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The dominant modeling framework for understanding cortical

computations are heuristic firing rate models. Despite their

success, these models fall short to capture spike

synchronization effects, to link to biophysical parameters and

to describe finite-size fluctuations. In this opinion article, we

propose that the refractory density method (RDM), also known

as age-structured population dynamics or quasi-renewal

theory, yields a powerful theoretical framework to build rate-

based models for mesoscopic neural populations from realistic

neuron dynamics at the microscopic level. We review recent

advances achieved by the RDM to obtain efficient population

density equations for networks of generalized integrate-and-

fire (GIF) neurons — a class of neuron models that has been

successfully fitted to various cell types. The theory not only

predicts the nonstationary dynamics of large populations of

neurons but also permits an extension to finite-size populations

and a systematic reduction to low-dimensional rate dynamics.

The new types of rate models will allow a re-examination of

models of cortical computations under biological constraints.
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Introduction
Neural computations in cortical circuits emerge from the

complex interplay of many thousands of neurons. Direct

simulations of detailed cortical network models [1,2] are
www.sciencedirect.com 
compatible with emerging activity patterns observed in

experimental data but the sheer complexity and high

dimensionality precludes a theoretical understanding of

such dynamical behavior. To understand how cortical

circuits operate, firing-rate (FR) models for neural popu-

lations, such as the Wilson-Cowan equations [3], offer

mathematically tractable, low-dimensional descriptions

of macroscopic neural dynamics. FR models have become

the mainstay for modeling cortical computations such as

normalization [4], memory [5,6], visual processing [7–9],

motor control and decision making [10]. Furthermore, FR

models are widely used to analyze the dynamics of

cortical [11,12] and cultured [13,14] networks, cortical

variability [15] and imaging data [16].

Despite their success, classical firing rate models have

strong limitations. They are heuristic models that lack a

clear link to single neuron properties at the microscopic

scale and, therefore, cannot be easily constrained by

electro-physiological measurements. Effects of spike syn-

chronization on macroscopic population dynamics are not

captured by classical FR models. Furthermore, FR mod-

els assume idealized, homogeneous neural populations that

are infinitely large. These issues raise several questions

that cannot be answered by classical FR models: How

does macroscopic activity depend on changes in micro-

scopic parameters such as pharmacological manipulations

of ion channels? What is the transient response of a neural

population to rapid changes in the inputs? What is the role

of finite-size fluctuations for cortical variability? How are

cortical computations affected by realistic spiking dynam-

ics and population sizes? How to build multi-scale models

that are consistent across scales? How to deal with het-

erogeneity among neurons observed in biology?

In this opinion article, we review recent theoretical

advances towards new types of FR models that resolve

major limitations of classical FR models and thereby help

answering the above questions. We propose that the frame-

work of refractory density equations, also referred to as age-

structured population dynamics or quasi-renewal theory,

offers a powerful method to systematically derive meso-

scopic or macroscopic firing rate models from biologically-

verified, spiking neuron models. We explain how a large

population of phenomenological or biophysical model neu-

rons can be described by the refractory density method

(RDM) and demonstrate that the RDM permits an exten-

sion to finite-size (“mesoscopic”) populations. Finally, we
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review recent approaches to reduce population density

equations to low-dimensional FR models and discuss appli-

cations and open problems.

The traditional approach to neural population
dynamics
A common framework for modeling coarse-grained corti-

cal activity are homogeneous neural populations, i.e.

groups of neurons with similar parameters or tuning

properties and similar external inputs. Examples include

physiologically or genetically defined cell types in specific

cortical layers and columns [17,2,22,16] (Figure 1) and
Figure 1
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distributed populations forming neural assemblies [23] or

clusters [24,25]. In all these models, a population is

characterized by the population activity defined as

Aa(t) = na(t, t + Dt)/(NaDt), where na(t, t + Dt) is the total

number of spikes occurring in population a in the time

bin (t, t + Dt), Na is the number of neurons and Dt is the

discretization time step (Figure 1). If not ambiguous, we

omit the label a.

The standard model of population activities are heuristic

FR equations. They are given by first-order dynamics

either for some activation variable (“input potential”) h
ractory density
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s. The schematic illustrates two consistent modeling approaches of

cal microcircuit model containing layers of excitatory and inhibitory

 000 generalized integrate-and-fire (GIF) spiking neurons, whose

and clustering methods [19,20��]. To obtain mesoscopic population

simulation generating the spike trains of each cell (top right). The
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governed by th _h ¼ �h þ IðtÞ and passed through a non-

linear function, A(t) = F(h(t)); or directly for the popula-

tion activity, tA _A ¼ �A þ FðIðtÞÞ (Wilson-Cowan form).

The input current I(t) depends, in turn, on the population

activities: the input into neurons of population a may be

written as IaðtÞ ¼ P
bJabAbðtÞ þ Iexta ðtÞ, where Iexta ðtÞ is

an external stimulus and Jab is an effective interaction

strength from population b to a resulting from a mean-

field approximation. If the nonlinear function F is chosen

as the stationary transfer function (“f-I curve”) of the

single neuron, then, by construction, the heuristic FR

equation is correct in the stationary state. However, the

dynamics towards equilibrium does not correctly repro-

duce transients of a spiking neuron population

(Figure 2c), nor is there a clear link between the heuristic

time constants th or tA and the time scales of the under-

lying spiking network [26,27]. Moreover, the classical FR

dynamics is deterministic and therefore cannot capture

finite-size fluctuations.

In principle, the correct population rate dynamics for a

large population of spiking neurons can be obtained from

a population density equation [28–38]. This equation

tracks how many neurons occupy a given state in neuronal

state space (population density). A popular example is the

Fokker-Planck equation for one-dimensional integrate-

and-fire models driven by white noise [31,33,39,37]. Here,

the state variable is the membrane potential V (Figure 2a,

top). Accounting for additional variables such as gating

variables, adaptation, threshold and synaptic variables as

well as dendritic compartments is principally possible by

considering a multi-dimensional state space. Although

efficient numerical methods [34,40] and analytical

approaches [41–43] have been proposed for two-dimen-

sional population density equations, solutions on a multi-

dimensional state space are generally inefficient and

mathematically intractable. Here, we follow a different

approach, called refractory density method (RDM)

[30,44–47]. This approach yields an effectively one-

dimensional state space for various types of neurons.

The refractory density approach
The RDM is based on the idea that the time since the last
spike combined with the history of the population activity

is a fairly good predictor of the internal refractory state of

a given neuron. According to this hypothesis, the instan-

taneous probability to fire in a small time step (t, t + Dt)
can be written as rA(t, t)Dt, where t denotes the time

since the neuron’s last spike and the subscript A indi-

cates a possible dependence on the history {A(s)}s<t of

the population activity. In analogy to renewal theory

[52], survival analysis [53] or the theory of age-structured

population dynamics [54], the time since the last spike is

sometimes referred to as the “age” of the neuron. The

age-dependent firing rate rA(t, t) is called hazard rate.

The neuronal distribution across t-space, p(t, t), is called
www.sciencedirect.com 
refractory density and obeys the refractory density

equation (RDE) given by [3,30,37]:

@p

@t
þ @p

@t
¼ �rAðt; tÞp;

pð0; tÞ ¼ AðtÞ � R1
0

rAðt; tÞpðt; tÞ dt
ð1Þ

(Figure 2b). Besides the increase of the age in time,

neurons can leave the state t because of spiking, resulting

in the outflux �rA(t, t)p(t, t). After spiking, the age is

reset to zero, which enters in the boundary condition p(0,
t) = A(t) at zero age. Importantly, the population activity A
(t) results from the integration over all positive ages

(Figure 2b). Thus, the RDE is a first-order partial differ-

ential equation with non-local boundary condition. Such

standard transport equation allows for an efficient numer-

ical solution [44,55]. Despite the simple structure of the

RDE, its dynamics is extremely versatile in describing

different cell types. The rich flexibility is hidden in the

complex functional form of the hazard rate rA(t, t). It

contains both the neuronal dynamics and the synaptic

interactions. Synaptic interactions are treated within a

standard mean-field approximation. To account for single

neuron dynamics, two main approaches have been pro-

posed: the phenomenological approach and the biophys-

ical approach. The phenomenological approach builds upon

two recent advancements: (i) the development of effi-

cient routines to extract the parameters of generalized

integrate-and-fire (GIF) models [37] from single-cell

recordings [19,56,20��], and (ii) the quasi-renewal theory,

which provides a hazard rate rA(t, t) for populations of

GIF neurons [46]. GIF models are integrate-and-fire

models with a moving threshold or adaptation currents

and a stochastic spike-generation mechanism called

“escape noise”: at each moment in time t, a spike is

realized with a probability depending on a deterministic

variable u(t) (Figure 2b, bottom) that can be interpreted as

the average (or noiseless) voltage trajectory following the

most recent spike and ignoring the threshold. GIF models

can be regarded as biologically informed instances of

nonlinear Hawkes processes [57,58�] and generalized

linear models (GLMs), for which efficient fitting routines

exist in statistics [59,19,58�]. These optimization methods

have been applied to neurons in the Allen Cell Types

Database [20��] making GIF parameters publicly

available. Furthermore, the distance- and morphology/

dependent filtering of synaptic inputs by the dendritic

tree can be collapsed into an effective GIF point neuron

model [60] with different input filters. Remarkably, once

parameters have been optimized, GIF models predict up

to 90% of spike times in response to somatic, in-vivo-like

current injections. Applying clustering algorithms to GIF

parameters of different neurons [20��] suggests a way to

define homogeneous populations based on average

parameters within clusters.
Current Opinion in Neurobiology 2019, 58:155–166
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Figure 2
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Neural refractoriness in rate-based models. (a) Fokker-Planck method for the evolution of membrane potential density p(V, t) of a noisy leaky

integrate-and-fire neuron. The flux of neurons through the threshold determines the firing rate A(t). (b) Refractory density method (RDM) for the

evolution of the age density p(t, t) and mean voltage u(t, t). At each point in t-space, the mean voltage u and variance s2 determine the flux to the

spike state, t = 0 (reset), proportional to the hazard function rA(t, t). The integral of the flux over t determines the firing rate A(t). (c) In response to

an input current-step, the simulated neuronal density p(V, t) oscillates and settles to a steady state. The oscillations reflecting neuronal

synchronization are not reproduced in a classical FR model (dashed line, tA = tm). (d) Similarly, RDM describes the density p(t, t), resulting in the

same firing rate [48��]. (e) The conductance-based RDM reproduces the experimental histograms of spikes, obtained in response to weak

Current Opinion in Neurobiology 2019, 58:155–166 www.sciencedirect.com
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How can populations of GIF neurons be treated by the

RDM? GIF neurons possess a memory of previous spikes

in their threshold and membrane potential. Single neuron

recordings have revealed that this memory decays on

multiple timescales including components lasting up to

several seconds [56]. This means that the instantaneous

firing probability depends on multiple previous spikes,

not only the last one. Thus, at first glance, the RDM does

not seem to be applicable to populations of GIF neurons.

It turns out, however, that the additional dependence of

the hazard rate on the history of A is in most cases

sufficient to approximate the influence of spikes that

occurred prior to the last one. This idea is the basis of

the quasi-renewal (QR) theory [46]: The effect of the last

spike (i.e. the age t) is strong because of short-lived

refractory effects such as spike-afterhyperpolarization

and fast components of the threshold dynamics. Thus,

the dependence on t should be treated accurately. In

contrast, the influence of individual spikes prior to the

most recent one is typically weak but may accumulate

over many spikes. This suggests that the precise timing of

earlier spikes can be replaced by a population average if

spikes are not strongly synchronized. As a result, the QR

theory delivers an explicit hazard rate rA(t, t) for a

population of phenomenological GIF neurons. Recently,

this hazard rate has been used to analyze fluctuation

statistics and information filtering in GIF populations

[61] and the stability of fitted point-process GLMs [58�].

The second, biophysical approach, called conductance-

based RDM, does not involve any parameter fitting. In

this approach, the neuronal dynamics enters the hazard rate

through the deterministic dynamics of the mean voltage u
governed by equations derived from a Hodgkin-Huxley-

type neuron model with noise [44,45]. The idea is that

neuronal state variables may be approximated by their

t-dependent means. Because the time-dependent input

is similar for all neurons of a population, the states of

neurons with close t are similar. For instance, in Hodg-

kin-Huxley-type models, the average state of a neuron is

given by a vector~yðtÞ containing u(t) and active gating

variables. This vector evolves according to the differential

equation d~y=dt ¼ ~Fð~y; tÞ, where ~Fð~y; tÞ constitutes the

right-hand sides of the Hodgkin-Huxley equations. If the

dynamics is fast, the variables renew to roughly the same

reset value~yreset after firing. Slow variables such as adap-

tation currents are incremented [44], thus introducing

~yresetðtÞ. The effective reset implies that the average state

variables are uniquely determined by t and t. On the

population level, we therefore consider ~y ¼~yðt; tÞ as
stepwise changes of the mean (left) or variance (right) of the current injected

permission from [49]. (f) A conductance-based RDM applied to modeling of

slices of ferret visual cortex [51]. Top, pattern of a simulated voltage-sensiti

asterisk. Middle and bottom, postsynaptic potentials (PSPs) simulated and 

dependent on stimulus strengths, characterize excitability of neural tissue. T

moderate and strong ones evoked a compound excitatory/inhibitory PSPs. 

consistent with a set of in-vitro and in vivo data [50].

www.sciencedirect.com 
function of t and t. Since the age increases at unit

speed, dt/dt = 1, the dynamics turns into d
dt~y ¼

@t~y þ @t~y ¼ ~Fð~y; tÞ with the boundary condition

~yð0; tÞ ¼~yresetðtÞ. Therefore, together with the equation

for p(t, t), the conductance-based RDM amounts to

solving a system of one-dimensional transport equations

for p and~y.

Approximations for the hazard rate have been derived for

white [44] and colored noise-currents [45] as solutions of a

first-passage-time problem given the time-dependent

mean voltage u(t). Quite remarkably, the resulting hazard

rate is of the form rA(u, du/dt), i.e. the firing probability

not only depends on the mean voltage but also on its

speed towards threshold, in line with earlier heuristic

approximations [62,63]. The derived hazard rate provides

a good match of RDM to Monte-Carlo solutions for

various neurons, including integrate-and-fire [48��], adap-

tive Hodgkin-Huxley [44] and bursting ones [64]. In the

simplest case, for integrate-and-fire neurons, the model

consists of two first-order equations for p and u
(Figure 2b); its solution is very close to that of the

Fokker-Planck equation (Figure 2c,d). One of the advan-

tages of the approach is its applicability to multi-compart-

ment neurons, which is crucial for accurately matching

simulations to experiments and for calculating local field

potentials, both requiring two compartments [65]. Simu-

lations of the visual cortex activity and epileptic dis-

charges matched a set of data obtained with patch-clamp

recordings and optical imaging [50,55,66�,67�].

Spiking noise in finite-size populations
The population density approach described so far is based

on the macroscopic limit of infinite neuron numbers,

N ! 1. Clearly, this is an idealization that may not be

applicable for neural circuits in the brain. For example, in

the barrel cortex of mice, neuron numbers of excitatory

and inhibitory neurons per cortical layer and column have

been estimated to be on the order of 50 to 2000 cells [68].

Are these numbers large enough to justify the limit

N ! 1? There are several reasons why a macroscopic

theory may not be sufficient. First, data of neural popula-

tion activities are noisy, which may (in part) originate

from spiking noise that is not averaged out in finite-size

(so-called mesoscopic) populations. These finite-size fluc-
tuations decrease with increasing population size as 1=

ffiffiffiffi
N

p
(Figure 3a). Second, finite-size fluctuations may not

merely yield noisy data but may also play a constructive

role [69]. Many cognitive processes depend on noise. For

example, finite-size noise may excite oscillatory modes or
 into a single neuron [48��]. Experimental data reproduced with

 visual cortex activity [50] reflects experimental recordings in tangential

ve dye signal in response to electrical stimulation at the site marked by

electro-physiologically registered in a representative neuron (arrow),

he weak stimulus generated a pure excitatory EPSP, whereas the

These and other simulated aspects of the visual cortex functioning are

Current Opinion in Neurobiology 2019, 58:155–166
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Figure 3
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Finite population sizes cause fluctuations of the population activity and emergent neural variability. (A) Population of uncoupled GIF

neurons receiving common input I(t). As the number of neurons N increases, the fluctuations of the population activity A(t) decrease. (B) Standard

network of excitatory and inhibitory neurons (20% connection probability) that settles into an asynchronous state for large network size after

oscillatory transient. For small networks, shared finite-size fluctuations of population activities cause partial synchronization and noisy oscillations.

The power spectrum of this activity is accurately reproduced by the corresponding integration of the mesoscopic model, Eq. (2), (3). (C) Winner-

take-all network, where two excitatory populations are coupled via an intermediate inhibitory population, as used in models of perceptual

bistability. Because of finite-size fluctuations, the mesoscopic network state switches between two attractors (perceptions), which is accurately

reproduced by the mesoscopic model as shown by the power spectrum. Parameters as in [18��].
partially synchronize neurons leading to rhythmic popu-

lation activities (Figure 3b) such as gamma oscillations

[70]. It can also induce transitions in multi-attractor net-

works (Figure 3c, [18��]) with important implications for
Current Opinion in Neurobiology 2019, 58:155–166 
(slow) variability in cortex [24], perception [9], decision-

making [10] and memory [71��]. Finite-size noise may

also trigger population spikes [13,72] as observed in

cultured networks. Third, statistical inference and
www.sciencedirect.com
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decoding from noisy population rates requires probabilis-

tic population models, whereas macroscopic models are

deterministic. In conclusion, deriving stochastic popula-

tion models for finite-size neural populations is a crucial

task for understanding neural activity patterns, computa-

tions and cognitive processes.

Finite-size fluctuations have been derived for simple

non-spiking neuron models consisting of two or three

discrete states in the framework of birth-death Markov

processes [73,74]. How to model finite-size noise in

populations of spiking neurons? It is instructive to first

understand the case when spike-history dependencies

such as refractoriness are absent. To this end, let us

assume a population of Poisson neurons firing with instan-

taneous rate r(t) = F(h(t)), where h(t) is the input potential

given by a filtered sum of spike train inputs:

tmdh=dt ¼ �h þ w
N

PN
i¼1 siðtÞ ¼ �h þ wA. Because Pois-

son firing does not depend on spike history, the popula-

tion activity for N ! 1 is identical to the common firing

rate of single neurons, A(t) = F(h(t)). Thus, the population

dynamics converges exactly to the classical rate equation

in the macroscopic limit. It is simple to extend this

equation to the case of finite N [13]: the macroscopic

population activity is simply replaced by a population rate

AðtÞ ¼ FðhðtÞÞ, from which the mesoscopic population

activity is randomly sampled:

AðtÞ ¼ PoisðNAðtÞdtÞ
Ndt

� AðtÞ þ
ffiffiffiffiffiffiffiffiffi
AðtÞ
N

s jðtÞ: ð2Þ

The first relation results from the fact that the total spike

count n(t, t + Dt) in the time bin (t, t + Dt) is Poisson

distributed with mean NAðtÞDt . Thus, the population

activity is of discrete nature reflecting the finite number

of neurons N. In the limit of small Dt, the total spike count

is practically either 0 or 1, and hence, the population

activity converges to a Dirac delta spike train with rate

NAðtÞ and overall factor 1/N. The second relation is an

optional Gaussian approximation for large but finite N,
where j(t) denotes zero-mean Gaussian white noise. This

form highlights that finite-size spiking noise is of order

1=
ffiffiffiffi
N

p
and exhibits a white-noise component. Let us turn

to populations of spiking neurons with realistic refracto-

riness and other spike-history dependencies. In this case,

the macroscopic dynamics of A(t) is given by a population

density equation as in Figure 2b. How to capture finite-

size noise within a population density approach? In anal-

ogy to the Poisson case, it is tempting to replace the

macroscopic population activity by a population rate

AðtÞ ¼ R1
0

rAðt; tÞpðt; tÞ dt and randomize the meso-

scopic population activity A(t) via Eq. (2) [26]. Unfortu-

nately, this approach generally fails: first, it violates the
www.sciencedirect.com 
conservation of the total number of neurons (i.e. the

probability density in no longer normalized) because

the randomized influx of neurons A(t) at the “reset”

t = 0 is not precisely compensated for by the total outflux

AðtÞ (integral of the r.h.s. of Eq. (1)). This imbalance may

result in unstable dynamics of numerical solutions. Sec-

ond, because fluctuations only enter at the reset t = 0, the

simple approach does not capture the immediate refrac-

tory effect of finite-size fluctuations on the population

rate AðtÞ. In a recent extension of the RDM to finite N
[18��], it has been shown that both the instability and the

treatment of refractoriness can be resolved by adding a

correction term to the rate AðtÞ:

AðtÞ ¼
Z 1

0

rAðt; tÞpðt; tÞ dt

þ LðtÞ 1 �
Z 1

0

pðt; tÞ dt

� �
: ð3Þ

As before, the mesoscopic population activity is given by

Eq. (2) and the density p(t, t) obeys the RDE, Figure 2b

(in which A(t) is now stochastic). The second term in

Eq. (3) corrects for the imbalance between influx and

outflux so as to minimize the normalization error and

therefore stabilizing the numerical integration. The factor

L(t) is a positive characteristic rate that depends on the

history of the population activity [18��]. Thus, a large

positive fluctuation of A(t), for instance, increases the

density of neurons in the reset state (age t = 0) and, since

there is no counter-balance, also increases the overall

probability mass making the second term negative. As

a result, the expected activity A is reduced after a large

positive fluctuation. Thus, the auto-correlation of A(t) is

negative at short time lags reflecting the auto-correlation

structure of single neurons with refractoriness. In fact, the

mesoscopic RDE (Figure 2b together with Eqs. (2), (3))

accurately reproduces power spectra of the population

activity obtained from microscopic simulations (Figure 3).

While power spectra were obtained by simulations of the

mesoscopic RDE, analytical results can be derived by

means of the linearized dynamics [61,75�].

Low-dimensional firing rate dynamics
So far we have seen that the mesoscopic dynamics of a

finite population of spiking neurons can be accurately

described by the RDE with stochastic boundary condi-

tions, Eqs. (1)–(3). We now return to our original motiva-

tion to derive FR models from single neuron dynamics.

We argue that the RDE can be further reduced to a small

set of ordinary (stochastic) differential equations in the

spirit of classical FR equations. The low-dimensional

reduction of the RDE is based on the eigenfunction

method originally proposed for the Fokker-Planck equa-

tion [76,77,26,78,79�,80,81]. However, in contrast to the

latter and other approaches such as linear-nonlinear cas-

cade models [82,83�] or the Ott-Antonson theory
Current Opinion in Neurobiology 2019, 58:155–166
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[86�,71��,88�,84,85,87], the RDM permits a principled

treatment of finite-size noise and applies to a rich class

of neuron models.

To illustrate how this method works, we consider the

evolution operator Lt(h(t)) associated with the RDE,

Eq. (1). The operator may depend on one (or several)

time-dependent parameter(s) h(t) representing, e.g.,

mean-field inputs [18��] and slow adaptation variables

[78]. For a given value h(t) = h, a basis of eigenfunctions of

the operator Lt(h) with associated eigenvalues {ln(h)} can

be constructed. The eigenvalues determine the relaxa-

tion dynamics of the time-dependent amplitudes an(t),
and hence deliver the characteristic time scales and

oscillation frequencies of the population rate. An approx-

imate low-dimensional dynamics is obtained by retaining

only the slowest (dominant) eigenmode: _a 1 ¼ l1ðhÞa1þ
½c0ðhÞ þ c1ðhÞa1 þ c�1ðhÞa�1� _h þ

ffiffiffi
A

p
ðtÞ=NjðtÞ, where a�1

denotes the complex conjugate of the amplitude a1
and ck(h) are complex functions that can be constructed

from the eigenmodes [26]. Fortunately, the correction

term in Eq. (3) completely vanishes upon insertion of the

eigenfunction expansion if the amplitude of the station-

ary mode a0 is approximated by its macroscopic limit

1. This leads to a drastic simplification of Eq. (3):

AðtÞ ¼ FðhðtÞÞ � 2Re½a1ðtÞ=P0
hðl1Þ�, where P

0
hðlÞ is the

derivative of the Laplace transform PhðlÞ of the inter-

spike interval density Ph(t). The population activity A(t) is

again given by Eq. (2) with the same realization of the

white noise j(t) as used for a1(t). This two-dimensional

dynamics supports spike-synchronization effects such as

oscillatory responses [81] and the temporal structure of

finite-size fluctuations. Interestingly, these equations

recover and theoretically explain the previous ad-hoc

result given in [26] thanks to the finite-size formulation
Table 1

Different levels of neuronal population dynamics description. Popula

neurons, activity regimes, size of populations, complexity of network, 

other characteristics were estimated on a base of the references g

problems. Abbreviations: MC - Monte-Carlo, FR - firing-rate, PDM - p

density method, LIF - leaky integrate-and-fire, GIF - generalized i

differential equation, PDE - partial differential equation.

MC FR PD

FP

Neuron models: LIF + - + 

GIF + - - 

HH + - - 

Transient regimes well poor we

Mathematical complexity Thousands of ODEs few ODEs 2nd

Computational efficiency bad excellent goo

Finite size + - - 

Analyzability bad excellent goo

Applicability to real data

simulations (LFP,

PSPs/PSCs, VSDI)

moderate poor poo
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of the RDM. In the Fokker-Planck framework, the main

difficulty has been the calculation of the eigenvalues l1(h)
for arbitrary values of h(t) [83�]. In contrast, the RDM

leads to a surprisingly simple and general theory for the

eigenvalues: For any renewal process, the eigenvalues are

given by the complex solutions of PhðlÞ ¼ 1, or equiva-

lently, by the complex zeros of the Laplace transformed

survival function [94]. Both Laplace transforms are

known analytically for the perfect and leaky IF model

driven by white or escape noise as well as various hazard

rate neuron models.

Discussion
In this opinion article we reviewed recent theoretical

advances to bring rate-based models of neural population

dynamics closer to biology. We proposed that the refrac-

tory density method (RDM) is a powerful mathematical

framework to systematically link the dynamics of single

neurons with that of mesoscopic populations and to derive

low-dimensional dynamics using spectral methods. The

RDM turns out to be advantageous in several respects

(Table 1): (i) it can be directly calibrated by single neuron

recordings via the GIF point neuron model or by bio-

physical neuron models via the conductance-based RDM,

(ii) the RDM constitutes a highly efficient, one-variable

population density method because it relies on the “age”

as a single neuronal state variable, and (iii) it allows to

incorporate finite-size noise for mesoscopic populations,

which is unknown for other population density methods

such as the Fokker-Planck method.

The development of rate-based models consistent with

spiking dynamics and finite population size has been a

challenging problem for quantitative neural population

modeling. The solutions discussed here suggest notable
tion models are under constraint of a certain aspects: types of

efficiency of calculations. Their applicability(+)/inaplicability(-) and

iven in the main text. Questionmarks highlight open theoretical

robability density method, FP - Fokker-Planck, RDM - refractory

ntegrate-and-fire, HH - Hodgkin-Huxley model, ODE - ordinary

Population models

M low-dim. RDM expansion

-based RDM

+ +

+ ?

+ ?

ll well well

-order PDE few 1st- order PDEs few ODEs

d good excellent

+ +

d good good

r good ?
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progress in several directions. For instance, experimental

and modeling studies of sensory coding in visual cortex

have been traditionally focused on stationary mean firing

rates (“tuning curves”) [8], however, there is increasing

interest in understanding transient dynamics of mean

rates [89] and variability [15]. This requires new tools

that account for spike synchronization effects and finite-

size fluctuations such as the models described here.

Furthermore, with current computer technology, large-

scale simulations of brain areas are becoming feasible [2].

An equivalent mesoscopic model would not only gain a

significant speed-up but would also be accessible to

theoretical analysis. Moreover, consistent mesoscopic

models are crucial for multi-scale modeling approaches,

in which local circuits in focus are modeled in full

microscopic detail while background populations are

modeled mesoscopically. While multi-scale models have

become indispensable tools in various scientific fields,

such approaches have so far been difficult in neuroscience

due to the lack of theoretical methods for linking scales.

Consistent multi-scale models are also crucial for the

interpretation of multi-scale data such as extra-cellular

field potentials, which contain both spikes of individual

neurons and aggregate activity from populations of

neurons.

We believe that these developments are a promising step

towards next-generation population rate models that even-

tually replace the heuristic Wilson-Cowan equation as the

standard modeling framework for cortical dynamics. There

remain, however, important open problems to solve: for a

quantitative modeling of mesoscopic data such as local field

potentials (LFP) or wide-field calcium imaging data, there

is still a gap between the population activity in the model

and the actual observables. This gap may be filled by

additional biophysical or phenomenological models as

recently developed for the LFP using an elegant hybrid

modeling approach [90]. On the other hand, direct mea-

surements of the population activities from spike-sorted

multi-electrode recordings seem to be infeasible given the

strong subsampling of neural populations. Here, the multi-

scale approaches mentioned above could be useful to

extract a maximum of information from the full electrical

field data. Another open problem is the issue of heteroge-

neity. Heterogeneity of biological systems seems to be

incompatible with the assumption of homogeneous popu-

lations. We envision three scenarios how to address this

issue: first, it will be interesting to investigate how much

randomness in neuronal and synaptic parameters is toler-

ated by a corresponding homogeneous model based on

average parameters and possibly smoothed nonlinearities

(e.g. increased level of noise). For weak heterogeneity, this

approach is expected to result in a viable solution because

weak randomness about mean parameters is largely aver-

aged out on the population level. Second, for strong het-

erogeneity it might be possible to split populations into

smaller subpopulations which are themselves
www.sciencedirect.com 
homogeneous [91,48��,92]. This scenario would crucially

benefit from the finite-size theory presented above. And

third, in structured neural networks such as those arising

from learning, the number of subpopulations of neurons

with similar tuning properties is large, hence the splitting

approach would amount to an intractable, high-dimen-

sional rate dynamics. However, various experiments indi-

cate that under given stimulus conditions the dynamics is

low-dimensional [93]. Furthermore, standard models in

theoretical neuroscience such as ring models [7,5] and

Hopfield networks [6,37] teach us that the dynamics can

often be described by only a few macroscopic variables that

are typically of the form of weighted averages of single

neuron activities. How to capture refractoriness and finite-

size noise in the dynamics of such generalized coordinates

will be a conceptually exciting question for future studies.
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