Universität Bonn, Wintersemester 2010/11 Boris Springborn Klaus Dankwart

26.10.2010

Aufgabenblatt 2 zur Vorlesung Geometrie 1

Aufgabe 1 (Beispiele von Untermannigfaltigkeiten). Sei $O(n) \subset \mathbb{R}^{n^2}$ die Menge der orthogonalen $n \times n$ Matrizen, d.h. $A \in O(n) \Leftrightarrow A^{\tau}A = id$.

Zeigen Sie, dass O(n) eine Untermannigfaltigkeit des \mathbb{R}^{n^2} ist. Bestimmen Sie die Dimension und den Tangentialraum von O(n).

Tipp: Sie können Aussagen aus Aufgabenblatt 1 verwenden.

5 Punkte

Aufgabe 2. (transversale Schnitte)

Seien M_i m_i -dimensionale Untermannigfaltigkeiten des \mathbb{R}^n , i = 1, 2.

Sei T_pM_i der Tangentialraum an p und $N_pM_i:=(T_pM_i)^{\perp}$ der Normalraum an p.

 M_1 und M_2 schneiden sich transversal in $p \in M_1 \cap M_2$ wenn die Normalräume sich nur in der 0 schneiden, $N_pM_1 \cap N_pM_2 = \{0\}$. M_1 und M_2 schneiden sich transversal wenn der Schnitt nicht leer und jeder Schnittpunkt transversal ist.

1. Zeigen Sie, dass M_1 und M_2 sich in $p \in M_1 \cap M_2$ genau dann transversal schneiden, wenn

$$T_n M_1 + T_n M_2 = \mathbb{R}^n$$

2. Nehmen Sie an, dass $M_1 \cap M_2$ sich transversal schneiden.

Zeigen Sie, dass der Schnitt $N:=M_1\cap M_2$ eine Untermannigfaltigkeit ist. Bestimmen Sie die Dimension von N.

Tipp: Benutzen Sie, dass jede Untermannigfaltigkeit lokal als Niveaumenge geschrieben werden kann.

5 Punkte

 ${\bf Aufgabe~3.}~({\bf Beispiele~von~Untermannigfaltigkeiten~II})$

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := y^2 - 2x^2(1-x^2)$$

Wir haben ein hinreichendes Kriterium für welche Werte $c \in \mathbb{R}$ die Niveaumenge $f^{-1}(\{c\})$ eine 1-dimensionale Untermannigfaltigkeit ist. Bestimmen Sie diese Werte.

Skizzieren Sie die Niveaulinien $f^{-1}(\{c\})$.

5 Punkte

Viel Spass!

Abgabe ist am 2.11. in der Vorlesung.

Die Aufgabenblätter erhält man auch auf der Homepage:

http://www.math.uni-bonn.de/people/klaus