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Abstract
Coarse-graining microscopic models of biological neural networks to obtain
mesoscopic models of neural activities is an essential step towards multi-scale
models of the brain. Here, we extend a recent theory for mesoscopic population
dynamics with static synapses to the case of dynamic synapses exhibiting short-term
plasticity (STP). The extended theory offers an approximate mean-field dynamics for
the synaptic input currents arising from populations of spiking neurons and synapses
undergoing Tsodyks–Markram STP. The approximate mean-field dynamics accounts
for both finite number of synapses and correlation between the two synaptic
variables of the model (utilization and available resources) and its numerical
implementation is simple. Comparisons with Monte Carlo simulations of the
microscopic model show that in both feedforward and recurrent networks, the
mesoscopic mean-field model accurately reproduces the first- and second-order
statistics of the total synaptic input into a postsynaptic neuron and accounts for
stochastic switches between Up and Down states and for population spikes. The
extended mesoscopic population theory of spiking neural networks with STP may be
useful for a systematic reduction of detailed biophysical models of cortical
microcircuits to numerically efficient and mathematically tractable mean-field
models.

Keywords: Short-term plasticity; Multi-scale modeling; Mesoscopic population
dynamics

1 Introduction
One of the primary goals in computational neuroscience is to understand how brain func-
tions arise from the interactions of billions of nerve cells and their underlying biophysical
processes at the microscopic scale. Towards that goal, a crucial step is to develop a the-
oretical framework that links biophysically detailed networks of spiking neurons at the
microscopic scale with simplified firing-rate or neural-mass models [1] for neuronal pop-
ulations at the coarse-grained mesoscopic or macroscopic scale. Firing-rate models are
mathematically tractable and thus permit a theoretical understanding of neuronal pop-
ulation dynamics implicated in various neural computations [2–6]. However, firing rate
models are heuristic models that lack a clear link to the underlying microscopic proper-
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ties. On the other hand, highly detailed biophysical models of cortical microcircuits [7]
and simplified networks of spiking point neurons [8–10] are closely linked to biophys-
ical properties but lack mathematical tractability and do not provide a mechanistic un-
derstanding of emergent functional behavior. However, if we were able to systematically
reduce biophysically detailed models to simplified networks of spiking point neurons [11]
and further to coarse-grained firing-rate models [12], we might be able to understand neu-
ral computations at the population level in terms of biophysical parameters. One common
strategy for coarse-graining a cortical network is to identify approximately homogeneous
neuronal populations that consist of cells with similar properties and inputs; e.g., neurons
may be grouped with respect to their cell type and cortical location [12, 13]. Biological data
suggests that the size of such neuronal populations are typically small containing only on
the order of hundred to thousand of neurons [14]. Recently, a mesoscopic mean-field the-
ory that accounts for finite-size noise has been proposed [12] based on the refractory den-
sity equations for macroscopic homogeneous populations of neurons (where the number
of neurons tends to infinity) [15–18]. However, in [12], synapses are assumed to be static
in the sense that the effective synaptic coupling between two populations of neurons is
constant over time.

A ubiquitous feature of cortical dynamics is synaptic short-term plasticity (STP) [19–
22], i.e. dynamic changes of synaptic strength on time scales of 100 ms to 1000 ms induced
by presynaptic neural activity. Theoretical studies have shown that STP exerts profound
effects on network activity [23–25] and information processing capabilities [19, 26–29]. In
particular, in a recent biophysically detailed microcircuit model [7], STP has been a criti-
cal factor for reproducing experimentally observed activity patterns. Therefore, a faithful
reduction to population rate models should incorporate the effect of STP. Mean-field de-
scriptions for populations of spiking neurons with dynamic synapses are central for such
a reduction. Although mean-field theories for STP have been developed for the case of
macroscopic populations [4, 30–32], a mesoscopic mean-field theory that would account
for finite-size fluctuations is still lacking.

In this work, we extend the mesoscopic theory of [12] for static synapses to the case of
dynamic synapses exhibiting Tsodyks–Markram STP [30]. In Sect. 2 we expose our the-
ory by considering a feedforward setup [27, 33]. We use an assumption (loosely speaking
a Poissonian assumption on the spike statistics), Assumption 1, which enables the deriva-
tion of mesoscopic mean-field dynamics for the effective input. We then compare numer-
ically the effective input given by the mesoscopic mean-field dynamics with simulations
of the full microscopic population, in the case where the presynaptic population consists
of N Poisson neurons. The Poisson case is of special interest because Assumption 1 is
satisfied. In Sect. 3, we first explain how the theory of Sect. 2 can be applied to general
mesoscopic circuits. We then illustrate how the mesoscopic STP model accurately repli-
cates population spikes and switches between Up and Down states exhibited by a recurrent
network of time-inhomogeneous Poisson neurons. Finally, we incorporate the mesoscopic
STP model into our previous mesoscopic population model [12] for generalized integrate
and fire (GIF) neurons. We show that the resulting extension faithfully reproduces popu-
lation spikes observed in a microscopic simulation. In Sect. 4, we discuss the limitations of
our mesoscopic model for GIF neurons and mention possible theoretical extensions. The
numerical implementation of the mesoscopic equations are detailed in the Appendix.
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2 Feedforward network with a finite number of dynamic synapses
2.1 Network setting and theoretical approach
To derive the mesoscopic theory, let us consider a feedforward setup: N neurons from
a presynaptic population are connected to a given postsynaptic neuron via N synapses
(Fig. 1(A)). This setup is important because under the approximations we will use, the the-
ory obtained for this simple case can be directly applied to general mesoscopic circuits. In
addition, the setup is important for biological modeling because feedforward pathways ex-
hibiting STP are prominent in the nervous system. Examples include visual [19], auditory
[34], somatosensory [35] and periform [36] cortices.

Before we start with the treatment of dynamic synapses, it is instructive to first recall the
simpler case of static synapses [12]. In this case, the synaptic input current (in a current-
based model) IN

syn(t), t > t0, is modeled microscopically as the sum of synaptically-filtered
spike trains:

IN
syn(t) =

N∑

j=1

J
N

∫ t

t0

ε
(
t – t′)sj

(
t′)dt′. (1)

Here, J is the synaptic weight (in units of electrical charge) assumed to be identical for all
synapses onto the postsynaptic neuron, ε(t) is a synaptic filtering kernel (defined as the
postsynaptic current normalized by the total charge elicited by a single spike) and

sj(t) =
∑

k∈Z+

δ
(
t – tj

k
)

(2)

is the Dirac-delta spike train of neuron j with spike times {tj
k}k∈Z+ , t0 < tj

1 < tj
2 < · · · < ∞.

Here and in the following, a superscript N (as in IN
syn) denotes a functional of the N presy-

naptic spike trains s1(t), . . . , sN (t), and hence a mesoscopic quantity.
In mesoscopic models of homogeneous neuronal populations, the central mesoscopic

variable is the population activity AN (t) defined as the sum of spike trains of all neurons

Figure 1 Illustration of the setup in the feedforward network. (A) Two populations connected in a feedforward
manner via dynamic synapses. We focus on the connections from neurons j, j = 1, . . . ,N, in the presynaptic
population to a specific postsynaptic neuron i. (B) Microscopic picture of N presynaptic spike trains sj(t)
driving the STP dynamics of uj(t) and xj(t) for each of the N synapses. The postsynaptic input resulting from
synapse j is uj(t)xj(t)sj(t) and the total postsynaptic input is y(t) = N–1 ∑N

j=1 uj(t)xj(t)sj(t). (C) Mesoscopic picture

of one effective synapse withmean-field STP dynamics driven by the population activity AN(t) of N neurons.
The population activity AN(t) is defined as the population average of the spike trains of each of the N neurons
forming the population. Thus, when the individual spike trains sj(t) are known, AN(t) = N–1 ∑N

j=1 sj(t)



Schmutz et al. Journal of Mathematical Neuroscience            (2020) 10:5 Page 4 of 32

in a population divided by the number of neurons. In our case, the mesoscopic activity of
the presynaptic population is thus given by

AN (t) =
1
N

N∑

j=1

sj(t). (3)

Using the mesoscopic activity of the presynaptic population, the synaptic input current,
Eq. (1), can be rewritten as

IN
syn(t) = J

∫ t

t0

ε
(
t – t′)AN(

t′)dt′. (4)

Thus, for static synapses, the synaptic input current is completely determined by the past
population activities {AN (t′)}t′<t . This property is crucial for mesoscopic population mod-
els that are formulated in terms of mesoscopic population activities [12, 37]. In particular,
in simulations of such mesoscopic models forward in time, the information about past
population activities is available at each point in time and can thus be used to compute
the input current at present time. In our approach, we thus aim at finding a dynamics of
the synaptic input conditioned on the history of the population activity AN (t). We would
like to stress that this aim is markedly different from well-known diffusion approxima-
tions [38, 39] (see also [40, 41] for examples in neuroscience), where a jump process is
approximated, when jumps become frequent and small, by a diffusion process. In particu-
lar, a diffusion approximation would yield a stochastic dynamics if conditioned on the past
population activities, in stark contrast to the deterministic conditional dynamics, Eq. (4).

Finding a deterministic relationship between the synaptic input and a given realization
AN (t), as in Eq. (4), is no longer possible in the case of dynamic synapses. In this case, the
input spike trains sj(t) are modulated by a dynamic factor Rj(t) modeling the effect of STP.
In contrast to static synapses, Eq. (1), the synaptic current for dynamic synapses reads

IN
syn(t) =

N∑

j=1

J
N

∫ t

t0

ε
(
t – t′)Rj

(
t′)sj

(
t′)dt′. (5)

Inverting the sum and the integral we get

IN
syn(t) = J

∫ t

t0

ε
(
t – t′)yN(

t′)dt′, yN (t) =
1
N

N∑

j=1

Rj(t)sj(t), (6)

where we introduced the total postsynaptic input (TPSI) yN (t). Equation (6) shows that de-
termining the synaptic input IN

syn(t) from the knowledge of the population activity AN (t) is
an underconstrained problem because yN (t) is a weighted average of spike trains whereas
AN (t) is an unweighted average. Thus, in mesoscopic simulations, we expect that the
synaptic input is strongly but not fully constrained by the knowledge of past population
activities. To capture STP in a mesoscopic model, our approach is to find an approximate
mean-field dynamics for yN (t) by introducing additional mesoscopic variables that are
driven by the population activity and noise that accounts for the inevitable uncertainty
of yN (t) given the history of the population activity. Importantly, such mean-field dynam-
ics would be mesoscopic in the sense that its simulation does not require simulating all
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the individual presynaptic neurons and synapses but only a few mesoscopic variables. In
addition, for such an approximation to be useful for coarse-graining, its numerical imple-
mentation should be computationally economical compared with the simulation of the
full microscopic model.

Now we fully specify the dynamics of yN (t) as defined Eq. (6) (the microscopic model)
in Sect. 2.2 and derive its mesoscopic approximation in Sect. 2.3.

2.2 Microscopic model
In order to fully specify the dynamics of yN (t) defined in Eq. (6) given the collection of spike
trains {sj}j=1,...,N , we need to define the dynamics of {Rj}j=1,...,N , which modulates the ampli-
tude of the spikes in sj(t). For each synapse j, the time evolution of Rj is deterministic given
sj and follows the Tsodyks–Markram model for STP [30]. The modulation factor Rj(t) can
be seen as the amount of neurotransmitter that would be released if a spike occurs at time
t. It is given by the product of two synaptic variables, Rj(t) = uj(t–)xj(t–), where xj(t) is the
amount of available synaptic resources and uj(t) is the utilization of available resources
(i.e. the fraction of these available resources that would be released if a spike occurs) at
synapse j. Given the presynaptic spike trains sj(t), these variables obey the dynamics

duj(t)
dt

=
U0 – uj(t)

τF
+ U

(
1 – uj

(
t–))

sj(t), (7a)

dxj(t)
dt

=
1 – xj(t)

τD
– uj

(
t–)

xj
(
t–)

sj(t), (7b)

where τF and τD are the facilitation and depression time constants, respectively, U0 is the
baseline utilization of synaptic resources, U determines the increase in the utilization of
synaptic resources by a spike. Here, uj(t–) is a shorthand for the left limit at time t. Note
that the presence of the product ujxj in Eq. (7b) introduces a nonlinear coupling between
the dynamics of uj and xj. Having specified the STP dynamics, we can rewrite the TPSI,
Eq. (6), as follows:

yN (t) =
1
N

N∑

j=1

uj
(
t–)

xj
(
t–)

sj(t). (8)

In the next section, we present our main result, which provides a mean-field approxi-
mation y(t) that is determined by the history of the mesoscopic presynaptic population
activity AN (t) rather than individual presynaptic spike trains sj(t) or synaptic variables uj

and xj.

2.3 Mesoscopic approximation
To relate the TPSI, Eq. (8), to the presynaptic population activity we consider the collection
{tk}k∈Z+ of all spike times of the superposition spike train SN (t) := NAN (t) =

∑
j sj. At the

mesoscopic scale, we only know that there is a presynaptic spike arriving at time tk but we
do not know at which synapse. That is, we do not know the mapping j(k) that maps spike
arrival times tk to specific synapses j. In terms of the spike times tk and the mapping j(k),
the population activity and the TPSI can be rewritten as

AN (t) =
1
N

∑

k∈Z+

δ(t – tk) (9)
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and

yN (t) =
1
N

∑

k∈Z+

uj(k)
(
t–)

xj(k)
(
t–)

δ(t – tk), (10)

respectively. Equation (10) still contains the microscopic variables uj and xj and thus the
precise spike arrival times tj

k at synapse j. To derive a mean-field approximation y(t) that
only depends on the spike times {tk}k∈Z+ of the superposition spike train SN (t), we make
two approximation steps: (i) a randomization of synapse indices j(k) at each spike time tk

and (ii) a Gaussian approximation concerning the variables uj(k)(t) and xj(k)(t) determining
the “amplitudes” of the delta spikes in Eq. (10). The purpose of the first approximation step
is a probabilistic description of the values uj(k)(t–

k ) and xj(k)(t–
k ) upon spiking that accounts

for the lack of knowledge about synapse identities j(k) at spike times tk . This step rests on
an assumption on the law of {sj}j=1,...,N . In feedforward models with biologically realistic
spike train statistics or in recurrent networks of spiking neurons, this assumption has to
be understood as a useful approximation as it is not satisfied in general.

Assumption 1 The set of spike trains {sj}j=1,...,N has the same law as a set of spike trains
{s∗

j∗}j∗=1,...,N that is constructed by picking independently and uniformly, for each spike time
{tk}k∈Z+ of the superposition spike train SN (t), an integer j∗(k) between 1 and N and as-
signing a spike to neuron j∗(k) at time tk .

An important case for which Assumption 1 is satisfied is the case where {sj}j=1,...,N is
given by N independent Poisson processes with the same (time-varying) intensity. This
special case will be extensively used in numerical simulations. Note that Assumption 1 is
strictly weaker than assuming that the spike trains of the neurons are given by independent
Poisson processes. Here is a simple counterexample: consider the process where at each
time tk = t0 +kτ̂ for k ∈ Z+ and τ̂ > 0, a spike occurs at neuron jk , jk being chosen randomly,
uniformly and independently at each time tk . This process satisfies Assumption 1 but is
clearly not Poisson.

Assumption 1 will be useful in the following because it will enable us to replace the
unknown synapse j(k) at some spike time tk by a randomly chosen synapse j∗(k). This
randomization of synapse indices yields a new set of presynaptic spike trains {s∗

j }j=1,...,N

whose population activity A∗(t) := 1
N

∑N
j=1 s∗

j (t) is identical to the population activity AN (t)
and which by assumption is statistically equivalent to the original spike trains {sj}j=1,...,N .
Furthermore, the spike trains {s∗

j }j=1,...,N induce new STP variables u∗
j and x∗

j that obey,
analog to Eqs. (7a)–(7b), the dynamics

du∗
j (t)

dt
=

U0 – u∗
j (t)

τF
+ U

(
1 – u∗

j
(
t–))

s∗
j (t), (11a)

dx∗
j (t)

dt
=

1 – x∗
j (t)

τD
– u∗

j
(
t–)

x∗
j
(
t–)

s∗
j (t), (11b)

with initial conditions u∗
j (t0) = uj(t0), x∗

j (t0) = xj(t0). Assumption 1 implies that the jump
processes [u∗

j (t), x∗
j (t)], j = 1, . . . , N , have the same law as the original STP variables

[uj(t), xj(t)], j = 1, . . . , N .
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Using the random indices j∗(k), we define a two-dimensional càdlàg jump process
{(û∗(t), x̂∗(t))}t>t0 : For all k ∈ Z

+, if t ∈ [tk , tk+1[ we set

û∗(t) := u∗
j∗(k)(t), x̂∗(t) := x∗

j∗(k)(t), (12)

i.e. û∗(t) and û∗(t) are equal to u∗
j (t) and x∗

j (t) of that neuron j which had the most re-
cent spike prior or equal to time t. In the following, the process {(û∗(t), x̂∗(t))}t>t0 will ap-
pear in the STP dynamics only as prefactors of Dirac-delta spikes. Therefore, only the
values (û∗(tk), x̂∗(tk)) at times tk will enter the dynamics. The formulation at all time t > t0,
Eq. (12), will allow us to factorize modulated spike trains into modulation factor and popu-
lation activity. For example, using the process (û∗(t), x̂∗(t)) we can define the new quantity

y∗(t) :=
1
N

∑

k∈Z+

û∗(tk)x̂∗(tk)δ(t – tk) =
1
N

∑

k∈Z+

û∗(t)x̂∗(t)δ(t – tk) (13)

= û∗(t)x̂∗(t)AN (t) = û∗x̂∗AN (t), (14)

where the second equality in Eq. (13) follows from the properties of the Dirac-delta func-
tion. In the last equation, we have introduced the shorthand notation û∗ := û∗(t) and
x̂∗ := x̂∗(t). By construction of the processes û∗(t) and x̂∗(t), we can state an important
fact.

Fact 1 Under Assumption 1, the processes yN (t) and y∗(t) have the same law. Moreover,
conditioned on the population activity AN (t), both processes have the same spike times.

Therefore, we expect that y∗(t) yields an accurate approximation of the TPSI yN (t) that
is not only statistically equivalent but also captures the precise realization of spike times of
the mesoscopic activity AN (t). However, y∗(t) is not yet useful for a mesoscopic simulation
because the process (û∗(t), x̂∗(t)) is constructed from the microscopic variables u∗

j (t) and
x∗

j (t), j = 1, . . . , N , which still need to be simulated individually.
In order to obtain an approximation that does not rely on microscopic simulations, we

introduce new mesoscopic variables given by the empirical means and covariances of uj(t)
and xj(t):

uN (t) :=
1
N

N∑

j=1

uj(t), xN (t) :=
1
N

N∑

j=1

xj(t), (15a)

PN (t) :=
1
N

N∑

j=1

u2
j (t), QN (t) :=

1
N

N∑

j=1

x2
j (t), (15b)

RN (t) :=
1
N

N∑

j=1

uj(t)xj(t). (15c)

Similar to yN , we can find an accurate approximation for the new mesoscopic variables
using analog definitions based on the asterisk (∗) variables:

u∗(t) :=
1
N

N∑

j=1

u∗
j (t), x∗(t) :=

1
N

N∑

j=1

x∗
j (t), (16a)
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P∗(t) :=
1
N

N∑

j=1

u∗2
j (t), Q∗(t) :=

1
N

N∑

j=1

x∗2
j (t), (16b)

R∗(t) :=
1
N

N∑

j=1

u∗
j (t)x∗

j (t). (16c)

Because [uj, xj] and [u∗
j , x∗

j ] have the same law, we can state the following.

Fact 2 The processes [u∗, x∗, P∗, Q∗, R∗] and [uN , xN , PN , QN , RN ] are multi-dimensional
jump processes that have the same law. Moreover, conditioned on the population activity
AN (t), the two jump processes have the same jump times.

Lemma 2.1 The jump process [u∗, x∗, P∗, Q∗, R∗] obeys the dynamics

du∗

dt
=

U0 – u∗

τF
+ U

(
1 – û∗)AN (t), (17a)

dx∗

dt
=

1 – x∗

τD
– û∗x̂∗AN (t), (17b)

dP∗

dt
= 2

U0u∗ – P∗

τF
+ U

(
1 – û∗)[(2 – U)û∗ + U

]
AN (t), (17c)

dQ∗

dt
= 2

x∗ – Q∗

τD
– û∗x̂∗2(2 – û∗)AN (t), (17d)

dR∗

dt
=

U0x∗ – R∗

τF
+

u∗ – R∗

τD
+ x̂∗[U

(
1 – û∗)2 – û∗2]AN (t), (17e)

with initial conditions u∗(t0) = uN (t0), x∗(t0) = xN (t0), P∗(t0) = PN (t0), Q∗(t0) = QN (t0),
R∗(t0) = RN (t0).

The proof is presented in Appendix A.
So far, we obtained approximations y∗ and [u∗, x∗, P∗, Q∗, R∗], in which û∗ and x̂∗ are cho-

sen randomly at spike times so as to account for the missing information about synapse
identities at the microscopic scale. However, the process [u∗(t), x∗(t), P∗(t), Q∗(t), R∗(t)]
is not yet useful for a mesoscopic simulation because the processes û∗(t) and x̂∗(t) re-
quire the simulation of the microscopic variables u∗

j (t) and x∗
j (t), j = 1, . . . , N . To resolve

this problem, we make a Gaussian approximation of the two-dimensional random vari-
ables (û∗(tk), x̂∗(tk)) that is solely based on mesoscopic variables. We note again that
only the values (û∗(tk), x̂∗(tk)) at spike times matter for the STP dynamics marked with
asterisks, Eqs. (14) and (17a)–(17e), because they only appear as prefactors of Dirac
delta spikes. For a Gaussian approximation of [û∗(tk), x̂∗(tk)], we need its first two em-
pirical moments given by Eqs. (16a)–(16c). This means that at each spike tk of AN (t),
a sample [û(tk), x̂(tk)] is drawn from a bivariate Gaussian distribution parametrized by
[u∗(t–

k ), x∗(t–
k ), P∗(t–

k ), Q∗(t–
k ), R∗(t–

k )]. To close the system, we also need to approximate
[u∗, x∗, P∗, Q∗, R∗] by new variables [u, x, P, Q, R] that obey Eqs. (17a)–(17e) but in which
[û∗(tk), x̂∗(tk)] is replaced by its Gaussian approximation [û(tk), x̂(tk)]. Likewise, we use
[û(tk), x̂(tk)] in Eq. (14) to approximate the TPSI y∗ by a variable y. Thus, we obtain our
main result.
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Second-order mean-field approximation Let {tk}k∈Z+ be the spike times of superposition
spike train S = NAN . Consider the process (u(t), x(t), P(t), Q(t), R(t), û(t), x̂(t)) defined by the
system of equations

du
dt

=
U0 – u

τF
+ U(1 – û)AN (t), (18a)

dx
dt

=
1 – x
τD

– ûx̂AN (t), (18b)

dP
dt

= 2
U0u – P

τF
+ U(1 – û)

[
(2 – U)û + U

]
AN (t), (18c)

dQ
dt

= 2
x – Q
τD

– ûx̂2(2 – û)AN (t), (18d)

dR
dt

=
U0x – R

τF
+

u – R
τD

+ x̂
[
U(1 – û)2 – û2]AN (t), (18e)

where at each spike time {tk}k∈Z+ , a random sample [û(tk), x̂(tk)] is drawn from the two-
dimensional Gaussian distribution parametrized by [u, x, P, Q, R]:

(
û(tk)
x̂(tk)

)
∼N

((
u(t–

k )
x(t–

k )

)
,

(
P(t–

k ) – u(t–
k )2 R(t–

k ) – u(t–
k )x(t–

k )
R(t–

k ) – u(t–
k )x(t–

k ) Q(t–
k ) – x(t–

k )2

))
, (18f)

and for the irrelevant values between spikes we arbitrarily set (û(t), x̂(t)) = (û(tk), x̂(tk)) if
t ∈ [tk , tk+1[ for all k ∈ Z

+. The mesoscopic mean-field approximation of the synaptic input
is

yN (t) ≈ y(t) := û(t)x̂(t)AN (t)=
1
N

∑

k

û(tk)x̂(tk)δ(t – tk),

IN
syn(t) ≈ Isyn(t) := J

∫ t

t0

ε
(
t – t′)y

(
t′)dt′.

(18g)

Remarks on the approximation
(1) Various initial conditions are possible for the mesoscopic dynamics. One reasonable

choice is u(t0) = 0, x(t0) = 1, P(t0) = Q(t0) = R(t0) = 0.
(2) The approximation is mesoscopic because the process (u, x, P, Q, R, û, x̂) defined by

Eqs. (18a)–(18e) and (18f) does not involve any microscopic simulations. The
process is solely driven by the mesoscopic population activity AN (t). The key
heuristic we use is the Gaussian approximation of the random variables uj∗(k)(t–

k )
and xj∗(k)(t–

k ) at spike times tk .
(3) In principle, the jump process, Eqs. (18a)–(18g), can be simulated by a discrete-time

forward scheme, where at each spike time tk a bivariate Gaussian random number is
drawn. In practice, however, such a simulation would be inefficient because for large
N the rate of spike times tk is large and thus the discretization time step needs to be
chosen extremely small in order to resolve each spike time. In Appendix B, we
present an efficient simulation scheme that allows many spikes per time step.

(4) The process (u, x, P, Q, R, û, x̂) associated with the mesoscopic approximation is well
defined. First, as the number of neurons N is finite, we can safely assume that the
number of spike in the population is finite on finite time intervals a.s. (all spiking
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neuron model have a finite number of spikes on finite time interval a.s.). Between
spikes, the evolution of the process is deterministic and easy to see. The more tricky
increments are at spike times {tk}k∈Z+ . At spike time tk , we first draw a random
sample (û(tk), x̂(tk)) according to Eq. (18f). Then we update û and x̂. Finally, we
update u, x, P, Q and R according to Eqs. (18a)–(18g). Thus, (u, x, P, Q, R, û, x̂) is a
jump process with random jump sizes, even when conditioned on AN .

(5) It is plausible that the second approximation step, in which the process
[y∗, u∗, x∗, P∗, Q∗, R∗, û∗, x̂∗] is approximated by Eqs. (18a)–(18g), becomes valid for
sufficiently large N . Here is a heuristic argument: IN

syn(t) is a convolution of yN (t)
with ε(t) (Eq. (6)). Assuming that ε is smooth and bounded, IN

syn(t) is determined by
the small time step integrals

∫ t′+�t
t′ yN (t′′) dt′′, for all t′ < t and �t > 0 arbitrarily

small. If the number of spikes in the interval [t′, t′ + �t] grows linearly with N , and if
�t is small enough, under Assumption 1, we can see (heuristically)

∫ t′+�t
t′ yN (t′′) dt′′

as the sum of αN (α is some constant) i.i.d random jumps scaled by 1/N . Hence, by
a central limit theorem type of argument,

∫ t′+�t
t′ yN (t′′) dt′′ only depends on the

mean and the variance of the random jumps. In other words, even if the [û∗, x̂∗] do
not become Gaussian when N is large, Eqs. (18a)–(18g) should become accurate
when N is sufficiently large because what matters (according to the above heuristic
argument) is that [û, x̂] has the right mean and variance. A rigorous proof of this
heuristic argument would be of mathematical interest but goes beyond the scope of
the present work.

(6) By construction, the process {y(t)}t>t0 can be easily conditioned on the process
{AN (t)}t>t0 : for any realization of the process AN (t), there is a well defined
conditioned process y|AN (t). This is a very practical feature because it means that we
have a well defined approximation for any AN (t), stochastic or deterministic. Note
that the process AN (t) does not need Assumption 1 to be satisfied to be well defined.
Hence, y|AN (t) is well defined even if Assumption 1 is not satisfied. Furthermore, this
conditioning feature allows us to generalize the current mesoscopic approximation
for feedforward networks to general mesoscopic networks as it will be explained in
Sect. 3.

Instead of the Gaussian approximation, Eq. (18f), it is tempting to consider a first-order
approximation, where û∗ and x̂∗ are approximated by the empirical means u∗ and x∗ ne-
glecting their variance and covariance. Setting the covariance matrix in Eq. (18f) to zero
yields the following.

First-order mean-field approximation We have

du
dt

=
U0 – u

τF
+ U

(
1 – u

(
t–))

AN (t), (19a)

dx
dt

=
1 – x
τD

– u
(
t–)

x
(
t–)

AN (t), (19b)

yN (t) ≈ y(t) = u
(
t–)

x
(
t–)

AN (t). (19c)

This approximation is very similar to the classic mean-field equations derived for N →
∞ by [30] except that it is driven by a sum of spike trains AN (t) = 1

N
∑N

j=1 sj(t) and not a
continuous rate r(t).
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Figure 2 Example of microscopic andmesoscopic synaptic dynamics for 200 presynaptic stationary Poisson
neurons. (a1) Raster plot of N = 200 presynaptic stationary Poisson neurons with rate 10 Hz. (a2–4) Trajectories
of variables uj(t) and xj(t) and the resulting modulation factor Rj(t) ≡ uj(t)xj(t) for two example neurons (gray
lines). The black line shows the population averages u(t), x(t) and R(t) calculated from Eqs. (15a)–(15c).
(b1) Population activity AN(t) corresponding to the 200 spike trains shown in (a1). (a2–4) Trajectories of the
mesoscopic variables u(t), x(t) and R(t) predicted by the first- and second-order MF (blue and red, respectively)
compared to the microscopic simulation (black) which correspond to the population averages shown on the
left. Note that the y-axis scale is different in (a2–4) and (b2–4). In (b4), we see that, while finite-size
fluctuations in R for the population average are reproduced by both first- and second-order MF, the first-order
MF makes an error in predicting the mean. (c1–4) is the same as (b1–4) except that we force AN to be
constant: while the sj are still Poisson spike trains with rate 10 Hz, they are generated such that AN is constant
over time. This removes the effect of the finite-size fluctuations of AN on the finite-size fluctuations of the
mesoscopic STP u, x and R. (b2–4) In contrast with the first-order MF, the second-order MF reproduces the
residual finite-size fluctuations observed in the microscopic simulation. Synaptic parameters: τD = 0.15 s,
τF = 0.15 s, U = U0 = 0.2. (b1) and (c1) are binned with bin size 0.005 ms

In this paper, we name Eqs. (18a)–(18g) the second-order mean-field theory (abbrevi-
ated second-order MF) and Eqs. (19a)–(19c) the first-order mean-field theory (abbrevi-
ated first-order MF).

In the rest of this work, we compare numerically the more sophisticated second-order
MF to the simpler first-order MF. In this section, we focus on the case where the presy-
naptic spike trains {sj}j=1,...,N are given by N independent Poisson processes with constant
rate because in this case, Assumption 1 is satisfied. In Appendix B, we provide an efficient
simulation algorithm for Eqs. (18a)–(18g).

Trajectories of uj, xj and Rj as well as u, x and R obtained from a microscopic simula-
tion are shown in Fig. 2. The mesoscopic variable R is tracked by the second-order MF
dynamics with high accuracy (Fig. 2(b4)). The first-order MF also yields reasonable re-
sults, although a small deviation in the mean R over time is apparent (Fig. 2(b4)). This is
consistent with previous findings [30], where it has been shown analytically that in the sta-
tionary case, relative correlations are small but significant. Note that the second-order MF
distinguishes two sources of finite-size noise: noise that comes from the finite-size fluc-
tuations of AN and second, noise that comes from the sampling of û and x̂ at each spike.
This second source of noise is absent in the first-order MF. In a numerical simulation with
time step �t, it is possible to isolate this second source of noise: if N ·�t · r (where r is the
rate of the Poisson process) is a strictly positive integer α, we can choose, independently
at each time step, α neurons uniformly across the N neurons and make them spike. This
procedure generates N discretized Poisson spike trains of rate r with a “constant” popu-
lation activity AN over time. Here, “constant” means that the time-discretized population
activity AN (t) = n(t)/(N�t) in the numerical simulation with time step �t is constant, i.e.
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Figure 3 Synaptic dynamics in response to step increments in the presynaptic firing rate. (i) Population activity AN

of 100 Poisson neurons when the presynaptic firing rate changes sharply from 0 Hz to 1, 10 and 25 Hz.
(ii) Corresponding mesoscopic modulation factor R predicted by the first- and second-order MF (blue and red
lines respectively) compared to the microscopic simulation (black line). Note that at 10 Hz the second-order
MF corrects the overestimation in the mean of the first-order MF and reproduces finite-size fluctuations of
amplitude similar to that of the population average. Synaptic parameters: τD = 0.15 s, τF = 0.15 s, U = U0 = 0.2

the total number of spikes in [t, t + �t) is fixed. Note that in this case, the spike trains are
not independent of each other but this does not affect our derivation. This procedure is
followed in Fig. 2(c1–4): the first-order MF predicts noiseless STP dynamics whereas the
second-order MF accurately reproduces the residual finite-size fluctuations.

The deviations of the first-order MF become more pronounced during non-stationary
transients caused by stepwise increases of the rate of the Poisson process (Fig. 3). The
response to step increases accurately traced by the second-order MF, but not by the first-
order MF which neglects the correlations between uj and xj.

2.4 Statistics of the total postsynaptic input
To compare microscopic and mesoscopic descriptions more systematically, we measured
the first- and second-order statistics from simulations for varying parameters. At first, we
computed the mean of the modulation factor R for the stationary process (〈sj(t)〉 = r =
const.) using the microscopic dynamics,

〈R〉 =
〈
uj(t)xj(t)

〉
, (20)

where 〈·〉 denotes the ensemble (trial) average, i.e. the average over realizations of the Pois-
son processes sj(t). The mean TPSI is proportional to the mean modulation factor because
〈y〉 = 1

N
∑

j〈ujxj〉〈sj〉 = 〈R〉r. This simple proportionality follows from the fact that uj(t)xj(t)
at time t is uncorrelated with sj(t) at the same time because of the Poisson statistic of the
spike train and the update of variables after a spike; cf. Eqs. (7a) and (7b). As known from
previous work [30], the mean modulation 〈R〉 of a facilitating synapse increases with in-
creasing firing rate of presynaptic neurons when firing rates are small, and decreases again
at high rates due to depression (Fig. 4(C)). The first-order MF shows small deviations in
the mean modulation 〈R〉, which are removed by the second-order MF (Fig. 4(C)). A closer
inspection of the full parameter regime reveals that the deviation of first-order MF never
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Figure 4 First- and second-order statistics of the TPSI (y) for a presynaptic population of 100 stationary Poisson
neurons. (A), (B) Relative error of the mean TPSI over time 〈y〉t (A) and the coefficient of variation of the TPSI
over time (CV(y)t ) (B) predicted by the first- and second-order MF (left and right column respectively) with
respect to microscopic simulation, as a function of the synaptic parameters τD , τF and for two values of U
(with U = U0); U is set to 0.5 on the upper row and 0.2 on the lower row. On the x- and y-axes, τF · r is a unitless
quantity. In (A), the maximum relative error is 4.7% for the first-order MF and 0.3% for the second-order MF. In
(B), the maximum relative error is 28.6% for the first-order MF and 4.0% for the second-order MF. As scaling τF
and τD is equivalent to scaling the firing rate r, the relative error at different firing rates can be read moving
along the diagonal (white line). (C) Mean modulating factor 〈R〉t over time predicted by the first- and
second-order MF (dotted blue and solid red lines respectively) compared to microscopic simulations (dashed
black line) as a function of the firing rate r for a specific set of synaptic parameters. (D) TPSI variance over time
(Var(y)t ) predicted by the first- and second-order MF compared to microscopic simulations as a function of
the firing rate r for a specific set of synaptic parameters. Synaptic parameters used in (C)–(D) correspond to
the white line in (A)–(B) and are: τD = 0.3 s, τF = 0.3 s and U = U0 = 0.2. Simulation time step is 0.5 ms

exceeds 5% (Fig. 4(A)). Therefore the stationary mean TPSI is sufficiently well explained
by the first-order MF.

Also, we compared the statistics of fluctuations of the TPSI by measuring the respective
power spectral densities (PSD). The PSD can be computed as

Syy(f ) =
〈ỹ(f )ỹ(f )〉

T
, (21)

where ỹ(f ) =
∫ T

0 dt exp(2π ift)y(t) denotes the Fourier transform of y(t) for a finite but
large enough time window T . We found that the second-order MF significantly better
captured the variance (Fig. 4(D)) and the PSD (Fig. 5) of the stationary fluctuations than
the first-order MF. A closer inspection of the coefficient of variation of the fluctuations,√

Var(y)/〈y〉, over the full parameter space revealed that the first-order MF deviated up
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Figure 5 Power spectral densities (PSD) of the TPSI given a presynaptic population of 200 stationary Poisson
neurons. PSD of the TPSI of a depressing synapse ((i) and (ii)) and a facilitating synapse ((iii) and (iv)), when the
firing rate of the presynaptic neurons is 10 Hz ((i) and (iii)) and 100 Hz ((ii) and (iv)), predicted by the first- and
second-order MF (blue and red lines respectively) compared microscopic simulations (black line). Each PSD is
averaged over 5000 simulations and further smoothed using a moving average. Parameters for the
depressing synapse: τD = 0.1 s, τF = 0.05 s, U = U0 = 0.5. Parameters for the facilitating synapse: τD = 0.1 s,
τF = 0.7 s, U = U0 = 0.1. A in the upper panel is binned with bin size 0.005 ms

to 30% (especially for slow synaptic dynamics or high rates, Fig. 5(ii), (iv)), whereas the
second-order model performed well in the whole parameter space (Fig. 4(B)). We should
specify that the error of the first-order MF is negative, i.e. the first-order MF underesti-
mates the coefficient of variation up to 30%. This comes from the fact that in the meso-
scopic equations for the first-order MF equations (19a)–(19c), finite-size fluctuations of
the mesoscopic variables u and x are ignored.

In conclusion, while mean responses for stationary cases are well captured by the first-
order MF, the second-order MF gives a significantly better description of transient re-
sponses (Fig. 3) and fluctuations (Figs. 4(B), (D) and 5).

3 Recurrent network with STP
3.1 Microscopic model
As shown in our previous work [12], networks of multiple interacting homogeneous pop-
ulations of spiking neurons, with static synapses, can be accurately predicted with a meso-
scopic model. Incorporating the effect of STP in this general model using the mesoscopic
approximations of Sect. 2.3 for the feedforward case is actually easy. This is due to the fact
the mesoscopic approximation y(t) (both the first-order MF and the second-order MF)
can be conditioned on the population activity AN (t), as mentioned in Sect. 2.3. In order
to illustrate this, we consider for simplicity the special case of a single population with
recurrent connectivity. The network architecture is random with fixed in-degree C = pN ,
where N is the number of neurons in the population and p is the connection probability.
The synaptic strength is constant with magnitude w (in mV). The TPSI yi(t) and the synap-
tic current Isyn,i(t) driving the postsynaptic neuron i are related by Eq. (1) with J = τm

Rm
Npw.

In this paper, we use a synaptic filtering kernel with instantaneous rise and exponential



Schmutz et al. Journal of Mathematical Neuroscience            (2020) 10:5 Page 15 of 32

decay corresponding to the first-order kinetics

τs
dIsyn,i

dt
= –Isyn,i + Jyi(t), (22)

where τs is the synaptic filtering time constant. Importantly, the effect of STP is contained
in the TPSI yi(t) = 1

C
∑

j∈Γi
uj(t)xj(t)sj(t) via the synaptic variables uj and xj given by the

dynamics Eq. (7a) and (7b). Here, Γi denotes the index set of presynaptic neurons that
connect to neuron i.

As our derivation of the mesoscopic theory of STP uses the assumption that neurons
have Poisson statistics, we first apply our theory to Poisson rate neurons, which do not
exhibit a dependence on spike history. Then, using the same setup, the theory will be
applied to a network of generalized integrate-and-fire (GIF) neurons with pronounced
spike-history effects.

3.1.1 Poisson rate model
The Poisson rate model is defined by a continuous variable hi(t), called input potential.
The input potential of neuron i obeys the dynamics

τm
dhi

dt
= –hi + μ(t) + RmIsyn,i(t), (23)

where τm represents the membrane time constant and μ(t) = Vrest + RmIext(t) is the total
drive in the absence of synaptic input (constant resting potential Vrest and common ex-
ternal stimulus Iext(t)). In the fully-connected network, the synaptic current Isyn,i(t) is the
same for all neurons i and is given by Eq. (22).

In each time interval [t, t +dt), spikes are drawn with probability λi(t) dt, where the firing
rate λi(t) depends on the input potential as follows:

λi(t) = Φ
(
hi(t)

)
. (24)

Here, we choose a sigmoidal transfer function of the form Φ(h) = rmax/[1+exp(–β(h–h0))]
and h0 = 0 mV.

3.1.2 GIF model
The GIF model for the postsynaptic neuron dynamics is determined by the membrane po-
tential Vi(t), the dynamic threshold ϑi(t) and a conditional intensity λi(t) for the stochastic
spike generating mechanism. Here, the index i = 1, . . . , N represents the neuron label. Be-
tween the spikes, the membrane potential satisfies the dynamics

τm
dVi

dt
= –Vi + μ(t) + RmIsyn,i(t), (25)

where the quantities τm, μ(t), Rm and Isyn,i(t) are the same as in the rate model above.
After a spike, the voltage is immediately reset to the potential Vr, where it is clamped

for an absolute refractory period tref = 4 ms.
Spikes are generated by a conditional intensity (hazard rate) of an exponential form:

λi(t) =

⎧
⎨

⎩
0, if the last spike was emitted less than tref ago,

c exp( Vi(t)–Vth
�u

), otherwise,
(26)
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where Vth is a constant. This means that the conditional intensity, and hence the proba-
bility λi(t) dt to fire in the interval [t, t + dt), depends on the momentary distance between
the membrane potential and threshold. This completes the definition of the microscopic
model.

3.2 Mesoscopic mean-field model
As explained in [12], the random connectivity can be well approximated by a fully con-
nected network (C = N ), with rescaled synaptic weights pw, corresponding to a mean-field
approximation. In the following, we shall therefore choose p = 1 unless stated otherwise. In
the mean-field approximation, the TPSI y(t) and the synaptic current Isyn(t) do not depend
on the identities j of the postsynaptic neurons and are related by Eq. (1) with J = τm

Rm
Npw.

For the case of exponential synapses, the synaptic current reads

τs
dIsyn

dt
= –Isyn + Jû

(
t–)

x̂
(
t–)

AN (t), (27)

where û and x̂ obey the mean-field equations (18a)–(18g).
As shown in [12], the population activity AN (t) can be determined by a single meso-

scopic variable, the instantaneous rate r(t), whose dynamics depends on the microscopic
model and the history of the population activity Ht = {A(t′)|t′ < t}. Specifically, AN (t) is
given by the normalized spike train

AN (t) =
1
N

dnN (t)
dt

=
1
N

∑

k∈Z+

δ(t – tk), (28)

where nN (t) is a counting process with (conditional) intensity λ̂(t) = Nr(t) representing
the total number of spikes in the population up to time t. The second equality means that
AN (t) is proportional to a spike train with spike times tk generated with rate Nr(t). This is
similar to the superposition of Poisson spike train in the feedforward case, Sect. 2, where
the pooled spike train also exhibits the rate Nr(t).

3.2.1 Poisson rate model
In the Poisson rate model, the rate r(t) is given by

r(t) = Φ
(
h(t)

)
, (29)

τm
dh
dt

= –h + μ(t) + RmIsyn(t). (30)

Importantly, the coupling to the STP dynamics is contained in the synaptic current Isyn

governed by Eq. (27) and the synaptic mean-field dynamics given by Eqs. (18a)–(18g).

3.2.2 GIF population model
For the model with spike-history dependence, the rate r(t) is obtained from an integral
over refractory states. A possible representation of the neuronal refractory state is given
by the time τ since the last spike (“age of the neurons”; an alternative representation in
terms of the last spike times t̂ = t – τ is given in Appendix D). In the following, we assume
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that the process is initialized at t0 = –∞. Given the distribution of ages in the population,
q(τ , t), the rate at time t results from [12],

r(t) =
∫ ∞

0
λ(t, τ )q(τ , t) dτ + Λ(t)

(
1 –

∫ ∞

0
q(τ , t) dτ

)
, (31)

where the density q(τ , t) evolves according to the first-order partial differential equation
with time-dependent boundary condition at τ = 0:

(∂t + ∂τ )q = –λ(t, τ )q, q(0, t) = A(t). (32)

Here, AN (t) is given by Eq. (28). In Eqs. (31) and (32), the functions λ and Λ are given by

λ(t, τ ) = c exp

(
V (t, τ ) – Vth

�u

)
, Λ(t) =

∫ ∞
0 λ(t, τ )W (t, τ ) dτ

∫ ∞
0 W (t, τ ) dτ

, (33)

where V and W are dynamical variables that obey the following dynamics: The age-
dependent membrane potential V (τ , t) and variance function W (τ , t) follow the first-order
partial differential equations

(∂t + ∂τ )V = –
V – μ

τm
+

Rm

τm
Isyn(t), (34)

(∂t + ∂τ )W = –λ(t, τ )[2W – q], (35)

with boundary conditions V (t, 0) = Vr and W (t, 0) = 0. The coupling to the STP mean-field
dynamics, Eqs. (18a)–(18g), is contained in the synaptic current Isyn governed by Eq. (27),
which influences the voltage V (t, τ ) (Eq. (34)), and hence changes λ(t, τ ) and Λ(t).

The population equations (31)–(35) have been efficiently integrated numerically by the
algorithm presented in [12]. The numerical integration of the STP mean-field dynamics
is given in Appendix B.

3.3 Recurrent network of Poisson rate neurons—microscopic vs. mesoscopic
simulations

3.3.1 Finite-size noise induced population spikes
An interesting example of collective neural dynamics, potentially linked to synaptic de-
pression, is the phenomenon of population spikes in cultured neural networks [37]. We
asked whether population spikes, a brief period of high average population activity, can
be explained by our finite-size population theory with STP. As in previous work [37], we
considered a single excitatory population endowed with STP. The mesoscopic mean-field
equations allowed us to choose parameters of this model such that the macroscopic mean-
field dynamics (N → ∞, see Eqs. (56a)–(56e)) is in an excitable regime for the second-
order MF but not for the first-order MF. Here excitable regime means that the macroscopic
dynamics converges to an equilibrium point if the total drive remains below a certain
threshold. However, if the threshold is exceeded (e.g. by a brief excitable stimulus or an in-
crease of recurrent synaptic excitation), the activity rises rapidly to large values due to the
positive feedback of recurrent excitation. The explosive rise of the activity is terminated
by the beginning of synaptic depression, which acts as negative feedback and ultimately
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Figure 6 Recurrent network of Poisson neurons with finite-size noise generating irregular population spikes. (A) For
small population size, N = 100, microscopic (i) as well as first- (ii) and second-order (iii) MF dynamics exhibit
irregular population spikes. For large population size, N = 5000, and hence weak finite-size noise, population
spikes cease in microscopic (iv) and second-order MF dynamics (vi) consistent with an excitable dynamics,
whereas the first-order MF approximation (v) wrongly predicts regular population spikes corresponding to an
underlying oscillatory (limit-cycle) dynamics. (B) Time-averaged population activity decreases with increasing
population size indicating a decrease of population spike frequency. The prediction of the second-order MF is
accurate across all population sizes, which is not the case with the first-order MF, especially for large
populations. (C) PSD of population activities for N = 100 neurons. Model parameters are detailed in
Appendix E. Superscript (N) of AN is omitted in the legends

wins over recurrent excitation. As a result of the initial excitation, the population activity
may show population spikes similar to action potential in other excitable systems such as
single neurons.

As expected for an excitable system driven by noise [42], the population activity exhibits
irregular population spikes if the population size is small (here N = 100), i.e. if finite-size
noise is sufficiently strong (Fig. 6(A)(i)–(iii)). In our case, the drive that causes popula-
tion spikes originates from finite-size fluctuations as expressed by the stochastic terms in
Eq. (28). For N = 100, the second-order MF accurately predicts the mean activity (Fig. 6(B))
and power spectrum (Fig. 6(C)) of the full microscopic simulation whereas the first-order
MF deviates quantitatively. Importantly, in the limit of large population size, population
spikes vanish in the second-order MF theory consistent with microscopic simulations
(Fig. 6(A)(vi), (iv), N = 5000). In marked contrast to microscopic simulations, highly reg-
ular population spikes persist even for N = 5000 in the first-order MF approximation cor-
responding to a deterministic limit-cycle dynamics (Fig. 6(A)(v)).

In summary, the second-order MF approximation accurately reproduces the qualitative
behavior and the mean and the power spectrum of excitatory networks of Poisson neu-
rons with synaptic STP. The statistical properties of the first-order MF dynamics exhibit
quantitative deviations of statistical properties and in some cases fails to reproduce the
qualitative behavior if the system is poised near a bifurcation. The large discrepancies be-
tween the first-order MF and the microscopic model in the example we show (Fig. 6) are
mainly caused by the error in the mean modulation factor R. Indeed, for our choice of
τD = τF = 1 s, correlations between uj and xj are relatively strong but are neglected by the
first-order MF. We note that this error appears already for the deterministic (i.e. N → ∞)
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Figure 7 PSD of population activities with different connection probability p (same setup as Fig. 6). A microscopic
network of N = 1000 neurons is simulated with three different connection probabilities: p = 1.0, 0.2 and 0.1.
Synaptic weights w are set such that the rescaled synaptic weights pw is constant. These three microscopic
networks share the same mean-field approximation. Notice that the second-order MF is more accurate that
the first-order MF even if the connection probability is reduced. Here, the model parameters are slightly
modified from Fig. 6 to ensure that population spikes occur in the microscopic simulation 1000 neurons.
Parameters are detailed in Appendix E. Superscript (N) of AN is omitted in the legends

dynamics. Inaccuracies in the correct description of finite-size noise in the first-order MF
model may yield additional sources of errors.

Furthermore, the second-order MF remains accurate when the connection probability
p of the network is smaller than 1 (given that the number pN of incoming synapses per
neuron is roughly greater than 100). When p is smaller than 1, we argue in Sect. 3.2 that
the microscopic network can be approximated by a fully-connected network with rescaled
synaptic weights (mean-field approximation). We test this claim numerically in Fig. 7: us-
ing the same setup as in Fig. 6, for a population size of N = 1000 neurons, we show that
the second-order MF yields more accurate prediction than the first-order MF even when
the connection probability is reduced down to 0.1.

3.3.2 Bistable switching between Up and Down states induced by finite-size fluctuations
Another collective phenomenon in neural networks is multistability. In the presence of
finite-size noise, systems with multistable behavior exhibit switches between different at-
tractor states [12, 43, 44]. In particular, bistable neural systems driven by noise support
stochastic switches between high and low population activity (“Up and Down states”)
[12, 31, 45, 46]. As a starting point of our simulations of Up and Down states, following
[31], we use an excitatory population with synaptic depression in the bistable regime. The
qualitative behavior of the microscopic model exhibiting Up and Down states is captured
by both first- and second-order MF (Fig. 8). A closer look at the mean firing rate, which
is mainly determined by the ratio of the time spent in the Up or Down state, reveals that
the first-order MF dynamics predicts significantly longer residence times in the Up state
(Fig. 8(B)). In contrast, the second-order MF approximation accurately matches the sim-
ulation of the microscopic model. In this example we have chosen τD � τF such that the
correlations between uj and xj are negligible. As the consequence, the mean modulation
factors R predicted by the first- and second-order MF theories, and hence the mean TPSI
〈y〉, are almost equal (cf. Fig. 4(A)). The error made by the first-order MF approximation
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Figure 8 Switchings between Up and Down states induced by finite-size fluctuations in a recurrent networks of
Poisson neurons with STP. (A) Microscopic simulation of a fully connected network of N = 50 neurons. The
population activity shows switches between Up and Down states. (B) Time-averaged population activity
〈AN〉t (which depends on the probabilities of being in the Up and Down states) for different population sizes.
Microscopic simulations (black dots) are compared to mesoscopic simulations with the first- and
second-order MF equations (blue and red lines, respectively). Note that, for N ∼ 100 neurons, the first-order
MF approximation predicts significantly larger 〈AN〉t indicating larger residence times in the Up state due to
underestimation of finite-size noise. The same set of parameters are used in (A) and (B) and details are in
Appendix E. Superscript (N) of AN is omitted in the legends

mainly results from an incorrect description of finite-size fluctuations: at high firing rate
(Up state), finite-size fluctuations are largely underestimated in the first-order MF dynam-
ics as mentioned in Sect. 2.4. The weaker noise implies longer residence times in the Up
state. This example highlights the relevance of the fluctuation statistics provided by the
second-order MF approximation.

3.4 Recurrent network of GIF neurons—microscopic vs. mesoscopic simulations
As a final demonstration of the mesoscopic MF theory with STP, we consider an excitable
regime generating population spikes as in Sect. 3.3.1 but with more realistic neurons de-
scribed by a GIF spiking neuron model (Sects. 3.1.2 and 3.2.2). Because of spike-history
dependencies such as refractoriness, spike arrivals at synapses are no longer Poisson pro-
cesses. Hence, the Poisson assumption of first- and second-order MF theories is not ful-
filled anymore for recurrent GIF networks. Nevertheless, it is interesting to see whether
population spikes can still be captured by the mesoscopic MF equations. To this end,
we simulated the recently developed mesoscopic population equations for populations
of GIF neurons [12] given by Eqs. (22), (31)–(35) extended by the MF equations for STP,
Eqs. (18a)–(18g). The full MF theory qualitatively reproduces population spikes at small
population sizes (Fig. 9(A)) and their extinction for large populations (Fig. 9(B)). Both
the mean (Fig. 9(C)) and fluctuation statistics (Fig. 9(D)) are roughly captured by the MF
equations albeit with small deviations from the microscopic simulation. However, a clear
advantage of 2nd vs. first-order approximation is not apparent. This indicates that the
second-order approximation does not necessarily yield a better approximation for net-
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Figure 9 Finite-size noise induced population spikes in recurrent networks of GIF neurons. (A) Population activity
of a fully connected network of N = 100 neurons exhibiting irregular population spikes (microscopic
simulation (A)(i), first- and second-order MF theory (A)(ii) and (A)(iii), respectively). (B) Same as (A) but with
N = 1000. Finite-size fluctuations are not strong enough to elicit population spikes. (C) Time-averaged
population activity 〈AN〉t (which depends on the frequency of population spikes) for different N. (D) Power
spectral densities of the population activity for a network of 100 neurons. The same set of parameters is used
in all panels and is detailed in Appendix E. Superscript (N) of AN is omitted in the legends

works of non-Poisson neurons and that the computationally simpler first-order MF model
might be preferable in spiking neural networks with strong spike-history effects.

4 Discussion
We have derived stochastic mean-field (MF) equations that capture the effect of synaptic
short-term plasticity (STP) at the level of populations. These equations generalize pre-
vious MF theories for deterministic population rates [4, 30, 31] to the case of finite-size
populations with stochastic population rates (mesoscopic description). The mesoscopic
STP dynamics is compatible with a recent mesoscopic population model [12], which has
been originally derived for static synapses. The mesoscopic MF dynamics of STP can thus
be easily included into existing mesoscopic models. We find that a first-order mean-field
approximation that accounts for stochastic rates but neglects correlations between facili-
tation and depression variables (as in [47]) approximates well the mean stationary input.
This mean input is slightly improved by a second-order approximation, which accounts
for correlations but neglects third and higher-order cumulants. The main strength of the
second-order MF theory lies in the prediction of fluctuations and transient responses of
the STP variables. We have shown that population spikes and UP and Down state switches
in a one-population model with synaptic depression can be well described by the extended
mesoscopic model. In particular, the second-order MF equations accurately replicate sim-
ulations of a network of Poisson neurons coupled via dynamic synapses. For networks of
GIF spiking neurons the agreement is less accurate but still captures the qualitative col-
lective dynamics.

In simulations of neuronal populations with STP, our mesoscopic mean-field model
yields a considerable reduction of computational complexity. Compared to a network with
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static synapses, each neuron is endowed with two additional variables uj and xj that cap-
ture the effect of dynamic synapses onto its postsynaptic target neurons. In a single popu-
lation of N neurons and connection probability p, a microscopic simulation thus requires
the numerical integration of 2pN additional equations. By contrast, a simulation of the
mesoscopic model only needs 4 additional equations per population. Thus we expect that
our extended mesoscopic dynamics offers a significant speed up of large-scale simulations
of cortical circuits with dynamic synapses [7].

An interesting question that has been studied theoretically [27–29] is how STP affects
information transmission through a large ensemble of dynamic synapses. Our reduction of
a synaptic ensemble to a four-dimensional nonlinear mean-field dynamics offers a mathe-
matical framework to derive approximate analytical expressions for measures of informa-
tion transmission. Analysing information processing capabilities of STP in the context of
our mean-field theory is an interesting topic for future studies.

We have employed the deterministic STP model of Tsodyks and Markram [30]. While
the resulting mean-field equations hold for this specific model, the same approach can be
applied straightforwardly to other deterministic models of STP (e.g. [21, 48]). It is less ob-
vious how to treat stochastic models of STP. Biological synapses are highly stochastic ow-
ing to the small number of synaptic vesicles that are randomly released upon spike arrival.
This includes a finite probability of transmission failure. Using stochastic models of STP,
it has been shown that synaptic stochasticity has a strong impact on information trans-
mission [28] and postsynaptic neural responses [49]. On the population level, it seems to
be feasible to treat this source of randomness in a similar manner as we did in Sect. 2.3.
A generalization to a mesoscopic STP model that is applicable for stochastic synapses, will
be an important subject for further studies.

The mean-field equations for the STP dynamics have been derived under the assump-
tion that presynaptic spike trains are, loosely speaking, Poisson (Assumption 1). We have
tested the mean-field equations in a feedforward setup and a recurrent network of Poisson
rate units, where Assumption 1 holds true, and we found excellent agreements with mi-
croscopic simulations. For the application to recurrent networks of generalized integrate-
and-fire (GIF) neurons in Sect. 3.4, Assumption 1 is not fulfilled because of refractoriness
and other spike-history dependencies of single neurons [50, 51]. Despite the non-Poisson
(colored-noise) statistics of spike trains in integrate-and-fire networks, a Poisson (white-
noise) assumption is commonly used in mean-field theories as a “first-order approxima-
tion” [52]. In a similar spirit, we here simply assumed that synaptic input can be treated as
a Poisson process so as to apply our MF theory for STP to networks of GIF neurons. For a
simple one-population model with excitatory synaptic connections and STP that exhibits
non-trivial dynamics in the form of population spikes, we have shown that the MF equa-
tions reproduce the qualitative behavior. This indicates that the MF theory may be valid
beyond networks of Poisson neurons. A theoretical analysis of the effect of non-Poisson in-
puts and the region of validity of the present MF model is beyond the scope of the present
paper and remains to be studied. To this end, theoretical approaches to treat dynamic
synapses driven by renewal processes [53–55] might be a promising starting point.

Note that although the derivation of the mesoscopic mean-field approximation is sys-
tematic we do not obtain any mathematical guarantee that the process y(t) is close (in any
sense) to the process yN (t) we want to approximate. In the case where the spike trains
{sj}j=1,...,N are N independent Poisson processes of rate λ(t), it might be possible to prove
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that the processes y(t) and yN (t) converge to the same diffusion approximation as N tends
to infinity. Obtaining such a proof would be, however, challenging because in our case,
we do not know around which mean value the process fluctuates, i.e. we do not know the
deterministic N → ∞ limit. This is due to the product ujxj in Eq. (7b) and the fact that
we do not have a closed form expression for the limit of 1

N
∑N

j=1 ujxj when N → ∞. Note
that if one considers purely facilitating (or purely depressing) synapses, the determinis-
tic N → ∞ limit can be computed (see [32]). Even in the case of purely facilitating or
depressing synapses, deriving the diffusion approximation for the evolution of the meso-
scopic variables u(t) or x(t) would be non-trivial because the jump sizes are modulated
by the microscopic uj and xj (see Eqs. (38a)–(38b)). These are two independent reasons
why standard techniques from the fluid limit literature (see [38–40]) cannot be applied
directly. Also, one clear advantage of our current approach over the diffusion approxima-
tion approach is that our mesoscopic approximation can be conditioned on the process
AN (t), i.e. it can be conditioned on any sequence of spike times {tk}k∈Z+ .

In our previous work [12], we have developed a mean-field theory of neuronal pop-
ulations that incorporates spike-history dependencies, such as refractoriness and adap-
tation, and finite-size fluctuations in a consistent manner. By adding another important
feature—synaptic short-term plasticity—we have here made a further step towards a
microscopically-grounded mesoscopic population model of a cortical circuit.

Appendix A: Proof of Lemma 2.1
To derive the system of equations (16a)–(16c), it is useful to rewrite the microscopic synap-
tic dynamics Eqs. (11a)–(11b) in differential form:

duj =
U0 – uj

τF
dt + U

(
1 – u–

j
)

dnj(t), (36)

dxj =
1 – xj

τD
dt – u–

j x–
j dnj(t). (37)

Here, dnj(t) denotes the increment of the counting process nj(t) =
∫ t

0 sj(t′) dt′ at the jth
synapse and u–

j is a shorthand for the left limit. The stochastic differential equations for
the mesoscopic quantities uN (t) and xN (t) are then

duN =
U0 – uN

τF
dt + U

1
N

N∑

j=1

(
1 – u–

j
)

dnj(t), (38a)

dxN =
1 – xN

τD
dt –

1
N

N∑

j=1

u–
j x–

j dnj(t). (38b)

With some calculations, we can write similar equations for PN (t), QN (t) and RN (t). For
instance, to compute dPN we need to evaluate d(u2

j ). Using Itô formula for jump processes,
we get

d
(
uj(t)2) = 2uj(t)

U0 – uj(t)
τF

dt +
(
uj(t)2 – uj

(
t–)2)dnj(t).
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Similarly, we write

d
(
xj(t)2) = 2xj(t)

1 – xj(t)
τD

dt +
(
xj(t)2 – xj

(
t–)2)dnj(t),

d
(
uj(t)xj(t)

)
= uj(t)

1 – xj(t)
τD

dt + xj(t)
U0 – uj(t)

τF
dt

+
(
uj(t)xj(t) – uj

(
t–)

xj
(
t–))

dnj(t).

We now compute the jump terms:
(
uj(t)2 – uj

(
t–)2)dnj(t) = U

(
1 – uj

(
t–))[

(2 – U)uj
(
t–)

+ U
]

dnj(t), (39)
(
xj(t)2 – xj

(
t–)2)dnj(t) = uj

(
t–)

xj
(
t–)2(2 – uj

(
t–))

dnj(t), (40)
(
uj(t)xj(t) – uj

(
t–)

xj
(
t–))

dnj(t) = xj
(
t–)[

U
(
1 – uj

(
t–))2 – uj

(
t–)2]dnj(t). (41)

Summing the differentials d(u2
j ), d(x2

j ) and d(ujxj) over all N synapses, we obtain

dPN = 2
U0uN – PN

τF
dt +

N∑

j=1

U
(
1 – u–

j
)[

(2 – U)u–
j + U

]dnj(t)
N

, (42a)

dQN = 2
xN – QN

τD
dt –

N∑

j=1

u–
j
(
x–

j
)2(2 – u–

j
)dnj(t)

N
, (42b)

dRN =
(

U0xN – RN

τF
+

uN – RN

τD

)
dt +

N∑

j=1

x–
j
[
U

(
1 – u–

j
)2 –

(
u–

j
)2]dnj(t)

N
. (42c)

For notational simplicity, we have derived Eqs. (38a)–(38b) and (42a)–(42c) for the vari-
ables [uN , xN , PN , QN , RN ] defined by Eqs. (15a)–(15c) starting from microscopic variables
uj and xj defined by Eqs. (7a)–(7b). A completely analogous derivation can be performed
for the variables [u∗, x∗, P∗, Q∗, R∗] defined by Eqs. (16a)–(16c) starting from the corre-
sponding microscopic variables u∗

j and x∗
j defined by Eqs. (11a)–(11b). For the variables

marked with asterisk, we thus have

du∗ =
U0 – u∗

τF
dt + U

1
N

N∑

j=1

(
1 – u∗

j
)

dn∗
j (t), (43a)

dx∗ =
1 – x∗

τD
dt –

1
N

N∑

j=1

u∗
j x∗

j dn∗
j (t), (43b)

dP∗ = 2
U0u∗ – P∗

τF
dt +

N∑

j=1

U
(
1 – u∗

j
)[

(2 – U)u∗
j + U

]dn∗
j (t)

N
, (43c)

dQ∗ = 2
x∗ – Q∗

τD
dt –

N∑

j=1

u∗
j x∗2

j
(
2 – u∗

j
)dn∗

j (t)
N

, (43d)

dR∗ =
(

U0x∗ – R∗

τF
+

u∗ – R∗

τD

)
dt +

N∑

j=1

x∗
j
[
U

(
1 – u∗

j
)2 – u∗2

j
]dn∗

j (t)
N

, (43e)

where u∗
j and x∗

j are shorthands for u∗
j (t–) and x∗

j (t–), respectively.
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The sums over the weighted spike counts dn∗
j cannot be expressed as a deterministic

function of the mesoscopic spike count dnN =
∑

j n∗
j (t). However, we can make use of

the fact that in an infinitesimally small time interval dt at most one spike can occur and
contribute to the sums, which thereby simplify considerably: dn∗

j is either zero for all j (i.e.
dnN = 0), or there exists one and only one j for which dn∗

j = 1 (in this case dnN = 1). This
implies that we can write for any function g(u∗

j , x∗
j ) multiplying dn∗

j

1
N

∑

j

g
(
u∗

j , x∗
j
)

dn∗
j = g

(
u∗

j∗(k), x∗
j∗(k)

)dnN

N
= g

(
û∗, x̂∗)dnN

N
, (44)

where j∗(k) is the random synapse index at time tk and (û∗(t), x̂∗(t)) is given by Eq. (12).
Applying relation (44) to Eqs. (43a)–(43e), we obtain

du∗ =
U0 – u∗

τF
dt + U

(
1 – û∗)dnN (t)

N
, (45a)

dx∗ =
1 – x∗

τD
dt – û∗x̂∗ dnN (t)

N
, (45b)

dP∗ = 2
U0u∗ – P∗

τF
dt + U

(
1 – û∗)[(2 – U)û∗ + U

]dnN (t)
N

, (45c)

dQ∗ = 2
x∗ – Q∗

τD
dt – û∗x̂∗2(2 – û∗)dnN (t)

N
, (45d)

dR∗ =
(

U0x∗ – R∗

τF
+

u∗ – R∗

τD

)
dt + x̂∗[U

(
1 – û∗)2 – û∗2]dnN (t)

N
. (45e)

Using AN (t) = 1
N

dnN (t)
dt we recover Eqs. (17a)–(17e) of the main text.

Appendix B: Efficient numerical implementation of the mesoscopic
approximation

The mesoscopic STP dynamics given by Eqs. (18a)–(18g) are driven by a point process
AN (t) or increments dn(t) that are multiplied by a stochastic factor of the form f (û(t), x̂(t)).
In simulations, these stochastic amplitudes require some care. A straightforward dis-
cretization of Eqs. (18a)–(18g) would be to draw û(t) and x̂(t) from their joint Gaussian
distribution (18f) in each time step independently, compute f (û(t), x̂(t)) and multiply by
the number of spikes

�n(t) =
∫ t+�t

t
dn

(
t′) = N

∫ t+�t

t
A

(
t′)dt′ (46)

that occur in the discretization interval [t, t + �t). However, this approach is only correct
if the discretization time step �t is small enough such that �n contains at most one spike.
Because spikes result from a population of many neurons, this condition would require
an extremely small time step (such that Nr(t)�t 
 1), and would thus yield a highly inef-
ficient simulation algorithm. Luckily, the independence of the factors f (û(tk), x̂(tk)) across
spikes in the interval [t, t +�t) allows us to use larger time steps that may contain multiple
spikes:a due to the independence, the integration of the stochastic term in Eqs. (18a)–(18g)
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simplifies to a sum of �n i.i.d. random variables:

∫ t+�t

t
f
(
û
(
t′), x̂

(
t′))dn

(
t′) =

�n(t)∑

j=1

f (ûj, x̂j). (47)

The (ûj, x̂j) are identically distributed because the Gaussian (18f) is held fixed in the time
interval [t, t + �t). If the random variables f (ûj, x̂j) have mean μf and variance vf , the sum
in Eq. (47) has mean μf �n and variance vf �n. Using a Gaussian approximation, we can
thus approximate the integral, Eq. (47), by

∫ t+�t

t
f (û, x̂) dn

(
t′) ≈ μf �n(t) +

√
�n(t)ε(t), (48)

where ε(t) is a centered Gaussian random variable with variance vf that is independent in
each time step.

For example, the integration of the mesoscopic equation for u, Eq. (18a), involves the
integration of the stochastic term N–1U(1 – û) dn. Using 〈û〉 = μu = u and var(û) = vu =
P – u2, Eq. (48) yields

U
N

∫ t+�t

t

[
1 – û

(
t′)]dn

(
t′) ≈ U

N
[
(1 – u)�n – εu(t)

√
�n

]
,

where εu(t) is a centered Gaussian random variable with variance vu. Similarly, if (εu(t),
εε(t)) is a pair of correlated centered Gaussian variable with covariance matrix

(
P(t) – u(t)2 R(t) – u(t)x(t)

R(t) – u(t)x(t) Q(t) – x(t)2

)
, (49)

the integration of the mesoscopic equation for x, Eq. (18b), yields

∫ t+�t

t
û
(
t′)x̂

(
t′)dn

(
t′)

=
∫ t+�t

t

(
u
(
t′) + εu

(
t′))(x

(
t′) + εx

(
t′))dn

(
t′)

=
∫ t+�t

t

[
u
(
t′)x

(
t′) + εu

(
t′)εx

(
t′)]dn

(
t′)

+
∫ t+�t

t

[
εu

(
t′)x

(
t′) + εx

(
t′)u

(
t′)]dn

(
t′)

≈ R(t)�n(t) +
[
x(t)εu(t) + u(t)εx(t)

]√
�n(t). (50)

Here, we approximated εuεx by its mean 〈εuεx〉 = R – ux, and neglected its fluctuations.
When we integrate Eqs. (18c)–(18e), we encounter the terms ε2

uεx, εuε
2
x and ε2

uε
2
x . As we

cannot calculate their mean, we perform a moment closure approximation, neglecting all
cumulants of order higher than two:

〈
ε2

uεx
〉 ≈ 2〈εu〉〈εuεx〉 +

〈
ε2

u
〉〈εx〉 – 2〈εu〉2〈εx〉 = 0;
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symmetrically, 〈εuε
2
x〉 ≈ 0; and finally,

〈
ε2

uε
2
x
〉 ≈ 〈

ε2
u
〉〈
ε2

x
〉
+ 2〈εuεx〉2

=
(
P – u2)(Q – x2) + 2(R – ux)2.

These approximations allow for the completion of the derivation.
In summary, the Euler scheme corresponding to Eqs. (18a)–(18g) is

u(t + �t) = u(t) + �u, x(t + �t) = x(t) + �x,

P(t + �t) = P(t) + �P, Q(t + �t) = Q(t) + �Q,

R(t + �t) = R(t) + �R,

with increments given by

�u =
U0 – u

τF
�t +

U
N

[
(1 – u)�n – εu

√
�n

]
, (51a)

�x =
1 – x
τD

�t –
1
N

[
R�n + (uεx + xεu)

√
�n

]
, (51b)

�P = 2
U0u – P

τF
�t +

1
N

[μP�n + εP
√

�n], (51c)

�Q = 2
x – Q
τD

�t +
1
N

[μQ�n + εQ
√

�n], (51d)

�R =
U0x – R

τF
�t +

u – R
τD

�t +
1
N

[μR�n + εR
√

�n]. (51e)

Here, we abbreviated

μP = U
(
P(U – 2) – 2u(U – 1) + U

)
,

εP = 2U
(
1 + u(U – 2) – U

)
εu,

μQ = PQ – 2Qu + 2
(
R + (u – 2)x

)
(R – ux),

εQ = 2(u – 1)x2εu + 2u(u – 2)xεx,

μR =
(
U(1 – u)2 – u2)x + (U – 1)x

(
P – u2)

+ 2
(
U(u – 1) – u

)
(R – ux),

εR = 2
(
U(u – 1) – u

)
xεu +

(
U(1 – u)2 – u2)εx.

The generation of correlated centered Gaussian random variables εu(t) and εx(t) with
covariance matrix (49) can be implemented by standard methods. For instance, one may
compute in each time step the correlation coefficient

ρ =
R – ux√

(P – u2)(Q – x2)
. (52)

In the initial warm-up phase, it may happen that the numerical values of the variances
P – u2 and Q – x2 are non-positive or the absolute value of the correlation coefficient |ρ|
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exceeds unity. One simple practical solution to this problem is to set εu and εx to zero in
these cases. Otherwise, we generate random variables by the formula

εu =
√

P – u2z1, (53)

εx =
√

Q – x2
(
ρz1 +

√
1 – ρ2z2

)
, (54)

where z1 and z2 are independent standard normal random numbers.
Finally, we note that in numerical simulations it is convenient to operate on the spike

counts �n(t) rather than on the population activity AN (t). The discretized population
activity can be easily obtained from the spike counts via the formula

AN (t) =
�n(t)
N�t

. (55)

Appendix C: Equations for infinite-size populations and steady-state formulas
A macroscopic theory of STP for infinite-size populations for what we call the first-order
MF has been presented in [30]. We detail here the adaptation of our second-order MF to
the case if infinite-size populations.

In the infinite-size case, the stochastic populations activity AN (t) becomes a determin-
istic rate r(t), which simplifies our mesoscopic equations (18a)–(18g): in the stochastic
ODEs, r(t)—being deterministic—is not multiplied by a random term but by the mean of
this term, transforming the stochastic ODEs into deterministic ODEs. These means have
already been computed in Appendix B. Hence, in the infinite-size case, our second-order
MF equations are

du
dt

=
U0 – u

τF
+ U(1 – u)r(t), (56a)

dx
dt

=
1 – x
τD

– Rr(t), (56b)

dP
dt

= 2
U0u – P

τF
+ μPr(t), (56c)

dQ
dt

= 2
x – Q
τD

+ μQr(t), (56d)

dR
dt

=
U0x – R

τF
+

u – R
τD

+ μRr(t). (56e)

Again, we abbreviated

μP = U
(
P(U – 2) – 2u(U – 1) + U

)
,

μQ = PQ – 2Qu + 2
(
R + (u – 2)x

)
(R – ux),

μR =
(
U(1 – u)2 – u2)x + (U – 1)x

(
P – u2)

+ 2
(
U(u – 1) – u

)
(R – ux).

Given a fixed rate r, we can compute the steady-state values of u, x, P, Q and R:

u =
τF rU + U0

τF rU + 1
, (57a)
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P =
τF rU(2u(U – 1) – U) – 2uU0

τF r(U – 2)U – 2
, (57b)

x =
τDτF r(–2uU + u + 2U) + τD + τF

Z
, (57c)

R =
τD(τF r(P(U – 1) – 2u2(U – 1) + U) + U0) + τF u

Z
, (57d)

Q =
–2τDr(R + (u – 2)x)(R – ux) – 2x

τDr(P – 2u) – 2
. (57e)

We used the abbreviation

Z = τ 2
Dr

(
τF r

(
P(U – 1) – 2u2(U – 1) + U

)
+ U0

)

+ 2τDτF r(–uU + u + U) + τD + τF .

Note that these steady-states formulas are very useful for carrying out precise phase-plane
analyses.

Appendix D: Mesoscopic population equations for network of GIF
neurons—ODE representation

The equation for the population rate r(t) for GIF neurons involves the integral, Eq. (31),
over all possible refractory states and a set of partial differential equations (so-called quasi-
linear equations) for the quantities q(τ , t), V (τ , t) and W (τ , t). Instead of the age of the
neuron (i.e. the time since its last spike), the refractory state can be equivalently specified
by the last spike time t̂ = t – τ . This variable transformation turns the partial differential
equations into ordinary differential equations (ODEs), which yields an alternative formu-
lation of the mesoscopic population equations.

If the refractory state is specified by the last spike time t̂ = t – τ , we need to consider the
density of last spike times Q(t̂, t) ≡ q(t – t̂, t). Instead of Q, it is slightly more convenient
to write Q(t̂, t) = S(t|t̂)AN (t̂), where we introduced the survivor function S(t|t̂). With this
notation the population rate, Eq. (31), becomes [12]

r(t) =
∫ t

–∞
λ(t|t̂)S(t|t̂)AN (t̂) dt̂ + Λ(t)

(
1 –

∫ t

–∞
S(t|t̂)AN (t̂) dt̂

)
. (58)

Using the method of characteristics, the quasi-linear equation (32) for q(τ , t) has an equiv-
alent ODE representation for the characteristic curves {Q(t̂, t)}t>t̂ : dQ/dt = –λQ with initial
condition Q(t̂, t̂) = AN (t̂). This corresponds to an ODE for the survivor function:

dS(t|t̂)
dt

= –λ(t|t̂)S(t|t̂), S(t̂|t̂) = 1. (59)

The functions λ(t|t̂) ≡ λ(t – t̂, t) and Λ(t) follow from Eq. (33) as

λ(t|t̂) = c exp

(
V (t|t̂) – ϑ(t|t̂)

�u

)
, Λ(t) =

∫ t
–∞ λ(t|t̂)W (t|t̂) dt̂
∫ t

–∞ W (t|t̂) dt̂
. (60)
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Table 1 Parameters of Fig. 6, Fig. 7 and Fig. 8

Parameter Unit Fig. 6 Fig. 7 Fig. 8

τD s 0.2 0.3 0.05
τF s 0.2 0.3 0.002
U 0.2 0.2 0.6
U0 0.2 0.2 0.6
τm s 0.02 0.02 0.02
τs s 0.002 0.002 0.01
μ mV –13.3 –13.1 –8.7
Rm � 1 1 1
β 0.4 0.4 0.5
rmax Hz 500 500 200
h0 mV 0 0 0
J · N · p 78.5 83.5 28.0

The dynamics for the variables V (t|t̂) and W (t|t̂) follow from those of the quasi-linear
equations (34) and (35):

dV (t|t̂)
dt

= –
V (t|t̂) – μ

τm
+

Rm

τm
Isyn(t), (61)

dW (t|t̂)
dt

= –λ(t|t̂)
[
2W (t|t̂) – S(t|t̂)AN (t̂)

]
, (62)

with initial conditions V (t̂|t̂) = Vr and W (t̂|t̂) = 0. Finally, the threshold function ϑ(t|t̂)
reads

ϑ(t|t̂) = Vth + θ (t – t̂) +
∫ t̂

–∞
θ̃
(
t – t′)AN(

t′)dt′. (63)

Appendix E: Recurrent network parameters
Parameters of Fig. 6, Fig. 7 and Fig. 8 are detailed in Table 1.

In Fig. 9, we used the following parameters: τD = 0.5 s, τF = 0.01 s, U = 0.1, U0 = 0.1, τm =
0.015 s, τs = 0.01 s, c = 15 Hz, Vreset = 0 mV, Vth = 15 mV, μ = 4 mV, Rm = 1 �, �u = 5 mV,
tref = 0.004 s, J · N = 850.
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