R

0

∫
X

1B(c,r)(x)1B(c,r)(y) dµX (c) dr =

∫ R

0

µX (B(x, r) ∩ B(y, r)) dr

(6)
is positive semi-definite. Consider for example the sphere S2 := {x ∈ R3 :
‖x‖2 = 1} with the parameterization in spherical coordinates x = x(θ, ϕ) :=
(sin θ cosϕ, sin θ sinϕ, cos θ)T, (ϕ, θ) ∈ [0, 2π) × [0, π]. The geodesic distance on
S2 reads dS2(x, y) = arccos(x · y) and the surface measure is given by µS2(x) =
sin θdθdϕ. The balls are spherical caps and the area of the intersection of two
caps B(c, r), 0 ≤ r < π with center distance d is

a(r, d) =



0, 0 ≤ r ≤ d/2,
4
[
arccos

(
sin d

2
/ sin r

)
− cos r arccos

(
tan d

2
cot r

)]
, d

2
< r < π

2
,

4r − 2d, r = π
2
,

4
[
arccos

(
sin d

2
/ sin r

)
− cos r arccos

(
tan d

2
cot r

)]
, π

2
< r < π − d

2
,

−4π cos r, π − d
2
≤ r < π.

The corresponding discrepancy kernel is KB(d) =
∫ π
0
a(r, d) dr. For examples of

discrepancy kernels on [0, 1]d,S1 and T2 and their relations to distance kernels
Φ(x, y) = −‖x− y‖2, we refer to [15, 9].

Integration on the RKHSs HKB is related to the notation of discrepancy. Set
t := (c, r) ∈ D and dt := dµX (c) dr. We define the L2-discrepancy as

discB2 (p) :=

∫
D

(∫
X
w(x)1B(t)(x) dx− λ

M∑
i=1

1B(t)(pi)

)2

dt

 1
2

. (7)

The expression in the inner brackets relates the integral of w on B(c, r) with the
number of points contained in B(c, r) for fixed (c, r) ∈ D. The discrepancy is
then the squared error of their differences taken over all t ∈ D. This point of
view is closely related to capacity-constrained methods used in [2, 3]. The relation
between the discrepancy and the quadrature error is given by the next theorem.

Theorem 2. (Quadrature Error and L2-Discrepancy)
Let KB be defined by (6) and let HKB be the associated RKHS of functions on
X . Then errKB given by (3) and discB2 determined by (7) coincide

errKB(p) = discB2 (p).



4 Least Squares Functionals for Bandlimited Functions

Let X ∈ {T2,S2} and let {ψl : l ∈ N} be an orthonormal basis of L2(X ). Then
any real-valued function w ∈ L2(X ) can be written in the form

w(x) =

∞∑
l=1

ŵlψl(x), ŵl = 〈f, ψl〉L2
=

∫
X
w(x)ψl(x) dx.

In order to develop fast algorithms for the efficient computation of minimizers
p̂ of functionals EK we will work in spaces of bandlimited functions ΠN (X ) :=
span{ψl : l = 1, . . . , dN} of dimension dN := dimΠN (X ). More precisely, we
will use the spaces ΠN (S1) := span{ e−2πin(·) : n = −N/2, . . . , N/2}, ΠN (T2) :=
span{ e−2πin(·) : n = (n1, n2), nj = −N/2, . . . , N/2, j = 1, 2} with even N and
ΠN (S2) := span{Y kn : n = 0, . . . , N ; k = −n, . . . , n}. Here Y kn denote the spher-
ical harmonics of degree n and order k, see [14]. We will apply bandlimited
kernels of the form

KN (x, y) :=

dN∑
l=1

λlψl(x)ψl(y) (8)

with λl > 0. These kernels are reproducing kernels for the RKHSs HKN :=

ΠN (X ) with the inner product 〈f, g〉HKN =
∑dN
l=1 f̂lĝl/λl. For the efficient com-

putation of minimizers of EKN it is useful to rewrite the functional in weighted
least squares form.

Theorem 3. (Quadrature Error and Least Squares Functional)
Let the kernel KN be given by (8). Then the relation errKN (p)2 = EN (p) holds
true, where

EN (p) :=

dN∑
l=1

λl

∣∣∣∣∣λ
M∑
i=1

ψl(pi)− ŵl

∣∣∣∣∣
2

= ‖Λ
1
2F (p)‖22

with Λ := diag(λl)
dN
l=1 and F (p) = (Fl(p))

dN
l=1, Fl(p) := λ

M∑
i=1

ψl(pi) − ŵl. In

particular, the functionals EKN and EN have the same minimizers.

Note that for X = S2 and w ≡ 1 there is a close relation between the minimizers
EN (p) and spherical designs, see [19, 8, 9].

The evaluation of bandlimited functions

f(pi) =

dN∑
l=1

f̂lψl(pi), i = 1, . . . ,M

on X ∈ {S1,T2,S2} can be written in matrix-vector form as f = AN f̂ , where

f := (f(pi))
M
i=1, f̂ :=

(
f̂l

)dN
l=1

appropriately ordered and

AN :=


FN =

(
e−2πinpi

)
i=1,...,M ;n=−N/2,...,N/2 for S1,

F 2,N =
(

e−2πi(n1,n2)
T·pi

)
i=1,...,M ;ni=−N/2,...,N/2,i=1,2

for T2,

Y N = (Y nk (pi))i=1,...,M ;n=0,...,N, |k|≤n for S2.



The main reason for working in spaces of bandlimited function is the existence
of fast algorithms for the matrix-vector multiplication with AN and A

T

N .

Theorem 4. (Fast Evaluation of Bandlimited Functions)
The nonequispaced fast Fourier transform (NFFT) and the nonequispaced fast
spherical Fourier transform (NFSFT) realize the multiplication of a vector with

the matrix AN , resp. A
T

N , with the following number of arithmetic operations:
O(N logN + M log(1/ε)) for S1, O(N2 logN + M log2(1/ε)) for T2 and
O(N2 log2N +M log2(1/ε)) for S2, where ε is the prescribed accuracy.

For the NFFT we refer to [6, 4, 16, 12] and for the NFSFT to [11, 12]. It can
be shown that using these algorithms the same complexity is required for the
evaluation of EN (p).

5 Efficient Minimization Algorithm on S2

In this section, we describe the computation of a local minimizers of EN in an
efficient way for given ŵl, l = 1, . . . , dN . We restrict our attention to the case
X = S2, where we will only work with kernels of the form

KN (x, y) :=

N∑
n=0

n∑
k=−n

λnY
k
n (x)Y kn (y). (9)

such that

EN (p) =

N∑
n=0

n∑
k=−n

λn|λ
m∑
i=1

Y kn (pi)− ŵkn|2.

Using the considerations of the previous section similar algorithms can be de-
duced for X ∈ {S1,T2}.

Due to the good experiences in connection with spherical designs in [8] we
apply the nonlinear CG method on the manifold M := (S2)M , cf. [20].

Algorithm: (CG algorithm on Riemannian manifolds)

Initialization: p(0), h(0) := ∇EN (p(0)), d(0) = −h(0)

For r = 0, 1, . . . repeat until a convergence criterion is reached

1. αr := −〈d(r),h(r)〉/〈d(r),HEN (p(r))d(r)〉
2. p(r+1) := expp(r)

(
αrd

(r)
)

3. h(r+1) := ∇EN (p(r+1))

4. Compute βr by βr := 〈h(r+1),HEN (p(r+1))d̃
(r)〉

〈d̃(r)
,HEN (p(r+1))d̃

(r)〉
, d̃

(r)
:= P g(αr)(d

(r)).

5. d(r+1) := −h(r+1) + βrd̃
(r)

Here expp : TpM → M denotes the exponential map from the tangent space

TpM to the manifold and P g(αr)(d
(r)) the parallel transport of d(r) ∈ Tp(r)M

along the geodesics g. For the manifold notation including the concept of parallel
transport we refer to [22].



Each CG step requires the evaluation of the gradient of EN and the multi-
plication of the Hessian of EN with a vector. By the following corollary both
computations can be done in an efficient way.

Theorem 5. (Fast Evaluation of ∇EN and Multiplication with HEN)
For a given point p ∈ (S2)M and given ŵkn, the gradient ∇EN (p) can be evaluated
with the arithmetic complexity O(N2 log2N + M log2(1/ε)). The multiplication
of a vector with the Hessian HEN (p) can be computed with the same complexity.

For the proof we refer to the accompanying paper [9].

6 Numerical results on S2

In this section, we present some stippling results on S2. The proposed algo-
rithms were implemented in Matlab R2010a, where the mex-interface to the
NFFT library [12] was used. The internal library parameters were set as follows:
cutoff parameter m = 9, threshold parameter κ = 1000, flags PRE PSI and
PRE PHI HUT. From the sampling points x := (xi)

L
i=1 ∈ (S2)L of the function

w we obtain approximate Fourier coefficients

ŵkn :=

L∑
i=1

ωiw(xi)Y kn (xi), l = 1, . . . , dN , (10)

where the quadrature weights ωi are chosen such that
∫
S2 f(x)dx =

∑L
i=1 ωif(xi)

for all f ∈ ΠN (S2). Note that the above sums can be evaluated in an efficient way
by the NFSFT. As kernel we use the bandlimited version of the distance kernel
Φ(x− y) = −‖x− y‖2 = −2 sin(dS2(x, y)/2), x, y ∈ S2, where the coefficients in
(9) are explicitly given by

λn =
16π

(2n+ 3)(2n+ 1)(2n− 1)
, n ∈ N0.

We apply the CG algorithm for randomly distributed initial points p(0).
The first example uses the topography map of the earth from Matlab. This

map consists of the earth’s elevation data. Since the values ranging from −7473
to 5731 we have scaled them to [0, 1], in order to avoid negative values. The data

is sampled on the grid x := (x (πi/180, πj/180))
180,360
i=1,j=1. For this grid we have

computed nonnegative quadrature weights ωi,j for a polynomial degree N = 179
by the simple CG algorithm proposed in [7]. After applying the quadrature rule

(10) we obtain a polynomial approximation w =
∑179
n=0

∑n
k=−n ŵ

k
nY

k
n of the

earth’s topography, see the left-hand side of Figure 2. For M = 200000 and a
kernel of bandwidth N = 1000, our algorithm obtained after r = 3600 iterations
the right image in Figure 2, where one iteration takes about 1.5 minutes.

We remark that a naive evaluation of the attraction-repulsion functional (1)
requires at least O(M2) arithmetic operations. If we approximate the kernel
Φ(x− y) = −‖x− y‖2 by bandlimited kernels KN of the form (9) with N2 ∼M ,



then every step in the proposed nonlinear CG method needs O(M log2M +
M log2(1/ε)) arithmetic operations. For a crude illustration of the performance
gain in our implementation to a naive one we run our algorithm with the slow
NDFST and fast NFSFT. Under the above assumption one iteration step with
the NDFST needs also O(M2) operations. In our examples, the algorithm takes
per iteration about 1.5 minutes versus 3 hours with the NDFST. This reveals
the importance of fast algorithms for huge numbers of points.

Fig. 2. Left: Original image. Right: Stippling result with M = 200000 points.

In the second example we map a section of the left bitmap of Figure 1 on
the sphere by the same grid as in the first example. The stippling result after
r = 500 iterations is presented in Figure 3, where we used M = 100000 points
and a bandwidth N = 1000.

7 Conclusions

In this paper, we had a look at the stippling problem from different points of view.
Our framework arises primarily from approximation theory but touches many
different areas in mathematics as well. The proposed setting is quite general and
enables us to consider in some sense ’optimal’ point distributions not only in
R2 but also on the torus T2 and the sphere S2. Note that even in the seemingly
easiest case w ≡ 1 the search for optimal point configurations in more than one
dimension is a very tough problem which originated many publications. In this
case for translationally invariant kernels on T2,S2 the attraction term in (4) is
constant and can be omitted.

We have clarified the relation of our quadrature error functionals to recently
applied attraction-repulsion functionals and to L2-discrepancy functionals. For



Fig. 3. Left: Original image. Right: Stippling result with M = 100000 points.

bandlimited functions on S1,T2 and S2 we suggested to rewrite the quadrature
error functional in a least squares form. This is summarized in the figure below.
Then the nonlinear CG algorithm can be applied in conjunction with efficient
NF(S)FTs for stippling on S2.

Quadrature Errors in RKHSs for positive semidefinite kernels K

↓ ↓ ↓

Attraction-Repulsion
for K(x, y) := ϕ(‖x− y‖2)

↔ L2–Discrepancies
for discrepancy K

↔ Least Squares
for bandlimited K
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22. C. Udrişte. Convex functions and optimization methods on Riemannian manifolds,
volume 297 of Mathematics and its Applications. Kluwer Academic Publishers
Group, Dordrecht, 1994.

23. H. Wendland. Scattered Data Approximation. Cambridge University Press, Cam-
bridge, 2005.


