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Mesoscopic models of finite-size neuronal populations are crucial to understand the dynamics of neural
networks in the brain, especially their fluctuations and response to stimuli. However, current theories to derive
such models are based on the assumption of homogeneous all-to-all (full) connectivity, neglecting the variance
in the connectivity of biologically realistic networks with connection probabilities p < 1 (nonfull connectivity).
To gain insight into the different fluctuation mechanisms underlying the neural variability of populations of
spiking neurons, we derive and analyze a stochastic mean-field model for finite-size networks of Poisson neurons
with random connectivity (including nonfull connectivity), external noise, and disordered mean inputs. We
treat the quenched disorder of the connectivity by an annealed approximation enabling a doubly stochastic
description of synaptic inputs for finite network size. A further reduction leads to a low-dimensional closed
system of coupled Langevin equations for the mean and variance of the neuronal membrane potentials as well as
a variable capturing finite-size fluctuations arising specifically in the case of connectivity disorder. Comparing
to microscopic simulations, we find that the mesoscopic model describes the fluctuations and nonlinearities
well and outperforms previous mesoscopic models that neglected the variance in the connectivity. The joint
effect of connectivity disorder and finite network size can be analytically understood by a softening of the
effective nonlinearity and the multiplicative character of spiking noise. The mesoscopic theory shows that
quenched disorder can stabilize the asynchronous state, and it correctly predicts large quantitative and nontrivial
qualitative effects of connection probability on the variance of the population firing rate and its dependence
on stimulus strength. Our theory thus elucidates how disordered connectivity shapes nonlinear dynamics and
fluctuations of neural populations at the mesoscopic scale and showcases a useful mean-field method to treat

random connectivity in finite-size, spiking neural networks.

DOI: 10.1103/shvm-x4x6

I. INTRODUCTION

Biological systems often exhibit significant fluctuations
and variability in their dynamics in contexts ranging from
gene expression to neural activity in the brain. The possi-
ble roles of fluctuations for the dynamics and functions of
such systems have thus received increasing attention [1-7].
An important tool to understand the collective dynamics of
biological systems consisting of many interacting units are
low-dimensional descriptions of the effective dynamics at the
mesoscopic or macroscopic scale. Taking fluctuations prop-
erly into account can be necessary to establish a correct
understanding of the system and can provide crucial insight
into the origins of observed biological variability. At the
mesoscopic scale, fluctuations naturally arise from the finite
number of underlying units. These “finite-size” fluctuations
may then be accounted for by stochastic low-dimensional
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models. In the context of living systems, examples range
from Langevin equations for gene regulation [8] to coupled
molecular motors [9—11] to ecology [12].

In neuroscience, neural-population models (also known
as firing-rate or neural-mass models), such as the Wilson-
Cowan model [13], have been highly successful in describing
various cortical phenomena such as oscillations [14], multista-
bility [15], and nonlinear response properties [16]. Stochastic
versions of neural-population models have been critical for
understanding fluctuating neural population dynamics such
as metastability [15,17,18], stochastic oscillations [19], and
response properties of cortical variability [20,21]. Despite
their mathematical tractability, however, these models are of-
ten phenomenological, lacking a clear link to an underlying
finite-size network of spiking neurons.

A link to biophysical properties is maintained through
bottom-up mean-field approaches [22-28], where the macro-
scopic or mesoscopic dynamics is analytically derived from
a microscopic model. The resulting mean-field dynamics are
amenable to mathematical analysis [29—33] and enable effi-
cient and accurate simulations of large spiking neural
networks [34-37]. Recently, a bottom-up theory for the meso-
scopic dynamics of finite-size populations of generalized
integrate-and-fire neurons with escape noise has been devel-
oped [33,36]. It suggests an efficient multiscale modeling
framework of cortical circuits [36,38,39] grounded in realistic
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neuron dynamics [40,41]. However, this and other mean-
field theories [33,36,42-46] for finite-size neural networks
typically assume homogeneous, all-to-all (full) connectivity.
This assumption can be regarded as an approximation of
a nonfully connected random network by its homogeneous
mean connectivity while neglecting its quenched variability
[36,47]. On the other hand, the role of random connectivity
for intrinsically generated fluctuations of synaptic inputs has
been extensively studied using dynamical mean-field theo-
ries [29,30,48-53], albeit only in the limit of infinitely large
networks. Both assumptions—homogeneous full connectiv-
ity ignoring quenched variability and infinite network size
ignoring fluctuations—are severe limitations for describing
biologically realistic, recurrent neural networks. For example,
rat barrel cortex contains only on the order of N ~ 100 to
N ~ 1000 neurons per cell type per layer [54]—a population
size for which finite-size fluctuations can be significant, as
shown in computational models [36,55-59]. Furthermore, the
local connection probabilities p in mouse visual cortex vary
onawiderange (0 < p < 0.7) with low average (p ~ 0.1) and
larger connection probabilities (p ~ 0.5) for similarly tuned
neurons [60]. How such pronounced deviations from fully
connected networks (p = 1) affect the mesoscopic dynamics
of finite-size neural populations is still poorly understood.

Both finite population size (N < 0o) and quenched ran-
dom connectivity (e.g., p < 1) cause intrinsically generated
(endogenous) fluctuations of the recurrent, synaptic input cur-
rents. These intrinsic fluctuations act as multiplicative noise
whose strength increases with population firing rates. On
the other hand, neural variability in the cortex often de-
creases upon stimulation [61]—a phenomenon that could be
explained, among others, with a model where variability is
generated by an external, additive noise [21]. To clarify the
role of intrinsic fluctuations for such cortical phenomena
under biologically realistic neuron numbers and connection
probabilities requires a mean-field theory that accounts for
these different origins of fluctuations.

In a homogeneous, fully connected network, as arising
under a mean-connectivity approximation, the input fluctua-
tions are common to all neurons. This is because all neurons
receive identical recurrent inputs and thus experience the
same finite-size fluctuations of the population activity. These
“coherent” fluctuations lead to stochastic population equa-
tions with finite-size noise of order 1/+/N. In contrast, in
random networks with connection probability p < 1, neurons
no longer receive identical synaptic inputs, and hence input
fluctuations become partially decorrelated. Consequently, the
assumption of perfectly coherent fluctuations no longer holds,
raising questions about the validity of the mean-connectivity
approximation for finite-size networks.

A mean-field description of random networks (including
nonfully connected networks, p < 1) requires the treatment of
fluctuations resulting from a “quenched” (i.e., temporally con-
stant) random synaptic connectivity. Previous approaches to
random networks considered the macroscopic limit N — oo.
Depending on the concrete limiting procedure and network ar-
chitecture, the recurrent fluctuations seen by different neurons
either vanish [22,28,31,32] or become perfectly independent
(“incoherent”) in this limit [29,30,48,50-53] unless corre-
lations are induced externally. A famous example is the

mean-field theory for sparsely connected networks by Brunel
and coworkers [29,30]. In this theory, the neural population
dynamics is deterministic and given by a nonlinear Fokker-
Planck equation. The effect of incoherent fluctuations of the
recurrent synaptic input caused by the random connectivity
appears as an additional contribution to the diffusion coef-
ficient in this equation. Although this approach relies on an
annealing approximation that neglects temporal correlations
in the spike trains caused by the quenched disorder, the nonlin-
ear Fokker-Planck equation has been successful to capture the
influence of intrinsic fluctuations on the nonlinear population
dynamics (for a treatment of temporal correlations, see, e.g.,
Ref. [62]). Using this theory, intrinsic fluctuations have been
shown to crucially shape nonlinear response properties [63],
network oscillations [29,64], and multistability [56].

Even though dynamical mean-field theories for N — oo
have been used for real neural networks of finite size (see,
e.g., Ref. [65]), they cannot describe finite-size fluctuations
at the population level. Furthermore, finite-size networks are
necessarily outside the sparse limit (i.e., p > 0) which entails
a nonvanishing probability of shared recurrent inputs among
neurons. Therefore the assumption of perfectly incoherent
noise in dynamical mean-field theories cannot hold fully true
for N < co. While finite-size extensions of the mean-field
theory for sparsely connected networks have been proposed in
Refs. [29,30,66], low-dimensional neural population models
that reveal and take into account the distinct effects of coher-
ent and incoherent fluctuations are currently lacking.

In this paper, we consider finite-size networks with ran-
dom connectivity, allowing arbitrary connection probabilities
p € [0, 1]. For these networks, we derive and analyze a simple
mesoscopic dynamics that describes incoherent and coherent
recurrent fluctuations. To this end, we study a network of Pois-
son neurons using an annealed approximation [29,67] of the
quenched random connectivity. The annealed approximation
neglects temporal correlations of incoherent fluctuations but
captures the effects of random connectivity and finite network
size surprisingly well. In contrast to the case N — oo of pre-
vious theories [29,30], we need to treat the fluctuating input
as a doubly stochastic process to account for both finite-NV
and random connectivity. This description eventually yields
a three-dimensional Langevin equation for the mesoscopic
dynamics. We compare this dynamics with a naive mean-field
theory in which the variance of the random connectivity is
neglected, corresponding to the ad hoc mean-field approx-
imation used in previous studies [36,47]. While the focus
of the paper is the Langevin dynamics for a homogeneous
population with quenched or annealed random connectivity
and common external noise, the theoretical framework can
be extended to heterogeneous populations, where the resting
potentials or external currents of the neurons exhibit quenched
Gaussian disorder. In summary, we present a simple theoreti-
cal framework for the effects of various sources of noise and
quenched disorder on the neural population dynamics at the
mesoscopic scale (1 <K N < 00).

The paper is organized as follows. We introduce the mi-
croscopic network model with quenched random connectivity
and its annealed approximation in Sec. II. By reducing the
annealed network to a mean-connectivity network with inco-
herent dynamical noise, we derive in Sec. III a mesoscopic

013007-2



HOW RANDOM CONNECTIVITY SHAPES THE ...

PRX LIFE 4, 013007 (2026)

population model as a system of three coupled stochas-
tic differential equations. In Sec. IV, we then analyze the
mesoscopic model with respect to fixed-point solutions and
their stability, the linear response to dynamic stimuli and
second-order statistics. In particular, we compare the ob-
tained analytical results to the corresponding statistics of the
quenched and annealed microscopic models using extensive
simulations. We conclude and discuss our results in Sec. V.
The extension to quenched Gaussian disorder as well as
longer, detailed calculations are provided in the Appendix.

II. MICROSCOPIC MODELS
A. Quenched network model

At the microscopic level, we consider a random network of
N interacting Poisson neurons (also called nonlinear Hawkes
processes). While our theory will be developed for general
random connectivity with finite variance, we focus on the
specific example of binary, nonfull connectivity to study the
effect of connection probabilities p < 1. The Poisson neurons
fire spikes stochastically with conditional intensity A;(t) =
¢(hi(t7)),i=1,...,N, where h;(¢) is the input potential of
neuron i and ¢ is a non-negative hazard function. The dynam-
ics of the input potentials is given by a system of coupled
first-order equations with delay,

N
d/’l,‘ w .
Ty —hi"‘ll(f)‘f'E}EZIQiij(f—d)a (1)
i=1,...,N.Here t is the time constant of the low-pass filter

dynamics, () is an external drive, and Zi(t) = > 8 —tip)
is the spike train of neuron i with {z; ;} being the individual
spike times. The presence or absence of synaptic connec-
tions between neurons are described by the random adjacency
matrix [a;;] with fixed in-degree C = ZNZI a;;j and elements
a;j € {0, 1} that are marginally Bernoulli distributed with
mean (a;;) = p = C/N representing the connection probabil-
ity. This random connectivity can be constructed by choosing
for each neuron C presynaptic neurons randomly, and the
resulting connectivity is fixed (“quenched”) in time. Further-
more, d is the synaptic delay and w = C/J is the total coupling
strength with J being the efficacy of a single synapse (i.e.,
J/t is the jump size in millivolt of the postsynaptic potential
caused by a single presynaptic spike). Since we focus on
inhibitory networks in this paper, we assume that J < 0.

As a concrete hazard function, we choose here a sigmoidal
function in the form of an error function [22]:

¢(h) = rn®(B(h — V), @

where ®(x) = [1 4 erf(x/ V2)] /2. Although not essential for
the general theory, this choice will allow us to analytically cal-
culate the first and second moments of ¢(#;). The parameter 8
determines the steepness around the inflection point. Without
loss of generality, we choose the position of the inflection
point ¥ to be zero because we can always measure voltages
with respect to the potential ©#. The sigmoidal shape with
an upper limit r,, prevents the Poisson neurons to fire with
arbitrarily high rates. While the concave behavior and satura-
tion of the sigmoidal hazard function for # > 0 is technically
useful, we are in the following mainly interested in dynamical

regimes operating in the convex part of the hazard function
¢(h), i.e., corresponding to mean inputs below the inflection
point, & < 0. This is because biologically realistic hazard
functions of cortical neurons are typically convex [68,69].
As default parameters of the model, we choose T = 20 ms,
7, = 100 Hz and d = 0 ms unless otherwise noted.

The aim of this paper is to derive a mesoscopic population
model that generates population activities that statistically
match the population activities obtained from a micro-
scopic network simulation. We define the population activity
Ap(t, Ar) with respect to a time discretization with time step
At as the total number of spikes per neuron and time step:

AZ(1)
NAt

Here AZ(t) denotes the total number of spikes in the time
interval (¢, t + At].

AN([; Al) =

3

B. Mean-connectivity network

A major obstacle in deriving population models analyti-
cally is the quenched randomness of the connectivity J;; :=
Ja;j. A standard mean-field approach to tackle this problem
is to neglect fluctuations in the recurrent synaptic input by
scaling the synaptic weights inversely proportional to the net-
work size, J;; = w;;/N, where the coupling strength w;; is
assumed to be of order 1. Then, in the limit N — oo, the
synaptic input N~' Y ;Wi jZ ; converges to the deterministic
input (w; j)(Zj) [27,28], where (-) denotes the average over
both quenched disorder and Poisson noise. In our case, this
corresponds to a network where the quenched connectivity
w;; [Fig. 1(a), left] is replaced by the mean connectivity
(w;j) = NJ{a;;)= CJ =w [Fig. 1(b), left]. Importantly, the
mean connectivity effectively yields a fully connected net-
work with homogeneous coupling w. In the limit N — oo,
the synaptic input is thus not affected by the variance

o2 =w?(1-p)/p )

of the disordered couplings w;; but only by the mean (w;;).

The replacement of all elements of the adjacency matrix a;;
with their mean p has been used ad hoc also for finite network
size N < oo [36,47]. However, this ad hoc approach is no
longer exact for finite N but must be regarded as an approxi-
mation that retains the mean synaptic connectivity (J;;)= pJ
but ignores all higher-order cumulants of the random variables
Jij. In the following, we will refer to this effective, fully
connected network as the mean-connectivity network, whereas
the original model, Eq. (1), will be referred to as the quenched
network (Table I). Replacing the connection strengths w;; with
their means w, we obtain from Eq. (1) the dynamics of the
mean-connectivity network:

w N
vdhit) = [=hi + pldt + j;dzj(t —d), (5

where dZ;(t) ~ Pois(¢(h;(t))dt) are the conditionally inde-
pendent Poisson increments of the spike count of neuron ;.
The mean-connectivity network of Poisson neurons, Eq. (5), is
a microscopic model that admits an exact reduction to a meso-
scopic model for the total spike count dZ(¢) = vazl dz;(t).
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FIG. 1. Response of the population rate variance to a change of
the mean stimulus strength in the original, quenched random net-
work (a) and in a corresponding fully connected, mean-connectivity
network that only accounts for the mean synaptic weight (b). Top:
Noisy external stimulus () whose mean increases at t = 0.08 s
in a steplike fashion from @y =28 mV to py = 50 mV; the noise
strength 02, = 1 mV? is kept fixed. (a) Schematic of a quenched
network with fixed adjacency matrix g;; (left) and the trial-averaged
variance of the population firing rate as a function of time (right) for
different network sizes (green line, N = 5x10%; blue line, N = 10%;
in both cases C = 100). (b) Same for a mean-connectivity network,
Eq. (5), as an ad hoc approximation of the quenched network, where
the quenched connectivity a;; is replaced by the average connectiv-
ity (a;;). While the mean stationary population rates after the step
are equal in both models (measured rates are provided in the right
panels), the variances of the population rate strongly differ (note
the different scaling of the y axis). Other parameters: § = 5 mV ™!,
w=—1mVs.

To see this, we note that the sum of independent Poisson num-
bers in Eq. (5) is a Poisson number with mean Nr(t — d)dt,
where

1 N
o=y gqs(h,-(t)) (©6)

TABLE I. Summary of microscopic network models.

Network Equation Connectivity

Quenched (D Random, fixed in time,

(wyj) = w, var(w;;) = o2
Mean-connectivity 5) Mean-matched all-to-all,
(wij) = w, var(w;;) = 0

Annealed

8),(9) Random, dynamic
(resampling in time),

(wyy () = . var(wy () = o}

is the stochastic population rate. Furthermore, because all
neurons are driven by the same synaptic input, their input
potentials /;(¢) coincide (or converge after an initial transient).
The common input potential A(¢) thus obeys the mesoscopic
dynamics

tdi(t) = [—h + p()ldr + ]%dZ(t —d), %)

where now dZ(t) ~ Pois(N¢(h(t))dt) describes the incre-
ment of the total spike count of the population. Equation (7)
describes the mesoscopic dynamics as it only involves the
population activity Ay(f, At) = f;+m dZ(t)/(NAt).

Simulations of the quenched and the mean-connectivity
network yield similar results for the stationary mean fir-
ing rates and mean input potentials. However, the mean-
connectivity network may differ drastically compared to
the quenched network when it comes to the nonstation-
ary response (linear response function) and the fluctuations
(second-order statistics). To illustrate the failure of the mean-
connectivity approximation, let us consider the variance of
the stochastic population rate r(¢). This variance represents
the part of the mesoscopic neural variability [variance of
the population activity Ay (¢, At)] that is caused by the rate
variability rather than the Poisson spiking noise. It can be
measured from population activity data (see Appendix C) or
directly computed from a simulated time series of r(t) in
our model. A nonvanishing variance of the population rate
can occur for two reasons in our model: first, because of
intrinsic finite-size fluctuations and, second, because of ex-
ternally injected common noise. Here we model the common
external noise as a Gaussian white noise [more precisely,
w() = p(t) + ,/roé(tg: (t), where fi(t) is the mean stimulus
and 2 (1) is a standard Gaussian white noise process].

Interestingly, simulations of the mean-connectivity net-
work [Eqgs. (5) or (7)] strongly overestimate the population-
rate variance of the quenched network by more than one order
of magnitude (Fig. 1, note the different scale of the y axes).
We stress that this difference is not an effect of a difference
in firing rates: The stationary mean population rates (r) are
the same in both networks [e.g., the numerical values of the
firing rates at high stimulus amplitudes are approximately
equal as indicated in Figs. 1(a) and 1(b)]. In addition to this
large quantitative difference, we also observe a qualitatively
different response to fast stimulus changes when the network
is large (N = 5x10*, green lines in Fig. 1): When the mean
stimulus strength jumps from 28 to 50 mV, the variance of
the population rate exhibits a small but significant decrease in
the quenched network [Fig. 1(a), right]. This suppression of
variability is in marked contrast to the prediction by the mean-
connectivity network, which exhibits instead an increase in
the variance [Fig. 1(b), right]. This qualitatively different be-
havior of the population-rate variance in response to a step
stimulus is, however, not observed for smaller network size
(N = 10°, but otherwise same parameters and similar firing
rates; blue lines in Fig. 1).

How can we understand nonstationary responses and neu-
ral variability of mesoscopic variables theoretically? In this
paper, we present a ‘“second-order” mesoscopic mean-field
theory that also captures second-order statistics and non-
stationary responses quantitatively and explains nontrivial,
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FIG. 2. Schematic illustration of the annealed network and its ap-
proximation by a mean-connectivity network with additional noise.
(a) In the annealed network model, Eq. (8), the random connectivity
is resampled at each spike time resulting in an adjacency matrix a; j
that varies at each spike k. (b) The annealed model can be mapped
to a mean-connectivity network with additional noise, Eq. (12). The
network is all-to-all connected with an average connectivity (a;;).
Additionally, each neuron is subject to an independent noise that
captures the random connectivity. (c) Example trajectories of the
input potentials in the mean-connectivity network with additional
noise (gray). The distribution P of the input potentials follows a
Gaussian distribution with a time-dependent mean /(¢) and a time-
dependent variance o2(t). The second-order mean-field model (20)
aims to describe the stochastic dynamics of these two mean-field
variables.

qualitative phenomena such as the suppression of variability
observed in Fig. 1(a). In particular, the explanation of the
failure of the mean-connectivity approximation with respect
to the stationary variances in Fig. 1(b) and its resolution by the
“second-order” mean-field theory will be presented towards
the end of the paper in Sec. IV E.

C. Annealed network model

The quenched connectivity causes heterogeneity of neural
firing with spatial and temporal correlations which often make
a direct mean-field treatment infeasible. Here we follow a
different approach based on a dynamical resampling of the
connectivity (“annealing”) at each spike [29,67] [Fig. 2(a)].
This procedure largely ignores the part of the spatial and
temporal correlations that is caused by the quenched con-
nectivity but leads to a tractable model of a fully connected
neural network with additional dynamical noise that, as we
will see, retains and captures the main statistical features of
the recurrent synaptic input to a neuron [Fig. 2(b)]. We expect
that the annealed approximation is better in dense networks of
strongly correlated neurons. In this case, the temporal correla-
tions in the spike input of a given neuron are partially retained
upon randomization of the presynaptic neurons. In contrast,
in sparse networks, the membrane potentials are independent
among neurons, and therefore, the resampling of presynap-
tic neurons in time destroys the temporal correlations in the
presynaptic spike train of a fixed presynaptic neuron.

In the annealed approximation, the connections a;; are
resampled at each spike occurring in the network. Thus, the
time-varying adjacency matrix can be written as [4; ], where
the additional index k labels the kth spike occurring in the
network. Then, for a fixed k, the N x N-adjacency matrix [a;;]x
is still a random matrix with fixed in-degree and therefore
has independent rows but dependent elements &;;; within a
given row i. However, the dependence caused by the fixed-
in-degree constraint is immaterial for the recurrent inputs in
the annealed approximation. This is because only the jith
column of the matrix [&;;], which has independent elements,
matters for the transmission of the kth spike, where jj is the
index of the neuron that fired the kth spike, and because of
the resampling of the adjacency matrix. The latter implies
that, for different spike times, the columns are independent.
From the perspective of the recurrent inputs, we can thus
equally well resample the elements of the adjacency matrix
as independent Bernoulli variables a;; ~ Ber(p) with success
probability p = C/N. Thus, our model, Eq. (1), changes in the
annealed approximation to

tdhi(t) = [—h; + p())dt + }dei(f —d), 8)
dy; w
— 0= > ; ;aijk,,,S(r —1j1), )

where the index k;; delivers the location of the /th spike
time #;; of neuron j within the sequence of all spikes in the
network. The quantity Y;(¢) is the integrated synaptic input
received by neuron i until time t. We refer to this model as
the annealed network (Table I). We note that in simulations
of the annealed network, it is not necessary to resample the
entire adjacency matrix at each spike but only the column that
corresponds to the neuron that fired the spike. In other words,
whenever a neuron fires a spike, this spike is transmitted inde-
pendently to postsynaptic neurons with probability p = C/N.

By generalizing from binary weights w;; = %aij to an
arbitrary connectivity matrix w;;, the annealed network can
also be defined for such general connectivity through dynamic
resampling, which produces time-dependent synaptic weights
w;;(t). In the specific case of binary synapses, w;;(;;) =
%a,‘jk/‘, as in Eq. (9).

Apart from the random connectivity, another source of
quenched disorder that can be included in our theory is het-
erogeneity in the external current . For the sake of clarity,
we will begin our analysis without heterogeneity in o and
will defer the straightforward extension to heterogeneity to
a brief section in Appendix A. The parameter values of
the microscopic model used in simulations are provided in
Table 11

III. DERIVATION OF THE MESOSCOPIC MODEL

A. A mean-connectivity network with additional noise
that accounts for second-order connectivity statistics

The first step of the derivation is a temporal coarse-graining
of the annealed model leading to an effective, fully connected
network with homogeneous weights (mean-connectivity net-
work) and additional noise. The additional noise will be the
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crucial difference to the mean-connectivity network discussed
in Fig. 1. To coarse-grain, we integrate Eq. (8) over a small
time step of length Az:

t+At
TAh(t) = / [—hi(s) + p(s)]ds + ILVAYi(t —d). (10)

Here Ah;(t) = h;(t + At) — h;(¢t) is the increment of the input
potential, AY;(¢) = ZIJLI w;;(t)AZ;(t — d) is the synaptic in-
put received by neuron i during the time step At and AZ;(t) =
1 if neuron j has a spike during that time step and AZ;(z) =0
otherwise. In the annealed approximation, the time-varying
coupling strengths w;;(¢) are independent random variables
(across time steps and synapses) with mean w and variance
o2. In our specific example, the random variables are binary
taking the value w/p with probability p and 0 otherwise. How-
ever, the derivation does not hinge upon binary connectivity
but applies more generally to any distribution of coupling
strengths with finite variance 02 < oo.

The synaptic input AY;(¢) can be regarded as the result of
a doubly stochastic process: On the one hand, given the total
spike count AZ(t) = Zf’zl AZ;(t), each AY;(t) is the sum of
AZ(t) independent random variables. Hence, the conditional
mean and covariance are

(AY;(DIAZ(1)) = wAZ(t),
COV(AYi(t), AY;(1)|AZ(t)) = 02 AZ(1);),

where §;; denotes the Kronecker delta. If NV is large such that
PAZ(t) > 1, then the synaptic input AY;(¢) for a given AZ(t)
is approximately Gaussian distributed. Under this condition,
we can write

AYi(t) ~ wAZ(t) + o/ AZEOni(2), (11)

where n;(¢t) ~ N(0, 1) are independent standard normal ran-
dom variables. The first term in Eq. (11) is proportional
to the total number of spikes or the mesoscopic population
activity and thus corresponds to the input in an effective mean-
connectivity network. This term is common to all neurons. In
contrast, the second term is independent across neurons and
only arises when o, > 0. Specifically, it captures the individ-
ual differences of the synaptic inputs in a nonfully connected
(“diluted”) network with p < 1.

On the other hand, AZ(¢) is itself a Poisson random vari-
able with mean Nr(¢)At. From Eq. (11), or, alternatively, from
the law of total expectation and total covariance, we find that
the synaptic inputs AY;(¢) exhibit the following mean and
covariance for a given stochastic population rate r(z):

(AY;(O)]r(t)) = wNr(t)At
cov(AYi(t), AY;(0)|r(t)) = (w® + 0,8 )Nr(t)At.

The last equation shows that pairwise correlations of the
synaptic input to different neurons are nonzero for finite N.
These correlations arise from the common fluctuations of the
first term in Eq. (11) representing the population activity.

The covariance structure of the synaptic inputs AY;(¢) is
preserved if their representation by Eq. (11) is replaced by

AYi(t) = wWAZ(t) + 0/ Nr(t) Atni(t).

This representation allows to take the temporal continuum
limit. Substituting AY;(t —d) for AY;(t —d) in Eq. (10),
dividing by At and taking the limit A — 0, we obtain

dh; W [r(t —d)
o= —hi+u@) + I ;Zj(t —d)+oy T;i(t)~

12)

Here we have used that the population activity, Eq. (3), can be
rewritten as

1
Ay, At) = —
w(t, AD) Nm/,

where the spike trains Zi(t) have stochastic intensities
¢(h;(t7)). Furthermore, ¢;(¢) are independent Gaussian white
noises obeying (£;(t)¢;(t')) = 8;;8(t —t').

Equation (12) represents an effective, fully connected
network with rescaled synaptic efficacy w/N = pJ and ad-
ditional dynamic noise whose intensity is proportional to the
variance o of the coupling strengths w; ;. Therefore, the dy-
namics is the same as the mean-connectivity network, Eq. (5),
but with an additional noise term that captures the fluctuations
caused by the random connectivity. This representation also
reveals the distinct effects of finite network size (N < o0)
and random dilution (p < 1) on the recurrent synaptic fluc-
tuations. First, the stochastic input spikes from all neurons
in the network contribute a common synaptic input current
proportional to the population activity [third term on the right-
hand side of Eq. (12)], which is stochastic for finite N and thus
exposes the coherent part of the synaptic fluctuations. More
precisely, the population activity has conditional mean r(t)
[given all input potentials 4;(¢~),i = 1, ... , N] and finite-size
fluctuations of order N~'/2 because the spike trains Zi(t) are
conditionally Poisson [given £;(¢~)] with conditional mean
r(t).

In contrast, the last term of Eq. (12) contains a Gaussian
white noise ¢;(¢) that is independent for each neuron, and
thus represents the incoherent part of the synaptic fluctua-
tions. This incoherent noise captures the effect of the random
connectivity (auz) > () and, specifically, the random dilution
(p < 1). It therefore vanishes in the limit of fully connected,
homogeneous networks (p — 1, al% — 0), in which case the
mean-connectivity network is recovered.

In the following, we assume a large network size N such
that a diffusion approximation of the shot noise can be made:
Noting that AZ(¢) is conditionally Poisson with mean and
variance equal to Nr(t)At, the population activity can be
approximated for large N as

t+Ar N

> aza), (13)
i=1

t+At ’ /
AN(t;At)%M, Alt)=r()+ a2

—n(t),
oy Nn()

(14)

where n(¢) is a common Gaussian white noise with
(nn@’)) = 8@ —t’). In this form, the finite-size fluctu-
ations of order 1 /\/N become explicit. We note that the
diffusion approximation of the population activity, Eq. (14),
can in principle become negative. However, if N is sufficiently
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large such that Nr(¢)At > 1, then the probability that such
event happens is negligibly small.

B. Second-order mesoscopic mean-field dynamics

All-to-all uniformly connected networks with independent
noise, such as the mean-connectivity network with additional
noise derived in the previous section, have been well studied.
In particular, in the limit N — oo, the population dynamics
can be described by a Fokker-Planck equation [70], while
for finite N, the stationary statistics of the fluctuations has
been calculated using linear response theory [71]. However,
despite earlier theoretical approaches [29,66], a derivation of
stochastic population dynamics that captures both finite-size
fluctuations and nonstationary dynamics remains challenging.
In our setting, this derivation is facilitated by the absence of
resets in the Poisson neuron model. To obtain a self-consistent
description, we follow a standard two-step procedure: First,
we consider the dynamics of the input potentials

dh;
Ty —hi + f(1) + 8)¢i (@), s)

driven by fixed, time-dependent input signals f(¢) and g(¢),
and derive the dynamics of the mean and variance conditioned
on these inputs. We then derive the dynamics of the stochastic
rate r(¢) for fixed input signals f and g such that it depends
on these input signals only through the conditional mean and
variance and an additional colored noise. In the second step,
in turn, the input signals will be expressed in terms of the
stochastic rate r(t) according to Eqs. (12), (13), and (14):

“’; Dot - d)],

f@)=pn@)+ w[r(t —d)+

o) = o | =D (16)
w N .

This step will close the system for the conditional mean
and variance and the colored noise because the stochastic
rate depends itself only on these variables. In this way, we
will obtain a self-consistent mean-field description for the
annealed model, Eq. (12), as detailed in the following. In
view of Eq. (16), we also note that the conditioning on the
input signals f and g will allow for the interpretation of the
mean-field variables at time ¢ as conditional averages given
the history of the noise n(t" — d), the stochastic rate r(t’ — d)
and the external input (') for¢’ < .

In the first step, when f and g are fixed, the input potentials
h; represent N independent, time-inhomogeneous Ornstein-
Uhlenbeck processes for which the ensemble mean A and
ensemble variance o obey the dynamics

dh - do? t
= —h+ f(), zdit=_202+@.
T

17
" (17
These variables are the conditional mean and variance de-
scribed above. To relate the stochastic rate to these variables,
we first consider the limit N — oo. In this limit, the stochastic

rate, Eq. (6), converges to its conditional mean

F(h(t), a*(t)) := (@(h(t)|h(t), *(t))
_ / o(Wgi()dh,  (18)

where gj, ,2(h) = exp[—(h — h)?/(20?)]/~/252. Note that
the conditional mean depends on the functions f and g only
through the conditional mean /() and conditional variance
o2(t). Next, we consider the case of finite N. In this case, the
stochastic rate r(¢) has finite-size fluctuations of order 1/ VN,
hence we rewrite Eq. (6) as

- 1

r(t) = | F(h(t), o*(t —ti| 19

0 =[rlo.co)+ Josw] a9
with £(t) = VNIL Y1 ¢(i(1)) — F(h(r). 0*(1))). The rec-
tification bracket [-],. = max(0, -) could be inserted because
N='3",¢(h;) is always a non-negative quantity. Including
the rectification is necessary for a Gaussian approximation
of & to enforce a non-negative population rate r(t), albeit
negative values are extremely rare events for biologically
relevant network sizes N. For fixed input functions f and g,
the second term F(h(t), 02(t)) is deterministic, and hence,
for large N, the variable £(r) is an approximately Gaus-
sian, colored noise with mean 0 and autocovariance function
cg’g(t,t/) = cov(ep(h;(t)), p(h;(t'))) (again taken with fixed
functions f and g). Although there exist explicit expressions
for the autocovariance function of a nonlinear transformation
of a Gaussian process with given autocovariance function
(see, e.g., Ref. [72]), these expressions are in the form of
infinite series or double integrals and are not directly us-
able for the derivation of mesoscopic dynamics. Therefore,
we follow a simpler ad hoc approach here: We assume that
¢(h;(t)) has approximately the same temporal correlation
structure as h;(¢). Therefore, we make the heuristic approx-

imation cg'g(t, t) ~ @cg‘g(n t"), where C‘Z'g denotes the
autocorrelation function of the process Eq. (15). Because & (t)
is Gaussian and A;(¢) has an exponential autocorrelation func-
tion with correlation time 7, we hence model the colored noise
as an Ornstein-Uhlenbeck process of the form

t% — —& + /20020 (1),

Here ¢(¢) is Gaussian white noise with (£(¢)) =0 and
()¢ @) = 6@ —1'), and

ol (1) = (p(hi())|h(t), () — (p(hi())|A(t), o2(1))?
= G(h(t),o*(1))

is the conditional variance of the stochastic intensity A(t) =
@ (h;(1)) given by

G(h,0?) := /Oo ¢*(h)gh. o2 (W) dh — F(h, 0%).

We note again that the conditional variance depends on the
functions f and g only through the conditional mean /(¢) and
conditional variance o2 (t).

We now proceed with the second step of the mean-field
derivation, where we close the system in the mean-field vari-
ables h, 02, and & self-consistently. To this end, the functions
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f and g are related back to the stochastic mean-field rate r(¢)
using Eq. (16). Inserting this equation into Eq. (17) we finally
arrive at the mesoscopic mean-field (MF) dynamics

di fit ) +w| re — )+ =D
T— = — r —

dr p T N
do? o2

= 0524 W —
T ” o”+ rNr(t d)

ri—f = —& +/2tG(h(t), c2(t))¢ (t), (20)

where r(t) = [F(h(t), 0%()) + E(t)/«/N]Jr. The population
activity Ay (¢, At) associated with this mesoscopic dynamics
is given by Eq. (14). Because we consider the population
mean h(¢) and population variance o2(z), we call Eq. (20) the
second-order mean-field (MF2) dynamics.

The MF2 dynamics captures the effects of both finite N
and random connectivity. First, the finite-size effect mani-
fests itself in the multiplicative noise term proportional to
J/7/N in the equation for 4. The finite-size noise increases
with larger firing rates, reflecting the Poisson noise in the
underlying microscopic model, and it vanishes in the large-
N limit. Second, the effect of random connectivity becomes
manifest in a nonvanishing variance o, which is driven by
the term proportional to o2 /N. Note that in our case of binary
random connectivity, the variance of the synaptic weights is
ouZ) = w1l — p)/p [cf. Eq. (4)]. Thus, for full connectivity,
p = 1, the variance o2 vanishes. It also vanishes for N — 0o
unless C is kept constant (sparse limit) in which case 02 /N =
w?(1/C — 1/N) remains of order 1. A nonvanishing variance
o? (in our case p < 1), in turn, impacts the population rate
r through the averaged nonlinearity F, Eq. (18). However,
the population average, Eq. (6), is not perfectly equal to F
for finite N and o2 > 0. The imperfect averaging leads to
finite-size fluctuations & (¢ )—a third effect caused by the com-
bination of both finite network size and random connectivity.
This effect vanishes when N — oo or O’uz) = 0(p = 1) because
thze noise strength is proportional to /G/N and G vanishes for
o~ =0.

If we had neglected the dispersion of the input potentials
due to the random connectivity, i.e., assuming 02 =0, then
we would have arrived at a first-order MF theory (MF1) with
only one equation for the mean h(z):

r(t —d)
N n(t)}

r(t) = ¢(h(t)). 2y

Here we have used that, for o = 0, the population transfer
function F (h, o2) simplifies to the transfer function of a sin-
gle Poisson neuron ¢(h) = F(h(t),0) and that G(h, 0) = 0.
Theoretical predictions of MF1, Eq. (21), can always be ob-
tained from the corresponding result of MF2 by taking the
limit p — 1 while keeping the network size N = C/p and the
coupling strength w = JpN constant.

While the MF1 dynamics, Eq. (21), still captures finite-
size effects through the noise term, it does not describe the
effect of randomness in the connectivity o2 > 0 when p < 1.
In fact, MF1 precisely corresponds to the mean-connectivity

d- _
rahz —h+u(t)+w|:r(t—d)+

approximation that underlies the assumption of full connectiv-
ity made in previous finite-size theories [33,36,42—47]. This
can be seen by applying the diffusion approximation of the
Poissonian shot noise for large N, Eq. (14), to the exact meso-
scopic dynamics, Eq. (7), of the mean-connectivity network,
Eq. (5), which recovers MF1. Thus, by comparing simulations
of the microscopic models (quenched and annealed networks)
with MF1 and MF2, we will thus be able to judge the mean-
connectivity approximation used in previous studies [36,47]
and the correction for the effect of random connectivity
(p < 1) given by the second-order MF theory.

In the limit N — oo, the MF2 theory, Eq. (20), converges
to either a one- or a two-dimensional, deterministic dynamics
depending on whether the connectivity is dense or sparse. In
the dense limit, where p is kept constant and, hence, C =
pN — o0, the variance o2 as well as the fluctuations N~!/?p
and N~'/2¢ vanish, leaving a one-dimensional deterministic
firing-rate model. This case is equivalent to the large-N limit
of the first-order MF theory and can thus neither capture
finite-size nor p < 1 effects. In contrast, in the sparse limit,
where C is kept constant and, hence, p = C/N — 0, the noise
terms N~'/2y and N~!/2¢ vanish but the variance o2 does
not. The result is a two-dimensional, deterministic mean-field
dynamics for the mean and variance of the input potentials,

d.- _
tah =—h+u@)+writ—d)

d , ) w?
Tdta =—-20"+ Tcr(t d), (22)
where r(t) = F (h(t), 0%(¢)). This sparse connectivity limit is
similar to the classical model of Amari [22]. While it captures
the effect of random connectivity, it cannot describe finite-size
effects and hence second-order statistics caused by finite-size
fluctuations. In the following, we will refer to the dynamics in
the sparse limit, Eq. (22), in short as MFsparselim.

The effects described by the three population dynamics
MF1, MF2, and MFsparselim for different parameter regimes
are summarized in Table IIT (Appendix J).

Functions F and G for an error-function nonlinearity

For the error function nonlinearity, Eq. (2) with ¢ = 0,
the functions F and G can be calculated explicitly as (see
Appendix H)

F(h,0%) = ru®(Bei(c?)h), (23)
G(h, 6*) = 17, ®(Besr(07)h)

—erznT(ﬂeff(Gz)h, ) — F*(h,0?%)

(24)

1
V1+28%2

with T being the Owen’s T function and
s
/1 + ﬁ202

being the effective steepness of the sigmoidal nonlinearity
at the population level. Because Beir(02) < Berr(0) = B, the
effective nonlinearity that governs the population dynamics
has a reduced steepness compared to the the single-neuron

Betr(0?) =
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FIG. 3. Analysis of the deterministic mean-field dynamics.
(a) Graphical solution of the fixed-point equation (25), here illus-
trated for up =5 mV and w = —0.7 mV's. Solid lines: function
F(h, o(h)) for MF1 [orange, o>(h) = 0] and MF2 [blue, o(h) as
in Eq. (25)]. Black dashed line: Left-hand side of Eq. (25). Cyan
dash-dotted line: F with the second argument fixed at the fixed-
point value o¢. (b) (d, w)-phase diagram with Hopf bifurcation lines
(onset of oscillations). Bifurcation lines of MF2 and MFsparselim
explain stable asynchronous activity and oscillatory instability. The
heat map shows the standard deviation of the population rate r(¢) in
the quenched network (p = 0.1) to indicate the presence of oscilla-
tions. Hopf bifurcations, calculated from Eq. (30), are displayed for
MF1 (orange line), MF2 (blue line), and MFsparselim (brown line).
(c) Sample trajectories of population rate r(¢) for quenched network
(green), MF1 (orange), MF2 (blue), and MFsparselim (brown) with
d =1 ms. [(d)—(f)] Linear response of the time-dependent mean
population rate (“rate susceptibility”’) to a weak modulation of the
external current w(t) for quenched network (green circles), MF1
(orange), MF2 (blue), and MFsparselim (dashed brown). The MF
theories are given by Eq. (34), where p is set to 1 for MF1, and the
sparse limit N — oo, pN = C = const is taken for MFsparselim. For
each panel, top and bottom plots show the amplitude |%,| and the
phase ¢, of the susceptibility, respectively. Dashed horizontal line:
¢, =—m/2.(d) p=0.1 (C=100),d =0; (e) p= 0.4 (C =400),
d =1ms; (f) p=0.95 (C =950), d = 0. Other parameters unless
otherwise indicated: N = 1000, w = —1 mVs, B =5 mV~!, Ho =
10 mV, 0y = 0.

nonlinearity [Fig. 3(a)] and this reduction is caused by the
strictly positive spread o > 0 of the membrane potentials in
a nonfully connected random network.

IV. ANALYSIS OF THE MESOSCOPIC MODEL

The mesoscopic dynamics MF2, Eq. (20), allows us to
calculate and analyze the first- and second-order statistics
of mesoscopic quantities such as the stochastic population
rate r(¢), the population-averaged input potential A(¢) and the
population activity Ay (¢, At). We will mainly focus on the
second-order statistics, the analysis of which will be based on
a linearization of the dynamics about the fixed points of the
noiseless system. Therefore, we will first calculate the fixed
points and their stability. Although not the focus of the paper,
this analysis will also yield approximations for first-order
statistics including the stationary mean population activity
and the linear response of the mean population activity to
time-dependent external stimuli.

A. Stationary mean population activity

We first calculate the fixed-points h(t) = hy, 02@t) = ag,
and £ (r) = 0 of the deterministic system when the noise terms
in Eq. (20) are set to zero and the external drive is constant,
u(t) = po. In the following, we assume an inhibitory network
(w < 0) balanced with a positive external drive wg > 0. In
this case, the system exhibits a unique fixed point as shown
in the Appendix I. If the fluctuations are sufficiently small
and the fixed point is stable, then the quantity ry := F (hy, 002)
provides an approximation of the mean stationary population
activity (or, equivalently, the mean stationary firing rate of
neurons). At equilibrium, the input potential kg is given by
the fixed-point equation

ho — _ 1—
0 — Mo =F<h0, w(l — p)

” 20N (ho — Mo)) (25)

(see Appendix B). Furthermore, the fixed points of the MF1
are obtained by setting p = 1 in Eq. (25) corresponding to
setting 0'02 = 0 in the sigmoidal function F (hy, 002). The solu-
tions for both MF1 and MF2 can be determined graphically
[Fig. 3(a)]: For MFI, 002 =0 and therefore the sigmoidal
function F (hy, 0) is steeper compared to MF2, for which 002
is strictly positive.

While the fixed points can be obtained numerically, for the
analytical theory we use the approximations

r()%__v (26)
w

o ~ q>—1<—15—r°>,/;3—2 + o2, 27)

2, wio( —p)

A 28
% 2TNp (28)

for stimuli 0 < ug < —wr,, where the firing rates are low
(0 <r < ry/2), see Appendix B. The approximation holds
for large B> 1/002 and for —po/w > (1 — p)/(zC) and
—uo/w > 0.023r,,. The fixed-point solutions yield theoret-
ical predictions for the stationary first-order statistics such
as the stationary mean firing rate (r), mean membrane
potential (k), and mean membrane-potential spread (o2).
However, we postpone the discussion of these predictions to
the Appendix B, because our main focus is the second-order
statistics.
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B. Stability of the fixed-point solutions

In the presence of a nonzero transmission delay d > O,
the fixed-point solution of the mean-field model may become
unstable, leading to an oscillatory regime, see, e.g., Ref. [73].
For such an instability to correctly predict oscillatory behavior
of our microscopic network model, our mean-field theory
must accurately describe the recurrent fluctuations in the net-
work.

The onset of oscillations can be understood by a linear sta-
bility analysis. To this end, we linearize the noiseless system
around the fixed point. Small deviations of the mesoscopic
variables, 8i = h(t) — hy, 80> = o%(t) — o}, obey the lin-
earized dynamics

%X(t):TX(t)—FWX(t—d), (29)

Wllere we introduced the deviation vector
(8h(t), 8c2(t), £(¢))T and the matrices

diag(1,2, 1 2(1 — ’
_ lag( ’ “ )’ W — E’ w( p)yo LT
T T 2pN

with LT = (Fy, Fy, N~1/2). Here F, and F, denote the partial
derivatives of F(h, o?) with respect to & and o2 at the fixed
point (exact and approximate expressions for Fj, and F, are
given in the Appendix D). We note that any perturbation in
& exponentially decays to zero with a time constant 7. It is
therefore sufficient to look for solutions of the form X (t) =
M (h(0), (1), 0)T with some constant parameter A. The sign
of the real part of A then determines the stability of the fixed
point; in particular if Re(A) > 0 the fixed point is unstable.
As shown in Appendix E, the parameter A must satisfy the
characteristic equation

X(t) =

T =

wE,F, e~

rM=—l+wFe ™+ —2
" 24+ At —F,e M

(30)
where £, := wzlr_—c‘”Fa.

To find the onset of oscillations, we look for a Hopf
bifurcation, at which A = iw with a frequency w € R\ {0}.
Imposing such purely imaginary values of A in Eq. (30) allows
us to find the “Hopf boundary” of the oscillatory phase in the
parameter space. In the following, we investigate the stabil-
ity depending on the transmission delay d and the coupling
strength w [Fig. 3(b)]. In the (d, w)-space, we can see that the
bifurcation lines of the noiseless systems significantly differ
between second-order and first-order MF dynamics. For suffi-
ciently strong coupling strength, the first-order MF dynamics
exhibits a Hopf boundary at small values of d, predicting os-
cillations already at small delays. In contrast, the second-order
theory predicts an oscillation onset for much larger delays.
Interestingly, MF2 predicts that a stronger coupling strength
w requires a larger delay to enable oscillations, whereas the
first-order model requires a smaller delay. We note that the
bifurcation line obtained for MFsparselim is close to MF2.
The bifurcation lines qualitatively explain the presence or ab-
sence of large noisy oscillations in the mean-connectivity and
random network models [Figs. 3(b) and 3(c)]. Furthermore,
the simulations of the MF dynamics indicate that the Hopf bi-
furcation is supercritical: Varying the delay, the variance of the
population rate » changes continuously at the bifurcation and
no bistability between fixed point and limit cycle is observed.

In conclusion, our stability analysis of MF2 shows
that connectivity disorder leads to a stabilization of the
nonoscillatory stationary state. In particular, the disordered
connectivity leads to incoherent fluctuations of the recurrent
input, which flattens the effective nonlinearity of the macro-
scopic dynamics and thus changes the stability properties of
the fixed point.

C. Linear response of the mean activity

We now analyze how the network responds to a
small, time-dependent perturbation of the external current,
w(t) = o + w1 (t) by calculating the linear response function
[74]. To this end, we linearize our mesoscopic mean-field
dynamics, Eq. (20), around the fixed point and obtain a gen-
eralization of Eq. (29):

%X(t) =TXO)+WX(t —d)+M@)+Be@r). (31

Here the vector X(7) represents again the deviation from
the fixed point as in the previous section and the three-
dimensional vector M (¢) represents a general small perturba-
tion to the system. Furthermore, the last term represents the

finite-size noise, where
_ (n@®)
0=(19)

and Gy = G(ho, 002). In the linearized dynamics we neglected
terms of order O(1/N) and higher. In the Fourier domain, the
solution reads

w /h

TVN
B = 0 0

26,
O T

X(0) = % (0)(M(w) + B (o)), (32)
where we introduced the susceptibility matrix
% (@) = [iol; = T — We ]!, (33)

Here I3 denotes the 33 identity matrix and the tilde notation
f (w) for a function f(¢) denotes its Fourier transform, i.e.,
flw)= f_oooo f(t)e ™ dt. The explicit expressions for the el-
ements of ¥ are given in Appendix F, Eq. (F1).

The susceptibility matrix provides the response of the
ensemble mean (X (¢z)) of the deviation from the fixed
point of the full nonlinear system to an infinitesimally
small perturbation M (¢) in the Fourier domain via the re-
lation (X (w)) = ¥ (w)M(w). Similarly, the response of the
ensemble-averaged firing rate (r(¢)) = F(hy, 002) +6r(t) is
given in the Fourier domain by Sr(w)=L"T X ()M (w). For
an external stimulus w(¢) = o + w1(¢), the perturbation is
M(w) = (jt1(w)/7,0,0)". In this case, we then have §r(w) =
Xr(w)it1 (w), where we introduced the rate susceptibility

1
Xr(@) = ;[thi (@) + F5 a1 (0)]. (34)

Here we used that ¥3; = 0.

The rate susceptibility is in general complex-valued with
absolute value |¥,(w)| and phase ¢,(w). A straightforward
interpretation is that the system driven by a sinusoidal external
input modulation () = € sin(wt) with small amplitude €
will respond with a sinusoidal rate modulation with amplitude
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€| X%-(w)| and a phase shift ¢, (w). For all models studied here,
the amplitude decreases for high frequencies with a power
law with exponent —1 [Figs. 3(d)-3(f)]. The MF2 theory
agrees very well with the quenched microscopic network, in
contrast to the MF1 theory which massively overestimates the
amplitude at high frequencies. The quenched network shows a
slightly smaller amplitude than predicted by the second-order
MF theory but is still reasonably well approximated by the
latter. While the amplitude vanishes at low frequencies as
expected, the phase shift approaches —7 in the limit of large
frequencies [Figs. 3(d)-3(f)]. We can understand this behavior
analytically by considering the limits of Eq. (34). For o =0
we obtain

,(0) dl (35)
Xr = s
I —wh — %£F (& — 3)

which is real valued and has therefore a phase zero. The ampli-
tude in the low-frequency limit is approximately the negative
inverse of the coupling strength —w ™', under the condition
that 1 < wFj, and C large. Similarly, for large frequencies we
find asymptotically

F,

()~ —i—-—, w©— oo. (36)
T o

In this limit, the phase converges to — % and the amplitude fol-
lows a power law w~! scaled by F;, /7. The different values for
the derivative Fj, explain the difference between the MF1 and
the MF2 theory. To understand this difference analytically, we
use the following approximation for the slope of the transfer
function at the fixed point (see Appendix D):

— ﬂ)
T Q( Wi

[2x (B2 +03)

where o is given by Eq. (28). Furthermore, we introduced the
nondimensional function

O(x) :=exp[~3 @7 ()’] (38)

defined on the interval [0, 1]. This function has an inverted-U
shape and is symmetric with respect to x = % [a graph of Q is
shown in Fig. 6(c), dotted lines]. Equation (37) clearly shows
that the factor Fj, increases with the connection probability
p because 002 decreases with p, cf. Eq. (28). The MF1 the-
ory corresponding to the mean-connectivity network (without
additional noise) is obtained by setting p = 1 in Eq. (28).
In this case, the dispersion 002 vanishes, and hence the slope
Fj, is maximized. Therefore, the MF1 and MF2 theories pre-
dict the same power-law behavior of the rate susceptibility
with w at large frequencies, but with a higher magnitude for
the first-order model [Fig. 3(d)]. With increasing connection
probability p the susceptibility approaches the first-order MF
theory. The low-frequency limit is in both mesoscopic models
almost independent of p as the low-frequency limit is roughly
given by —w~!. Simulations of the annealed network network
(not shown in the figure) match the predictions of the MF2
theory while the quenched network model has slightly lower
amplitude and slightly lower phase for intermediate frequen-
cies. Overall, the MF2 theory yields a strongly improved
prediction compared to the MF1 theory.

The synaptic delay d appears in ¥, only via the complex
exponential in Eq. (33). On the other hand, the delay does

by ~ (37

not influence the low-frequency limit and the high-frequency
asymptotics, Eqgs. (35) and (36) of the response, respectively.
For intermediate frequencies the complex exponential causes
a modulation and a peak in the amplitude as a function of
w [Fig. 3(e)]. Simulations of the annealed network model
perfectly confirm (not shown in figure) the prediction of
the second-order MF theory, whereas the quenched network
model has a less pronounced peak at a lower frequency. The
susceptibility of MFsparselim fits well with the quenched net-
work for small or medium connection probability, p = 0.1 and
p = 0.4 [Figs. 3(d) and 3(e)]. For larger p, however, there is a
noticeable discrepancy for MFsparselim, while MF1 and MF2
have a good match with the quenched network [at p = 0.95,
see Fig. 3(f)]. In marked contrast to MF1 and MFsparselim,
the predictions of MF2 are good over the entire range of
connection probabilities p.

D. Power spectral density

Now we turn to the second-order statistics of the stationary
dynamics. We assume that the external stimulus w(¢) is a
stationary process with given mean uo and power spectral
density S, (w). We begin with the power spectrum of the pop-
ulation activity A(¢) and population rate r(¢). This statistics
has been calculated analytically using linear-response theory
for finite-size networks with uniform full connectivity [47,71].
In a similar fashion, we here derive the power spectrum via a
linearization of our second-order MF dynamics. To this end,
we start with the power spectral density matrix S (w) of the
mean-field state vector X (¢) [cf. Eq. (29)] defined via the
relation

X (@)X (@) =278 (0)8(w — o), (39)

where * denotes the conjugate transpose of a matrix. Using
Eq. (32) for the linearized system, we find the following
approximation for S (w) describing weak fluctuations around
the fixed points (see Appendix G):

1 w2r0 - ~%
Sij(w) = 2 |:S;m(a)) + T}Xil(w)le(w)

N 2G(ho, o})

X3 (@)X j3(@).

The matrix S gives us the (cross-) spectral densities among 7,
o2, and &. For the power spectral densities of the population
activity A(t), we use the linear approximation

~ - ro . - ~ ~ 1 ~
A~i+ =5, FxFh+F,0?2+—E, (40)
yn" " JN

which yields approximate expressions for the power spectrum
of the stochastic population rate r(¢),

1
S, (@) ~ F2S)1 (@) + F2Sy(w) + 5 S(@)

+ 2F,Fr Re(S12(w))

n 2Fh9%(513(60)) +Fa%€(523(w))7 @l

VN
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FIG. 4. Power spectral densities of the population activity and
population rate. (a) Power spectrum of Ay (¢; At) for quenched (green
circles) and annealed network (red squares) and first- and second-
order theory [orange and blue lines, Egs. (G1) and (42), respectively].
(b) Same for the power spectrum of r(t) [theory: Eq. (41)] Pa-
rameters: w = —1 mVs, N =500, p =0.07, u(t) = o = 10 mV,
Oext = 0, At = 0.1 ms.

and of the population activity A(t):

Saa(@) = Spr(@) + ;—\(; + 2/%9%(&.,,((0)). (42)

The cross spectral density S,, that appears here can be calcu-
lated using Eqs. (40) and (32):

w ro - -
Sry(w) ~ ?\/;[Fh)(ll(w) + F5 321 (w)].

In Fig. 4, we compare the theoretical predictions, Eqs. (41)
and (42), to the corresponding power spectra obtained from
simulations of the quenched and annealed network. In all
cases, the power spectra of the population activity display a
pronounced trough at low frequencies [Fig. 4(a)]. The MF1
theory severely underestimates the observed low-frequency
power, whereas the MF2 theory matches well the micro-
scopic model under the annealed approximation. Nonetheless,
even with this marked improvement over MF1, the annealed
network’s low-frequency power remains lower than that of
the quenched network, exposing a limitation of the annealed
approximation. The discrepancy of the power spectra of
quenched and annealed networks is caused by the partial
elimination of the effect of the single-neuron autocorrela-
tions on the recurrent input when applying the annealing
(i.e., the permanent resampling of connectivity). We note
that the elimination of temporal correlations only concerns
the incoherent part of the recurrent input, as expressed by
the white noise in Eq. (12). In contrast, for finite N, the
coherent part of the recurrent input fluctuations (finite-size
fluctuations of population activity) still contains effects of
spike-train autocorrelations, even in the annealed network.
Finally, we mention that we have not included MFsparselim
in Fig. 4 because its stationary dynamics is characterized by a

(a) a
S 20 4 > 0.10 -
g 20 §,
< 10 A 'S 0.05
g g
0 - 0.00 -
(b) T T T
300
& < 0.2 A
>
T E
= 150 = 01-
S
0 - 0.0 - T T T
0.0 0.0 0.5 1.0
p p
O Quenched net. MF1, theory - = MF2, analyt. approx.
O Annealed approx. — MF2, theory —-= MFsparselim

FIG. 5. Stationary variance of the population rate and mean input
potential for varying connection probability p. (a) The number of
neurons is fixed to N = 1000 (hence C = 1000p). (b) The in-degree
is fixed to C = 100 (hence N = 100/p). Left panels of (a) and
(b): Variance of the population rate r(¢) [Symbols: simulations of
microscopic networks as indicated in the legend; orange and blue
solid lines: full theory Eq. (43) and Eqs. (G4); black dashed line:
analytical approximation for the variances based on the second-order
MF theory, Eqgs. (46), (47) and Egs. (45), (49) for var(r) and var(h),
respectively; dash-dotted line: MFsparselim.] Right panels of (a) and
(b): Same as left panels but for variance of . Parameters: 1y =
10mV, w=—1mVs, o =0mV, 8 =5mV~".

deterministic equilibrium without any fluctuations and a van-
ishing power spectrum.

E. Variances

The stationary variances of r(¢) and A(1) can be calculated
by standard methods for the linearized system in the absence
of synaptic delay, d = 0 (see Appendix G). Furthermore, we
assume that the external stimulus u(t) has mean 1 and white
Gaussian fluctuations of strength o2, as in Sec. II B. Under

ext
these assumptions, one eventually obtains

var(r) ~ Fh2011 + Fazazz + 2F,F, 012

1
0'13 + 0'23 + = G(l’lo, O'O) 43)

f «/_
where o;; = (X;(t)X;(t)) are the elements of the covariance
matrix of the state vector X (¢). In particular, o; yields the
variance of the population-averaged input potential /(t). Ap-
proximate analytical expressions for o;; can be calculated
using the linearized system, Eq. (31), and are given in the
Appendix G. Our theory, Eq. (43), agrees well with micro-
scopic simulations (Figs. 5 and 6), discussed in more detail
below. In general, we find a good quantitative match between
the theory and simulations of the annealed network. While, in
the case of quenched random connectivity, the theory again
exhibits quantitative deviations, our second-order MF theory
still captures the parameter dependence of the variance qual-
itatively and yields a much better quantitative prediction than
the first-order MF theory. Again, MFsparselim without any
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(a) Mesoscopic network, no external noise
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FIG. 6. Variance of the stochastic population rate r(t) for varying
mean external stimulus /. (a) Moderate-size network of N = 10°
neurons whose inputs exhibit internally generated, finite-size noise
but no external noise, o = 0. Different in-degree C are encoded
by color. Left: Response to a step stimulus, where 1 jumps from
28 to 50 mV at time ¢ = 0.04 s. Blue and orange lines: simulations
of MF2 for C =100 (p =0.1) and C = 1000 (p = 1), the latter
(p = 1) equivalent to MF1 or the mean-connectivity approximation
of the former (p = 0.1). Black dotted: Corresponding theory for the
stationary variances, Eq. (43). Gray dashed: Stimulus onset. Inset:
Magnified data for C = 100. Symbols represent stationary variances
of network simulations and theory, see description of right panel.
Right: Stationary variance of r(¢) vs mean stimulus strength pg.
Symbols: Simulations for C = 100 of quenched network (green
circles), MF1 (orange triangles), and MF2 (blue diamonds). Solid
lines: Full MF1 (orange) and MF2 theory (blue). Black dashed:
Corresponding analytical approximations, Eq. (47); dash-dotted:
MFsparselim. The gray dashed line marks the border of the region of
interest o < —wr,,/2 where the hazard function at the fixed point,
@(ho) is convex. (b) Analogous to (a) for a much larger network
(N = 5x10%) with negligible internally generated finite-size noise
but with additional external noise 62, = 1 mV?. The connection
probability is varied by different values of C (encoded by color).
Orange line: Common MF1 theory or mean-connectivity network.
Dash-dotted lines: MFsparselim. (c) Slope Fj, vs mean stimulus fo.
Dotted: p = 1 corresponding to the function Q; solid line: p = 0.7.
Gray dashed as in (a) and(b) right. (d) Same for the product Lok
[(c) and (d)] N = 1000, B = 500 [equivalent to 8 =5 mV~! in (a)
and (b)].

noise in the external input deterministically converges into an
equilibrium with zero variance.

1. Dependence on the connection probability

Which connection probability causes the largest variability
in our network model? To address this question, we analyze
the variances of the population rate r and the average input
potential & as a function of p (Fig. 5). To avoid a trivial
dependence through the mean firing rate, we vary p such that
the mean firing rates remain roughly unchanged. According
to Eq. (26), a constant rate can be achieved by keeping the
coupling strength w = N pJ constant. In an experimental set-
ting, where the synaptic efficacy J is the basic physiological
parameter, this constraint could be realized in two different
scenarios, either by fixing the network size N and changing
the synaptic efficacy J such that Jp = const. or by fixing both
the number of input connections C = Np and the synaptic
efficacy J.

In the first scenario with constant N, we find that the
variance of the rate r(¢) increases with connection probability
in microscopic network simulations [Fig. 5(a), left], although
the variance of the input potential & decreases [Fig. 5(a),
right]. MF1 cannot explain this behavior because the model
equation (21) does not depend on the parameter p when w is
fixed and N is constant. Thus, for all p € [0, 1], the variance
predicted by the first-order MF theory corresponds to the fully
connected case p = 1, i.e., to the mean-connectivity network.
In contrast, the dependence on p of the variances measured
from simulations of the annealed network are quantitatively
well reproduced by the second-order MF theory, Eq. (43).
The second-order theory also captures the variances of the
quenched network qualitatively. The quantitative agreement is
also reasonably good; however, we find that the rate variance
is overestimated and the variance of the population-averaged
input potentials is underestimated by the annealed network.
Nevertheless, the prediction of variances by the second-order
theory yields a significant improvement over the first-order
MF theory.

In order to gain an analytical understanding, we use
the following explicit approximations of the variances
(see Appendix G):

—Wio + T B
2N 2 var(r) & FPvar(h).  (44)
(I —wk)
In the last approximation, we have used Eq. (43) and the fact
that, for the parameters considered in this study, the variance
of r is vastly dominated by the first term in that equation.
By contrast, the other terms in Eq. (43) are small enough to
be ignored. Equation (44) reveals that an increasing slope Fj,
decreases the variance of / in an inhibitory network (w < 0).
Intuitively, this effect can be understood by the increase of
the effective leakage (1 — wF})/t in the linearized dynamics
of h which dampens the input fluctuations. In contrast, the
variance of the population rate can increase with increasing
slope because the quadratic prefactor th can overcompensate
the decrease of var(h). To make this argument more clear in
the theoretical discussion, we further assume that —wFj, > 1
(which holds for our parameter setting). Under this assump-
tion, the variance of the population-averaged input potentials

var(}_z) =01~
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becomes inversely proportional to F;,

2
- Mo o} 1
h~|—+ -2 |—. 45
var(h) <Z1:N + —2w>F;, “45)

In turn, the guadratic factor th due to the conversion from
variance of & to variance of r leads effectively to a linear
dependence of var(r) on F;,

~ o Gezxt
var(r) ~ <2tN + —2w>Fh' (46)
The variance formulas (45) and (46) share a common factor
that represents the sum of two contributions to the variability.
The first term of the sum corresponds to the intrinsically
generated variability caused by finite-size fluctuations of order
4/19/N in the mesoscopic MF dynamics, Eq. (20). We recall
that the dependence of these fluctuations on the firing rate
ro = —Mo/w, arises from the Poisson spiking noise at the mi-
croscopic level. Thus, the Poisson property that the variance
scales proportionally to the mean causes finite-size fluctua-
tions that increase with the mean stimulus strength o (see
below). We emphasize that this contribution to the variability
is a clear finite-size effect that vanishes in the limit N — oo.
In contrast, the second term of the sum in Eqgs. (45) and (46)
represents externally generated variability proportional to the
variance of the common external stimulus.

For constant N, the p dependence in both formulas,
Egs. (45) and (46), is solely contained in the slope Fj, of the
transfer function. As discussed in Eq. (37) above, the slope
F;, is a monotonously increasing function of p. The slope
dependence thus explains the increase of the variance of the
population rate [Fig. 5(a), left] and the decrease of the vari-
ance of the mean input potential [Fig. 5(a), right], respectively.

In the second scenario with constant C and varying popula-
tion size N = C/p, we observe different dependencies of the
variances on p compared to the first scenario with constant
N [Fig. 5(b)]. In simulations of microscopic networks and
second-order MF dynamics, the rate variance increases supra-
linearly with p and the variance of the mean input potential
exhibits a nonmonotonic behavior with a maximum inside the
range 0 < p < 1. Again, the first-order MF theory does not
capture these behaviors. Note that there is a good qualitative
agreement between second-order MF theory and microscopic
network simulations. As in the first scenario, however, the
variance of the average input potential in the quenched net-
work is underestimated by the annealed network, which, in
turn, is quantitatively well matched by the second-order MF
theory.

To gain a theoretical understanding of these observations,
we use our analytical approximation Eq. (46). For constant C,
the approximation can be rewritten as

B ( op
J8r \ TC
where we have introduced the dimensionless parameters [y =

2 2 2 3 A
—to/(Wrp), oy = O/ (Wrm)™, B =—Pwry, T =1ry,, as
well as the dimensionless slope of the transfer function

var(r) ~ + 6'£(t>ﬁh, 47)

) F 7
£, = 2nﬁ—h ~ & (48)
T'm 2(1—p) A

1+ 5522 o

[cf. Eq. (37)]. The expression for the rate variance in Eq. (47)
is a product of two monotonously increasing functions of
p—a linear function (the prefactor of £},) and a strictly con-
vex function (¥,). Hence, the variance of the population rate
is a monotonously increasing, strictly convex function of p
explaining our observation in Fig. 5(b) (left). In contrast, the
variance of the mean input potential, Eq. (45), can be rewritten
for constant C and dimensionless parameters as

L (B g )L

2B %C ext o
This expression is a product of a monotonously increasing
and a monotonously decreasing function of p (the prefactor
of 1/F, and 1/F,, respectively). The product may therefore
exhibit a nonmonotonic behavior. A closer inspection of
Eq. (49) reveals a maximum at an intermediate connection

probability
2 2tC o2
max — A 1 2 =t
=30 S5 (%))

in the interval (0, 1) if —2/3 < %(ﬁ—Z —02,/4) < 1/2.In
the limit of a steep single-neuron transfer function (8 — o0)
and in the absence of external noise, the maximum is at-
tained at py.x = 2/3. Such maximum is indeed verified by
simulations [Fig. 5(b), right]. Furthermore, the variance var(4)
approaches zero for p — 0 and approaches a nonvanishing
value for p — 1.

In contrast to the second-order theory, the first-order MF
theory cannot explain the strictly convex and nonmonotonic
behavior of the variances of the population rates and input
potentials, respectively [Fig. 5(b)]. In the second scenario with
constant C, the first-order MF theory is obtained from the
above formulas by fixing the ratio p/C and letting p — 1.
Thus, the common factor (’;LCP + 62,) in Eqgs. (47) and (49)
remains unchanged, whereas the second factor becomes in-
dependent of p. Because the common factor is an increasing
linear function of p, the variances are thus also increasing
linear functions, in line with simulations of the first-order
mean-field model (but in contradiction to microscopic sim-
ulations and second-order MF theory).

var(h) ~

(49)

2. Dependence on the mean stimulus strength

We started our paper with network simulations point-
ing out marked quantitative and qualitative discrepancies of
the mean-connectivity network with respect to the stimu-
lus dependence of the rate variability (Fig. 1). In particular,
we observed a strong overestimation of the rate variance
by the mean-connectivity network compared to the original
quenched network. At first sight, it may appear counterintu-
itive that more homogeneous connectivity leads to a stronger
variance in the population rate. This apparent paradox results
from the fact that in mean-connectivity networks, finite-size
fluctuations are “directly” picked up by the steep single-unit
transfer function that also determines the population rate,
F(h,o?) = ¢(h) for 6> = 0, whereas the effect of these fluc-
tuations at the population level is attenuated for networks with
heterogeneous connectivity due to due to the flattening of the
effective population rate transfer function; the difference in
the population rate variance can then be seen from Eq. (46).
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We will make this argument more explicit below. We also
note that the large variance of the population rate in the
mean-connectivity network (or MF1) can be attributed to an
increased high-frequency power [Fig. 4(b)].

Furthermore, for a noisy external stimulus and large net-
work size (N = 50000), we observed a suppression of the
rate variability by an increase in the mean stimulus strength
in the quenched network. In contrast, the mean-connectivity
network incorrectly predicted an increase in rate variability
rather than a suppression. As we will see now, these obser-
vations can also be well explained by our second-order MF
theory.

Let us study two opposing scenarios: First, we consider
a small (“mesoscopic”) network without noise in the ex-
ternal stimulus (oex = 0). In this case, the rate variability
solely originates intrinsically from the finite-size fluctuations.
Second, we consider a large (“macroscopic”) network with
a noisy external stimulus (oex; > 0). In this case, the rate
variability is purely externally generated. In both cases, we
find that the first-order MF theory largely overestimates the
variance of the population rate in the quenched and annealed
network, whereas the second-order MF theory, Eq. (43), cor-
rectly predicts the magnitude of the rate variance [Figs. 6(a)
and 6(b)]. Because the first-order MF dynamics is the exact
MF dynamics for the mean-connectivity network, this large
deviation explains our observation in Fig. 1.

Furthermore, in the two different scenarios, we find a
different monotonicity of the rate variance if we restrict our-
selves to the biologically interesting range where the fixed
point is in the convex part of the sigmoidal hazard function,
hy < 0 and ry < r,,/2, i.e., below the inflection point of ¢(h)
[cf. Fig. 3(a)]. The upper boundary of this range given by the
inflection point corresponds to a single-neuron firing rate at
half maximum, r,,/2, and hence an external stimulus pug =
—wr,,/2 [Figs. 6(a) and 6(b) right, dashed vertical line]. In
the first scenario without external noise, the finite-size induced
rate variability increases monotonically for py < g for both
first- and second-order MF theory. In contrast, in the second
scenario with external noise and without finite-size fluctua-
tions, the variance of the rate shows a nonmonotonic behavior
with a maximum below ug if p < 1.

These observations can be understood analytically using
the approximation Egs. (47) and (48). Let us first discuss
how the factor £}, in Eq. (47) depends on fiyp. For p=1,
i.e., in the first-order MF theory, ¥}, is exactly given by the
function Q(f1) displayed by the dotted line in Fig. 6(c). This
function, and thus Fh, grows monotonically for fip > O until
it reaches a maximum at 1§ = —uj/(wry,) = 0.5, which cor-
responds to the upper bound r,,/2 of the biologically relevant
dynamical range. For p < 1, the factor Fj, is the quotient of
the symmetric function Q and an increasing function, which
shifts the maximum of Fj, to a value <1/2 [Fig. 6(c), solid
line]. Hence, F), exhibits a nonmonotonic behavior in the
biologically relevant range 0 < po < ug. Besides the shift
of the maximum to smaller values of the mean stimulus
strength [i(, the maximum also decreases when the connection
probability is lowered from p = 1 to smaller values. This de-
crease is a consequence of dividing the function Q(fi¢) by the
square-root term that is strictly larger than one for p < 1. Im-
portantly, £, can decrease by a large factor if the single-neuron

transfer function is steep, i.e., 3 >> 1, which explains the dras-
tic decrease of the rate variance from first- to second-order MF
theory [Figs. 6(a) and 6(b), where B = 500, corresponding to
B =5mV~!asin Fig. 1].

The behavior of Fj, just described explains the variance of
the population rate for an infinitely large network with exter-
nal noise [second scenario, Fig. 6(b)]. In fact, the prefactor of
F, in Eq. (47) becomes independent of fi( in the limit when
N =C/p — oo, and hence the dependence on [i( is fully
captured by £},. In particular, the stark difference in magnitude
of var(r) between the first- and second-order MF prediction,
as well as the qualitative response of the rate variability (sup-
pression or amplification) to increasing stimuli, is explained
by how the monotonicity and magnitude of the slope of the
population transfer function Fj, varies with p.

In contrast, in the first scenario when o. =0 and N =
C/p is finite, Eq. (47) tells us that the variance of the popula-
tion rate is proportional to

. oA Lo .
ok, = P O(fp).
)~
14+ == ito

The right-hand side is a product of a monotonically increasing
function of [1¢ and the function Q(fig), which is maximized at
i1y = 1/2. Therefore, the maximum of QoFy is shifted to val-
ues [ip > 1/2 for all p € [0, 1] [Fig. 6(d)]. As a consequence,
the variance of the population rate var(r) is a monotonically
increasing function of the mean stimulus strength in the bio-
logically relevant range 0 < figp < 1/2 [Fig. 6(a), right puo <
50 mV], and thus an increase of the mean stimulus strength
always increases the rate variability in the absence of external
common noise [Fig. 6(a), left].

To keep the arguments simple, we studied here two clear-
cut cases—one with and another without external noise.
According to our theory, Eq. (46), the rate variance is a sum
of two terms, where each term on its own corresponds to one
of these cases. In general, the theory also applies to the mixed
case, where the rate variance is the sum of externally and in-
trinsically induced variability. For example, in the simulations
of Fig. 1, we also compared two networks of size N = 1000
and N = 50000 but the external common noise was present
in both cases. Nonetheless, the mesoscopic case of N = 1000
with external noise can still be qualitatively understood by the
limit case o.x; = 0 because the finite-size fluctuations domi-
nate over the external noise. Last, we remark that as 1o — 0,
e.g., for strongly inhibition-dominated networks, the popula-
tion rate variance decreases for both the mean-connectivity
network (MF1) and MF2 in both cases as can be seen from
Figs. 6(c) and 6(d).

V. CONCLUSIONS

In this work, we set out to derive a stochastic population
dynamics for finite-size networks of spiking neurons that
correctly accounts for fluctuations at the mesoscopic scale
when the connectivity is random—as in the case of nonfull
connectivity (p < 1). While such regime is biologically highly
relevant, to our knowledge it has not yet been systematically
investigated within the frameworks of previously developed
mean-field theories [29,30]. The low-dimensional, stochastic
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population model derived here allows one to study specifically
how the combination of quenched disorder and stochastic
neuronal firing affects the mesoscopic activity of finite-size
neuronal populations. We thus hope to close an important gap
in the use cases of simplified descriptions of networks and to
provide the foundations for a mean-field modeling framework
of neural variability at the mesoscopic population level.

Based on a Poisson assumption for neural firing and a
“dynamically annealed” description of the connectivity, we
approximated the recurrent input to each neuron by its (pop-
ulation) mean, a coherent fluctuating part shared among
all neurons, and an individually fluctuating contribution re-
flecting the connectivity disorder. Eventually, we obtained
three coupled stochastic differential equations (SDEs) that
describe the evolution of the mean input potential /# within
the population, the input potential’s variance o2, as well as
a colored noise & in the population rate that vanishes in
both limits N — oo and p — 1. Our theory thus goes be-
yond previous, deterministic mean-field dynamics for first-
and second-order cumulants [22] or pseudocumulants [53]
that similarly captured the quenched variability of synaptic
weights but assumed the macroscopic limit N — oo.

The analysis of the new MF2 dynamics showed that the
quenched connectivity disorder for p < 1 has a drastic effect
on the neural variability, the response to time-dependent stim-
uli, and the stability of the network in biologically relevant
regimes. Specifically, our main findings with regard to the
effects of a finite connectivity O < p < 1 and finite network
size N < oo are the following: (i) A finite variance in the input
currents (o2 > 0) caused by the quenched random connectiv-
ity with finite C = pN leads to an effective broadening of the
neuron transfer function, but the stationary mean firing rate
remains rather unaffected [Figs. 3(a) and 8(b)]. (ii) In the pres-
ence of synaptic delays, the stability properties of fixed points
of the dynamics and locations of bifurcations can change
considerably. In particular, we showed that the connectivity
disorder can stabilize networks in regimes where an MF1
theory corresponding to a mean-connectivity approximation
would predict oscillatory dynamics [Figs. 3(b) and 3(c)]. (iii)
The population-rate response to high-frequency stimuli and
(iv) the variance of the population rate are significantly lower
than predicted by the MF1 theory [Figs. 3(d), 3(e) and 5].
Moreover, (v) in the presence of shared noise due to common
external input, an increase in the mean external input can
actually lead to a decrease of the variance of the population
rate (Figs. 1 and 6)—an effect which again is not captured in
the MF1 theory.

Overall, we provided simple analytical explanations for
the effects of finite connectivity and finite network size in
terms of the slope of the population transfer function and the
multiplicative character of the finite-size noise. In particular,
we found that a decreasing connection probability p lowers
the slope Fj, through an increase of the membrane potential
variance o2 and that, at finite network size N, the neural vari-
ability has a rate-dependent contribution that is proportional
to the product of mean stimulus strength (or firing rate) and
the slope of the transfer function [Fig. 6(d) and Eq. (46)].

Of note, our mesoscopic approach differs from previous
theoretical studies that focused on how quenched random con-
nectivity shapes microscopic dynamics [48,72,75,76]. Neural

networks with quenched disorder can display a wide reper-
toire of dynamical states even under homogeneous random
connectivity [76], as considered here. In particular, inhibition-
dominated networks operating near the edge of chaos produce
rich single-neuron dynamics that may support complex com-
putations [76,77]. Importantly, this critical dynamical state
refers to the microscopic dynamics, as characterized by broad
distributions of pairwise correlations [76,77] and neuronal
timescales [78]. The annealed approximation underlying our
theory cannot reproduce these microscopic features. How-
ever, this limitation is not problematic for our mesoscopic
description of the coarse-grained population activity. As al-
ready noted in Ref. [76], the mesoscopic population activity is
largely unaffected by the critical dynamics at the microscopic
scale. We have furthermore shown here that, at the mesoscopic
scale, the annealed approximation captures surprisingly well
both the dynamics and their fluctuations across the full range
of connection probabilities.

To derive a simple mean-field model with fluctuations that
highlights the effects of finite connectivity and finite size,
we made several simplifications. In particular, we used (i) an
annealed approximation of the quenched random connectivity,
(i) only one cell type (single population), and (iii) a first-order
Poisson model of the spiking-neuron dynamics. In the follow-
ing, we will briefly discuss these simplifications and possible
extensions.

In our “dynamically annealed” approximation, we assumed
that each presynaptic spike would be randomly distributed
among all neurons according to the connection probabil-
ity p, independent of the actual, fixed (quenched) synaptic
connectivity matrix of a given network. A systematic com-
parison of our theory with simulations of quenched networks
showed that our MF2 theory captures reliably the behavior
of quenched networks with respect to the main findings de-
scribed above. Deviations of the annealed network (from the
quenched network) and, correspondingly, the MF2 dynam-
ics, are noticeable for several statistics, though. However,
these deviations were considerably smaller than the respective
deviations of the mean-connectivity network and the corre-
sponding MF1 dynamics used in previous studies [36,47,79].
The remaining deviations of the annealed network can most
likely be attributed to the neglect of temporal correlations in
the recurrent input caused by the annealing, i.e., the incessant
resampling of the connections in time. This explanation would
be consistent with the underestimation of the low-frequency
power by the annealed network which we observed in Fig. 4.
For infinitely large, sparsely connected networks, a proper
account of temporal correlations can, in principle, be obtained
through a self-consistent treatment of the autocorrelations of
the recurrent fluctuations [62,75], which typically adds low-
frequency power [62]. Such self-consistent theory would lead
to colored noise rather than white noise for the incoherent
fluctuations in Eq. (12). However, how to build a stochastic,
dynamical population model for finite-size, random networks
that accounts for temporal correlations in a self-consistent
manner is an open theoretical problem which goes beyond the
scope of the present study.

Interestingly, perhaps not surprisingly, the comparison of
our theory with simulations of “dynamically annealed” net-
works shows that it can be considered almost exact for the
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annealed case. One may ask whether a biological realization
of such a “dynamically annealed” network, where our the-
ory becomes exact, might actually exist. A possible origin
of such randomly distributed spikes might be the proba-
bilistic vesicle release: A fully connected network where
synapses would transmit a spike with probability p would
be an exact realization of the system we describe by our
approximation. Thus, the annealed network model may also
be regarded as a simple caricature of a spiking neural net-
work with probabilistic synaptic transmission. Another type
of annealing occurs in networks with full connectivity but
dynamic synapses (short-term synaptic plasticity). Recently,
such dynamically changing networks have also been reduced
to low-dimensional Langevin dynamics based on a similar
Poisson neuron model [58,59].

For the sake of a systematic and thorough development of
the theory, we here began with the case of one population
corresponding to a single neuron type; especially, we focused
on the case of an inhibitory network. However, our theory
suggests a straightforward extension to multiple populations.
Cortical networks typically consist of several cell types and
are generally described as excitatory-inhibitory networks that
are, in the simplest case, organized as two coupled popu-
lations. Rate models of such two-population E-I networks
remain a popular tool to describe network dynamics up to this
day, whether to characterize inhibition stabilization in cortical
networks [80] or spatial patterns of oscillatory activity ob-
served in motor cortex [79,81]. It will certainly be worthwhile
to investigate how the combined effects of random connec-
tivity and network size we began to explore here may shape
the more complicated dynamics of networks that comprise
more than one population. Furthermore, a multipopulation
extension would offer the possibility to model specific cortical
microcircuits, such as canonical circuit models [82] or cortical
column models with multiple interneuron types [41], on the
mesoscopic scale, which accounts for fluctuations.

To develop the theory, we used Poisson neurons based on
a one-dimensional dynamics for the membrane potential of
each neuron. While a Poisson model neglects spike-history
effects such as neuronal refractoriness, it allowed us to derive
a low-dimensional, closed set of mean-field equations for the
first- and second-order cumulants. We expect that in regimes
where the neurons firing is Poissonian, similar observations
can be made in more biophysically grounded models of spik-
ing networks. While this is beyond the scope of this work,
it would certainly be worthwhile to systematically investigate
the effects described here in simulations of such networks.

The main difference of our Poisson model compared
to more realistic integrate-and-fire (IF) models is the ab-
sence of a reset mechanism (in fact, with reset, our model
would be equivalent to a leaky IF model with escape noise
[28,31,33,83,84]). While the resetting in IF neurons captures
refractoriness, it significantly complicates the population dy-
namics. Specifically, the population dynamics of IF neurons is
usually infinite dimensional, represented by partial differential
equations [29,84], integral equations [23], infinite systems of
SDEs [66,85], or, in the case of finite N, stochastic versions
of these [33,36,66,86]. In principle, it seems possible to carry
over our theory to these population equations by again using
the same annealed approximation. It would be interesting to
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FIG. 7. Variance of r and & for a network of LIF neurons with
a rectified linear hazard function ¢(h) = Byn[h — Oin]+ and a post-
spike reset to /e as a function of connection probability p. The
LIF network behaves qualitatively similar to the Poisson network
without reset in this paper (cf. Fig. 5). Variances are calculated
from network simulations of quenched (green) and annealed (red)
networks for (a) N = 1000 and (b) C = 100 for different connection
probabilities p. The rectified linear hazard rate was matched both
by value and slope of the single neuron transfer function Eq. (2)
at a reference point ss = —0.25 mV. Parameters: Aesee = —15 mV,
Bin ~ 91.32mV~!, 6, & —0.37 mV, w = —1 mVs, 4o = 10 mV.

study how well the annealed approximation works for neurons
with refractoriness. One may speculate that similar second-
order mean-field theories may provide a quantitatively correct
account for networks, e.g., of generalized integrate-and-fire
neurons in the presence of finite connectivity where effective
first-order mean-field theories have already proven to be quan-
titatively precise for fully connected networks [33,36,79].
While a systematic analysis of the effect of resets is beyond
the scope of this paper, we present here some first simulation
results. We consider a quenched network, in which the input
potential is reset to s after each spike. With reset, the
single-neuron hazard rate no longer requires an upper bound,
and we therefore adopt a rectified linear hazard rate [28]. As
an example, we repeat the simulations from Fig. 5 with reset.
The results (Fig. 7) show that the variances of the population
rate 7 and mean input potential / as a function of the connec-
tion probability p behave qualitatively similarly to the case
without reset (Fig. 5). Specifically, for fixed N, the variance of
r increases with p, while the variance of & decreases. For fixed
C, the variance of r increases, and the variance of /& exhibits
a maximum. Importantly, the annealed approximation now
matches the quenched network much more closely than in the
absence of reset. This aligns with our earlier explanation that
discrepancies between the quenched network and the annealed
approximation arise from neglecting temporal correlations in
the incoherent recurrent input due to annealing. The reset
reduces the enhanced low-frequency power of the model with-
out reset, effectively whitening the spike-train power spectra
and thus reducing temporal correlations in the input. In other
words, there are less temporal correlations to be removed by
the annealing, leading to a better fit.
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For simulations and concreteness, we made some further
specific modeling choices: For example, we studied random
networks with fixed in-degree, i.e., an identical number of
presynaptic connections, and chose a specific transfer function
(or f-I curve) ¢(h) that relates the instantaneous firing rate to
the intensity or input current 4. While our specific choice of
the transfer function also enabled us to analytically evaluate
the effect of a finite variance in the input currents on the popu-
lation rate, the reduction of the spiking network dynamics to a
low-dimensional system of coupled SDEs should remain valid
for arbitrary choices of the transfer function, albeit probably
more difficult to compute. The assumption of fixed in-degree
allowed us to assume that the mean input current as well as the
strengths of the fluctuating parts are identical among neurons,
but in practice we observed that a purely random Erd&s-Réniy
network shows almost identical statistics as those described in
the previous sections for networks with fixed in-degree.

Here we showed how to derive low-dimensional stochastic
models that describe fluctuations in a complex, biological
model system, namely a finite-size spiking neural networks
with random connectivity. Already in the simple case of one
population and Poissonian spiking, we found highly nontrivial
effects such as the nonmonotonic dependence of the variance
of the recurrent input on connection probability [Fig. 5(b)]
and the weak suppression of variability by external stimuli
[Fig. 6(b)]. Thus, even though a single population and Poisson
spiking dynamics may be too simple to quantitatively model
certain phenomena in cortex (such as a stronger suppression
of variability [61]), the fact that our MF2 theory explains
nontrivial fluctuation effects demonstrates the power of the
approach as a proof of principle. Importantly, with the bio-
logical extensions discussed above, we believe that our theory
may pave the way for a useful modeling framework for vari-
ability in cortical circuits at the mesoscopic population level.
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APPENDIX A: MESOSCOPIC DYNAMICS IN THE
PRESENCE OF HETEROGENEOUS EXTERNAL DRIVE

An additional source of disorder in the microscopic models
is the heterogeneity in the parameters. For Eq. (1), we include
heterogeneity in the external drive as follows:

Pext,i(t) = pu(t) + ;. (AD)
The random variables j&; for each neuron i have mean zero and
are independently and identically distributed with probability
density p(1). They can be interpreted as heterogeneity of the
external drives, the resting potentials or the thresholds ¥ of the
different neurons. Importantly, the variables [i; are constant
in time, and thus represent quenched disorder. The derivation
of the microscopic annealed network (12) does not explicitly
depend on the value of u(7) and we therefore obtain the same
results with u(¢) replaced with Eq. (A1). Specifically, Eq. (15)

is modified as follows:

dh;

-[E = —/’li + ﬂi +f(t) +g(t)€l(t)

Splitting off the heterogeneous part from #;(¢) yields a new
variable x;(t) = h;(t) — [1; that obeys
T = —x; + f(t) + g(O)5i(0).

The last equation is of the same form as Eq. (15) and can
be dealt with accordingly. For the self-consistent closure, the
probability density of the input potentials /; is needed for
the calculation of (¢(h;(¢))). At each time point we assume
hi(t) = x;(t) + f1; is the sum of two independent random
variables and thus its density is the convolution gz .2 * p.
For simplicity, we assume that the heterogeneity is Gaussian
distributed fr; ~ N0, aﬁ) with a given fixed variance aﬁ. In
this case, we have a Gaussian probability for the distribution
h; with mean X(7) and variance o7 + o;. We therefore have

____+ o+ C—d)+ rit —d) ~
TE =—x+ult)+w|r ) N n(
do?  _, wi(l-p)
T o - —20; +‘L’p—Nr(t_d)
d& -
‘[5 = —s + ZTG()C(I), Oz(t))é‘(t),
where

r(t) = F(x(t), o*(t)) + %sm

o(t) = axz(t) + Ui.

In other words, we obtain the very same mean-field dynamics
as in the case without heterogeneity, Eq. (20), but with an
increased variance 2. See also the classical mean-field theory
of Amari [22] for a similar treatment of heterogeneity.

APPENDIX B: FIXED-POINT SOLUTIONS

At equilibrium, the sparse limit, Eq. (22), gives

w2

~ 2’

which yields the fixed-point equation (25) for Ay.

Because we assume an inhibitory network (w < 0), the
linear function on the left-hand side of Eq. (25) has a negative
slope. If we choose w such that the intersection occurs for
values /g lower than the inflection point # = 0 of the hazard
function ¢ (h) [corresponding to the biologically relevant con-
vex part of ¢(h)], then from the graphical solution it is clear
that the second-order MF dynamics exhibits a fixed-point with
lower mean input potential s and higher population firing
rate ry compared to the first-order MF dynamics. This effect
becomes stronger for smaller connection probability p.

The mean stationary firing rates of the quenched and an-
nealed microscopic models are well captured by the numerical
solution of the fixed-point equation (25) [Figs. 8(a)-8(c)]. As
a function of the external drive o, we observe a strikingly
linear dependence between the saturation regimes at low and
high values of w( [Fig. 8(a)]. Furthermore, we find that the
firing rate is roughly constant when the connection probability

ho = po + wry, o ro = F(ho,03), (Bl)
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FIG. 8. Mean stationary population rate of the quenched and annealed networks and fixed-point solutions of the noiseless mean-field
dynamics. Population averaged firing rates as a function of (a) the external input w, (b) the connection probability p for C = 100 constant,
and (c) the coupling strength w. Orange (blue) line: MF1 (MF2); brown line: MFsparselim; red squares (green circles); annealed (quenched)
network simulation; dotted line: analytical approximation (26). The inset in (c) shows the same data, but for a larger range of w in a double
logarithmic scaling. Gray dashed line: second-order theory ry for the firing rate in the limit w — —oo [Eq. (B5)]. Note: MFsparselim is
identical to MF2 in (a) and (c). Parameters: N = 1000, 8 =5 mV~! (a) p=0.1and w=—-1mVs; (b) up = 10 mV, w = —1 mV's; and

() p=0.1, up = 10 mV.

p is varied while N is fixed [Fig. 8(b)]. The weak dependence
on p is slightly better predicted by the second-order MF theory
than by the first-order MF theory, which, by definition, has
no dependence on p. We also observe a power-law behavior
of the mean firing rate in both microscopic simulations and
fixed-point solutions if the coupling strength is not too strong
[Fig. 8(c)]. We note that, in general, the relative error of the
first-order MF dynamics (and hence the mean-connectivity
network) with respect to the stationary mean population rate
is rather small compared to the much larger error with respect
to the second-order statistics reported in Fig. 1.

1. Analytical approximation of fixed points

The linear dependence on g, the weak dependence on
p and the power-law dependence on w can be explained
with our MF theory as follows. First, we notice that for a
sufficiently large steepness B> 1/0; of the single-neuron
transfer function ¢, the second-order MF dynamics remains
practically unaltered if we take the limit 8 — ooc. In this limit,
the single-neuron transfer function tends to 7,6 (h), where 0
denotes the Heaviside step function. Indeed, for the values
of B considered in this paper, taking the limit 8 — oo does
not noticeably alter the effective nonlinearity F and hence
the second-order MF dynamics. The limiting value of the
fixed point can be calculated analytically from the graphical
representation [Fig. 3(a)] which yields an approximate an-
alytical expression for the firing rate in the first-order MF
dynamics,

0, mo <0
o~ =5, 0 <po < —wry (B2)
T, Ko 2 — Wy,

This analytical expression predicts that ry is inversely pro-
portional to the coupling strength in the balanced regime
0 < po < —wry,. Indeed, the numerical fixed-point solution
for the first-order MF dynamics exhibits an excellent quanti-
tative agreement with this prediction [Fig. 8(c)].

Second, we note from the geometry of the graphical so-
lution of the fixed points that the intersection point of the
first-order MF dynamics serves as a rough approximation for
the firing rate ry of the second-order MF dynamics as well

[Fig. 3(a)] unless w is extremely negative as discussed be-
low. Indeed, the horizontal stretching of the transfer function
in the second-order theory mainly affects the value of the
fixed point & rather than the firing rate ro. More precisely,
a sufficient condition for the validity of our approximation
is that —po/w > (1 — p)/(zC) and —up/w > 0.023r,, (see
Appendix B 3). We expect that the approximation (26) slightly
underestimates the firing rates if the intersection is below the
inflection point (k9 < 0) and slightly overestimates the firing
rates if the intersection is above the inflection point (k9 > 0).
Our approximation Eq. (26) well explains the piecewise linear
behavior of the firing rate as a function of the external input
as observed in Fig. 8(a). Furthermore, Eq. (26) also explains
why the firing rates are roughly independent of the connection
probability p [Fig. 8(b)], and why we see the power-law w™!
even in nonfully connected networks [Fig. 8(c)] unless w is
extremely negative (this case is treated below). In general
we note that, compared to the first-order MF dynamics, the
second-order MF dynamics shows a better agreement with the
firing rate in microscopic simulations; in particular, it fits the
annealed network almost perfectly.

Because closed-form analytical approximation of the fixed
points will be crucial for a qualitative—if not quantitative—
discussion of the linear analysis around fixed points in the
following sections, we provide here also approximations for
the fixed-point values hy and o¢. Using our approximation
for the firing rate, Eq. (26), we obtain from Eq. (B1) an
approximation for the dispersion:

2 Wio(l = p)
0 2tNp

if 0 < uo < —wry,. To obtain a corresponding approximation
for Ay in the second-order MF theory, we solve the fixed-
point equation ry = F (ho, 002) [cf. Eq. (B1)] for ho using our
approximations for ry and o resulting in

fio ~ q>—1(—u’f—r°>,/ﬂ—2+a§. (B4)

2. Limit of strongly inhibitory networks

(B3)

Finally, the regime of strong inhibitory coupling reveals a
qualitative difference between the the first- and second-order
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mean-field prediction. In the limit w — —oo, the right-hand
side of Eq. (25) is asymptotic to

27pN (ho — [10)
@ | — [ZEET0 T FOTY
(I =pw

and thus the mean stationary firing rate in a strongly inhibitory
network, is given by the solution r., of the limiting equation,

2rpN
Foo = ry® | — [P | (B5)
1—-p

The graphical solution of this equation clearly shows a vanish-
ing firing rate in the first-order MF theory (p — 1), whereas
the limiting equation has a nonvanishing solution for p < 1
[second-order MF theory, Fig. 8(c), inset]. The nonvanishing,
limiting firing rate in the second-order MF theory is in good
agreement with simulations of the annealed and quenched
microscopic model. In contrast, the first-order MF theory
generally underestimates the firing rates in strongly inhibitory
networks: For w — —oo, the first-order MF dynamics has
a rate that converges to zero like —uo/w as predicted by
Eq. (26).

3. Condition for the validity of the firing-rate
approximation (26)

In Eq. (26), a simple approximation for the fixed-point
firing rate is given, namely ry ~ —uo/w, which we used for
an inhibitory network (w < 0) in the nonsaturated regime
(0 < uo < —wry,). This approximation corresponds to the
solution of the first-order MF theory in the limit 8§ — oo.
We argued that under certain sufficient conditions, the ap-
proximation is good for the second-order MF dynamics as
well. Here we provide a justification for these conditions. For
biological reasons, we make a slightly stronger assumption
on the working point of our system: We assume that the fixed
point is in the convex part of the transfer function, i.e., iy < 0
and ry < r,,/2, as drawn in Fig. 3(a).

For the firing-rate approximation to be applicable also to
the second-order MF dynamics, we require that the relative
difference between the firing rates of the first- and second-
order MF theory is small:

e — it (B6)

Here r(%s‘ = —uo/w and ré“d = F(hy, 002). Furthermore, we
have used that 3" > r}* because of our assumption, iy < 0
[Fig. 3(a)]. To estimate the left-hand side of (B6) from above,
we want to obtain an upper bound approximation of the rate
rgnd = (ho — po)/w. To this end, we lower bound the input
potential /o (note that w < 0). Because A is expected to be on
the order of the width o¢ of the transfer function, we write the
lower bound as —aoy < hg, where a is a positive number that
is still unknown. This lower bound of % yields an upper bound
estimate for the mean firing rate: 5" < (—aoop — po)/w.
Hence, the condition (B6) is surely met if

—aop — Mo —Ho 0o
- =—a— <L =,
w w w w

hence aoy < wo. Unfortunately, we do not know the exact
value of o for the second-order model. However, if our
approximation holds true, then we can self-consistently use
our approximation for o, Eq. (28), and the condition becomes

[—w(l —p)
a W < 1. B7)

The larger the value of a, the more conservative this sufficient
condition becomes. However, to obtain a less conserva-
tive condition, we could lower the value of a, as long as
hg > —aoy. We check for this latter condition in the same
manner as above by self-consistently using the approximation
of hy in Eq. (27):

—1{ —Ho
hg ~ ® ! op > —aoy,
Wwry

where we have used the limit § — oco. Eventually, this leads
to

—Mo
wry,

> ®(—a). (B3)

The last step was possible, because & is strictly monotonously
increasing. If there exists a > 0 such that both Egs. (B7) and
(B8) are fulfilled, then we consider the approximations for the
fixed points to be valid. For the parameter choice used in our
simulations, a = 2 was sufficient. The numerical evaluation of
the error function yields ®(—2) ~ 0.023. Fixing a = 2 yields
the sufficient condition reported in Sec. IV A.

APPENDIX C: ESTIMATION OF THE RATE VARIANCE
FROM POPULATION ACTIVITIES

The variance of the population firing rate is not directly
accessible from measurements in real biological networks.
However, we can estimate the rate variance by the variance
of the empirical population activity. We assume that in small
time bins (¢, + At], neurons fire spikes independently with
conditional intensities A;(¢) given the past. Then, from the law
of total variance and the conditionally Poisson statistics, we
have for the variance of the total number of spikes in a time
bin

var(AZ) = (var(AZ|{)1;})) + var((AZ|{A;}))

= N(r)At + N*var(r)At>,

where () = N~! Zi\’:1 A;(t) is the population firing rate and
(-) denotes the trial average. Hence,

var(AZ) (r)
varr) = A T Nav
— var(Ax(t, AD) — W

where we used the definition of the empirical population
activity, Eq. (3). For stationary data, the trial average can be
replaced by the time average.
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APPENDIX D: PARTIAL DERIVATIVES OF THE
FUNCTION F AND APPROXIMATIONS THEREOF

Using the definition of the function F defined in Eq. (23),
we find for the partial derivative with respect to h at the fixed
point (hg, o),

oF b e |~ sty
- m 2(1+p%(0g+0}
F, - —(ho, 002 —i—ai) = 0

o Y2 (14 (03 + 7))
Note that a,f = 0 in the absence of heterogeneity of p;. Sim-

ilarly, for the partial derivative with respect to the second
argument, we find

oF -
F, = @(ho, 002 + 03)

2h2
o exp | ~ 55ty

H

3
2327 /1 + B*(of + oﬁ)

The approximate expressions Eqs. (27) and (28) for /g and 002
at the fixed point can be used for further simplifications of the
partial derivatives:

Fh ~ rmﬁQ(_%) 7

V2 1+ B*(od +02)

where 002 and the function Q are given by Eqgs. (28) and (38),
respectively. Analogously, we can approximate the partial
derivative with respect to o> at the fixed point:

. BP0 (42 0(F5)
" o2 (1+ B2 (0d +02))

APPENDIX E: LINEAR STABILITY ANALYSIS

For the linear stability analysis, we consider the linearized
system with no noise and constant ©(¢) = u which reads

t%(Sh(I) = —8h(t) + wdr(t — d), (Ela)
201 —

r%&rz(z‘) = —2802(t) + %&0 —d), (Elb)

8r(t) = Fydh(t) + F,802(1), (Elc)

where we neglected the variable & as it decays exponentially.
To solve the linearized system, we insert the exponential
ansatz

Sh(t) = h(})e"
802 (t) = 6 (L)e,
with a constant parameter A. Solving Eq. (E1b) for & yields
w?BFj,e* - 1—p
5 = h, B:=——. E2
7 AT +2 — w?BF,e % C (E2)

We insert this expression for & into the first equation (Ela)
and obtain an equation for the eigenvalue

FowF,e 2
24 At — E e

AT =—1+wke ™+ , (E3)

where we used the abbreviation F, := w?BF,. This equa-
tion depends on the fixed points through the functions Fj, and
F;. To find an oscillatory instability, we look for a Hopf bi-
furcation, at which A = iw for some real-valued frequency w.
Applying the condition on the complex-valued equation (E3)
we obtain two conditions, one for the amplitude,

4 + w*r? wthz

T 14 0?12 (2 = cos(wd)E,)? + (0T + sin(wd)Ey)?’
(E4)

and one for the phase,

arctan(wt) = arctan (%) + arg(wF),) — wd + 27k

— atan2(2 — F, cos(wd), wt + F, sin(wd)).

Both must be satisfied simultaneously. Here atan2 is the
two-argument arctangent and k € Ny. In the (d, w)-parameter
space, these conditions correspond to a family of curves, one
curve for each k. At the kth curve an oscillatory perturbation
with frequency wy becomes unstable. For the overall instabil-
ity boundary it is sufficient that at least one mode becomes
unstable. We found empirically that the overall instability
boundary is given by the mode k = 0, whereas higher modes
yield regions of instability that are contained already in the
instability region given by k = 0. For the solution of both
conditions a numerical solution of the fixed-point equations is
necessary. In Fig. 3(b) we scan through each parameter point
and solve the phase condition for w. In the investigated param-
eter range we were always able to find a unique solution for
the phase condition for each mode. We then determined the
boundary in the (d, w)-space that separated the regions where
the right-hand side of the amplitude condition, Eq. (E4), is
larger and smaller than 1, respectively. The equations are
simpler for the first-order MF dynamics where £, = 0. The
simplified amplitude condition reads in this case

2
w?F? N j;/wth -1
= w = —_—.
1 4+ w?t2 T
This explicit solution for w can be used in the phase condition

to determine the value of the delay at instability boundary for
a given coupling strength w:

1

1
d = —(— arctan(wt) + arg(wkFy) + 27 k).
w

APPENDIX F: SUSCEPTIBILITY MATRIX

Here we present explicit expressions for the susceptibility
matrix ¥ defined in Eq. (33). Using Cramer’s rule we obtain

1 L
X = 5(1’(1} + o Faﬂelwd>, (Fla)
. |
Ji2 = BFaae 1w, (F1b)
1 gio+ 2
s — e o T , F1
Xi3 = pyae —iw+% (Flc)
~ 1 D —iwd
X21 = 2—)Fh/3€ , (F1d)
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= 1 1 ~ —iwd
In=3 iw + — — Fyae , (Fle)
1 —la)d
o3 = —7/,36 (F11)
%31 = ¥32=0, (Fl1g)
i = i+ 2) = LF,peied (F1h)
X33 = D w . Do e s
lio+ 2 ~ —iwd :
_5ia)+ thae , (F1i)

with the abbreviations

1 2 2 .
D(w) = <ia) + —) <ia) + —) — <ia) + —>Fh6{e""d
T T T
. L\ o i
—|iw+ — |F,Be™
T
woo, w1l 1 _ 1
T 2\c N VTN

b ﬂ =
APPENDIX G: VARIANCE AND POWER SPECTRAL
DENSITY IN THE STATIONARY STATE

o =

With the susceptibility we can express the power spectral
density of the system. From Eq. (32), we obtain

(X(@)X (@) = F(BE+M)ETB*+M))5*

and with the definition of the power spectral density matrix
S (w), Eq. (39),

S (@) = ¥ (@)[Sy(w) + BB*| % *(w).

Here Sy, is the 3x3 spectral density matrix of the external
§timulus. In our case, the external stimulus only acts on the
h variable and thus (Sy;);; = S,,,81;61; has only one nonzero
entry with the power spectral density S, (w) of the Gaussian
stimulus w(t). Explicitly,

w2r

- ]x,l<w)x,1(w>

1
Sij(w) = [ (@) +

 26(i0.7,)

O (@)X ().

In the main text, we used this expression to compute the power
spectrum of the population activity A(r), given by Eq. (42).
Taking the limit p — 1 yields an explicit expression for the
corresponding power spectrum of the first-order MF theory,

o 0 St w2 B ep + 2wy (1 — cos(wd)wey)
MUTN T (o1 — sin(wd)wdy)? + (1 — cos(od)ywey )
(GD)

Here ¢, is the partial derivative d¢/dh at the fixed point.

In principle, the stationary variance of A(¢) can be com-
puted from the integral over the power spectral density
S11(w). However, the integral is difficult to solve for nonzero
transmission delay and general spectral statistics Sy (@) of
the stimulus w(z). If we restrict ourselves to the case of
zero delay, d =0, and a Gaussian white noise stimulus,

w(t) = o + \/762,([2 (t), then the linearized sytem can be
rewritten as

i) VRO
%X =rx+| o |+ o | @
0 Lor (1)
where I' = T + W or explicitly
-t ER ik
r= U)zgivpp)F “’ZSINP”)FU _2 uig}v;;)%m
0 0 ~1

T
The two Gaussian white noise processes in the first component
of Eq. (G2) can be lumped together into a single Gaussian
white noise process:

d A
SX=TXx+8B @3) B =
dr [ 2Go
This is a three-dimensional Ornstein-Uhlenbeck process for
which the stationary variance is known to be the solution of
the linear system of equations [88] (Lyapunov equation)

Fo +orT=_BB" (G3)

Because the covariance matrix o is symmetric, 0;; = 0j;, we
have a system of six linear equations for the variables o1, 012,
013, 022, 023, and o33. For a systematic solution, we notice that
the matrix equation (G3) reads in the position (3, 3)

2Gy
2(I31013 + 32093 + I'33033) = -

which reduces to 033 = Gy because I'5; = I's) = 0and I';3 =
—1/t. Therefore, we only need to solve a system of five linear
equations

2F11 2F12 0 2F13 0 011
0 2F21 2F22 0 2F23 012
'y Thi+Tan T I3 IS 022
0 0 0 I +T33 Iz o13
0 0 0 [y 'y +T33 ) \o23

=(_(1ru_221r3+ ex') 0, 0, —F23G0)T-

We can solve the last two equations separately as they only
contain two variables:

<m3> _ _@( F13(Tn + I'33) — sl ) G4)

—TI'13Go,

023 D \—T'13T2 + 3T 4+ T'33)

where D = (' + I'33)(I'22 + I's3) — 21 T'2. This equation
gives us the values of o3 and 0,3. The remaining three equa-
tions of the form

2F11 2F12 0 011
0 2F21 2F22 012
I'yy Thni+Tn T 022
—“—zﬁ‘) — J;z*‘ 23013
= 0 - 23003
0 3013 + I'iz023
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have the solution

(on, on, on)
—2 (w?r, , Calpp — oIy + I'z)
tE( N ex‘) _22r~%211

[3[T21T12 — Toa(Ty1 + Top)] + Tzl

doy3
- 30200 — T
—T1i303, + T3y
4o —TI'l}, + 3Tl
-z I3l — T3l

—Is[Cu (T +T22) =Tl +Fisln T
(G5)

with the determinant of the remaining 3 x3 subsystem

E = -4l — Fpla)(Thn + Taz).

The formula for the variances of the mean input potential &
and the firing rate » can be more easily interpreted if some
further, heuristic simplifications are made. For the parameters
used in our study, we observed that I'j; is typically much
larger than I, so that we could safely replace the terms
I'11 + Ty in Eq. (G5) by TI'y;. Likewise, we found that the
terms proportional to o3 and 0,3 in Eq. (G5) are small enough
to be ignored. These simplifications yield

1 1 wry 2
oo\ Ty T %)
2(1 —wk)\ TN
To simplify even further, we note that in our simulations we
have that |w|Fj, >> 1, and hence

2
—wr o] 1
o1~ 0y S )
2TtN —2w ) F
As mentioned in the main text, the variance of the population

firing rate is dominated by the first term in Eq. (43), so that we
obtain from Eq. (G6)

(G6)

—wry aele
var(r) ~ N —i—m F.

The variance in the first-order MF theory can be either calcu-
lated directly from Eq. (20) or can be understood as a special
case of the formulas Eqs. (G6) and (G7) for p — 1 while
keeping N constant. The variances for the mean input and the
population firing rate read

_ 1 2
var(h) = ol +02, ),
2(1 —wep) \ TN
1 w2r0 5 2
2(1 _w¢h)< _L_N +0€X[)¢h’

where ¢y, is the derivative of the single neuron transfer func-
tion at the fixed point. For the the approximation 1 — w¢;, ~
—we, we arrive at the same form as Egs. (G6) and (G7).

(G7)

var(r) =

APPENDIX H: CALCULATION
OF THE FUNCTIONS F AND G

For the evaluation of Eqgs. (23) and (24) for the given
nonlinearity (2), we use two known formulas [89] for

Gaussian integrals,

f (a -+ br)go 1 (v)dx = <1>(

o]

757

/ " ©2(a + g, (0dx = <1>(

oo

757

1
-7 )
I+ V14282

with a, b € R and go ; being the standard normal distribution.
Here

8o,1(hx

)
. dx

T(h, a) = go.1(h) /0

is the Owen’s T function. For our integral (23) we need to
substitute x := (h — h)/o

S, * Q(Bh—1)) (h—h)?
F(/’l,O’ )_rm/_mﬁexp[—v] dh

= j;_n _Z D(Bh—v)+ ﬁ«/px)e’xzﬂdx

=r,d —B(ﬁ_ﬁ)

The second integral (24) is computed analogously using the
same substitution.

APPENDIX I: THERE EXISTS EXACTLY ONE
FIXED POINT FOR INHIBITORY NETWORKS
WITH POSITIVE EXTERNAL DRIVE

For the calculation of the fixed points of the second-order
model (20), we set the left-hand side to zero and solve the
following equations for /g:

h
ro = F(ho, o*(ho)) = m(ﬁ) =: F(hy),
an
ro = M’ (12)
w

where a = —p?w(1 — p)/(2tC) > 0. The strictly positive
nonlinear function F in Eq. (I1) can only intersect the linear
function in Eq. (I2) at a value for the fixed point hy < .
Equation (I2) represents a strictly monotonically decreasing
function of Ay for w < 0. We will show that for py > 0, the
function F (k) is strictly monotonically increasing for ag < .
The consequence is that both graphs will only intersect at
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TABLE II. Model parameters and their values.

Parameter Value/relations Description

T 20 ms Time constant of the low-pass filter dynamics

T'm 100 Hz Maximal firing rate

B 5mV~! Steepness of the single-neuron transfer function (threshold sharpness)
% 0mV Inflection point of single-neuron transfer function (soft threshold)
d 0 ms (unless otherwise noted) Transmission delay

)4 see figure captions Connection probability

N see figure captions Number of neurons

C C =pN Number of incoming synapses

w w = —1 mV s (unless noted otherwise) Total coupling strength

J J =w/C, (mVs) Efficacy of single synapse

a;j (a;;) ~ Uniform({A € {0, JV*¥ : 3% | A;;=C})  Adjencency matrix, @;; = Lineuron j connected o1}

Jij Jij = Jajj Synaptic efficacy from neuron j to i

wj w;i;j = NJjj, (wij) = w Rescaled synaptic efficacy

exactly one point providing a unique fixed point. The proof for ~ given by the derivative of the error function:

the monotonicity of F (hy) is straightforward. The derivative is

TABLE III. Performance summary of the mean-field theori

52],’2
dF  rmBexp[- 1+a(/Ao—h)]

A~ 2T aGue -

1 ah

2 1+alu—h)

( )

es for different parameter regimes. *Exact, apart from the minor diffusion

approximation of the shot noise, which is valid for sufficiently large C and which is actually not really necessary: one could go back and replace
the term A(z) = r(t) + «/r(t)/Nn(t) by a Poissonian shot noise A(¢) = Pois(Nr(t)dt)/(Ndt), which would recover the exact dynamics.

Parameter regime MF1, Eq. 21) MF2, Eq. (20) MFsparselim, Eq. (22)
N,C — oo, d- - -
o= C/N = O(1) Tk = Bt )+ wre —d). () = $(h(0) an
(dense) e Exact
N — 00, C = O(1) — Eq. J1)
(sparse) d - _
v Stationary population rate t 5}’ = —ht pen(t) +wrlt —d)
(for not too strong coupling) w?
X Time-dependent rate T 502 =-20"+ Er(t —d), J2)
response poor _
r(t) = F(h(t), 0% (1))
e Exact for annealed network
e For quenched network:
v’ Stationary population rate better than MF1
v' Synamical rate response
N <oo,p=1 — Eq. (J2) withC =N

dr

dh _
T— = _h+ﬂext(t)+ w

r(t —d)
N

X No finite-size fluctuations
XStationary and

|:r(t —d)+

n(t)}

t) = ¢(h(t 13
rt) = ¢(h(®) d3) time-dependent rate poor
e Exact*
N<oo,0<p<l1 — v’ Captures finite-size fluctuations — Eq. (J2)
Eq. (J3) very well for annealed network

e Does capture finite-size
fluctuations but with significant
errors for annealed and (much
more) for quenched networks

v’ Strong improvement for X No finite-size fluctuations
quenched network compared

to MF1
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The first factor is always positive, the remaining factor pro-
vides the condition for the monotonic increase:

2
—+2up > h.
o
For 1o > 0, this condition is fulfilled because
2
o + 210 > o > h.

Here we used o > 0, ug > 0, and o > hy. With F(h) > 0
strictly monotonically increasing and the linear function in

Eqg. (I1) monotonically decreasing there must be exactly one
fixed-point solution Ay €] — 00, uo[ with a positive firing rate
ro > 0.

APPENDIX J: SUMMARY TABLES

An overview of the parameters and the population models
in different parameter regimes are provided in Tables II and
III, respectively.
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