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The dominant modeling framework for understanding cortical
computations are heuristic firing rate models. Despite their
success, these models fall short to capture spike
synchronization effects, to link to biophysical parameters and
to describe finite-size fluctuations. In this opinion article, we
propose that the refractory density method (RDM), also known
as age-structured population dynamics or quasi-renewal
theory, yields a powerful theoretical framework to build rate-
based models for mesoscopic neural populations from realistic
neuron dynamics at the microscopic level. We review recent
advances achieved by the RDM to obtain efficient population
density equations for networks of generalized integrate-and-
fire (GIF) neurons — a class of neuron models that has been
successfully fitted to various cell types. The theory not only
predicts the nonstationary dynamics of large populations of
neurons but also permits an extension to finite-size populations
and a systematic reduction to low-dimensional rate dynamics.
The new types of rate models will allow a re-examination of
models of cortical computations under biological constraints.
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Introduction

Neural computations in cortical circuits emerge from the
complex interplay of many thousands of neurons. Direct
simulations of detailed cortical network models [1,2] are

Check for
updates

compatible with emerging activity patterns observed in
experimental data but the sheer complexity and high
dimensionality precludes a theoretical understanding of
such dynamical behavior. To understand how cortical
circuits operate, firing-rate (FR) models for neural popu-
lations, such as the Wilson-Cowan equations [3], offer
mathematically tractable, low-dimensional descriptions
of macroscopic neural dynamics. FR models have become
the mainstay for modeling cortical computations such as
normalization [4], memory [5,6], visual processing [7-9],
motor control and decision making [10]. Furthermore, FR
models are widely used to analyze the dynamics of
cortical [11,12] and cultured [13,14] networks, cortical
variability [15] and imaging data [16].

Despite their success, classical firing rate models have
strong limitations. They are heuristic models that lack a
clear link to single neuron properties at the microscopic
scale and, therefore, cannot be easily constrained by
electro-physiological measurements. Effects of spike syn-
chronization on macroscopic population dynamics are not
captured by classical FR models. Furthermore, FR mod-
els assume idealized, fomogeneous neural populations that
are infinitely large. These issues raise several questions
that cannot be answered by classical FR models: How
does macroscopic activity depend on changes in micro-
scopic parameters such as pharmacological manipulations
of ion channels? What is the transient response of a neural
population to rapid changes in the inputs? What is the role
of finite-size fluctuations for cortical variability? How are
cortical computations affected by realistic spiking dynam-
ics and population sizes? How to build multi-scale models
that are consistent across scales? How to deal with het-
erogeneity among neurons observed in biology?

In this opinion article, we review recent theoretical
advances towards new types of FR models that resolve
major limitations of classical FR models and thereby help
answering the above questions. We propose that the frame-
work of refractory density equations, also referred to as age-
structured population dynamics or quasi-renewal theory,
offers a powerful method to systematically derive meso-
scopic or macroscopic firing rate models from biologically-
verified, spiking neuron models. We explain how a large
population of phenomenological or biophysical model neu-
rons can be described by the refractory density method
(RDM) and demonstrate that the RDM permits an exten-
sion to finite-size (“mesoscopic”) populations. Finally, we
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review recent approaches to reduce population density  distributed populations forming neural assemblies [23] or
equations to low-dimensional FR modelsand discussappli-  clusters [24,25]. In all these models, a population is
cations and open problems. characterized by the population activity defined as

A D) = ny(2, 1 + Ar)/[(NL,AP), where n,(z, t + A?) is the total
The traditional approach to neural population  number of spikes occurring in population « in the time

dynamics bin (7, # + A7), N, is the number of neurons and Az is the
A common framework for modeling coarse-grained corti-  discretization time step (Figure 1). If not ambiguous, we
cal activity are homogeneous neural populations, i.e.  omit the label a.

groups of neurons with similar parameters or tuning

properties and similar external inputs. Examples include ~ The standard model of population activities are heuristic
physiologically or genetically defined cell types in specific  FR equations. They are given by first-order dynamics
cortical layers and columns [17,2,22,16] (Figure 1) and either for some activation variable (“input potential”) /
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From microscopic to mesoscopic models of neural population activities. The schematic illustrates two consistent modeling approaches of
mesoscopic population activities (bottom right) using the example of a cortical microcircuit model containing layers of excitatory and inhibitory
neural populations [17,18°%]: The microscopic model (top) is a network of 80 000 generalized integrate-and-fire (GIF) spiking neurons, whose
parameters can be efficiently extracted from single neuron recordings (left) and clustering methods [19,20°°]. To obtain mesoscopic population
activities from the microscopic model requires an extensive, neuron-based simulation generating the spike trains of each cell (top right). The
activity A,(f) of population « can be extracted from the total spike count n,(t, t + At) over all N, neurons in small time bins of size At (right). Note
that A,(t) fluctuates because of finite numbers N, (bottom right). Bottom: The refractory density method allows to construct an equivalent
mesoscopic model for the population activities. Efficient simulations of the mesoscopic model yield directly the mesoscopic population activities
(bottom right) with the correct spatio-temporal statistics. In contrast to classical FR models, the parameters of the mesoscopic model are directly
linked to the microscopic parameters and can thus be constrained by microscopic measurements. Moreover, the mesoscopic model permits
efficient statistical inference of model parameters from mesoscopic data. Neuronal density distribution in cortical space (left) is modified from [21].
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governed by 1,4 = —/4 + I(¢) and passed through a non-
linear function, A(?) = F(4(2)); or directly for the popula-
tion activity, t4A = —A + F(I(7)) (Wilson-Cowan form).
The input current /(#) depends, in turn, on the population
activities: the input into neurons of population o may be
written as 1(7) = > plapdp(r) + 157(7), where 15(7) is
an external stimulus and J,z is an effective interaction
strength from population § to « resulting from a mean-
field approximation. If the nonlinear function F is chosen
as the stationary transfer function (“f-I curve”) of the
single neuron, then, by construction, the heuristic FR
equation is correct in the stationary state. However, the
dynamics towards equilibrium does not correctly repro-
duce transients of a spiking neuron population
(Figure 2c¢), nor is there a clear link between the heuristic
time constants 7, or 74 and the time scales of the under-
lying spiking network [26,27]. Moreover, the classical FR
dynamics is deterministic and therefore cannot capture
finite-size fluctuations.

In principle, the correct population rate dynamics for a
large population of spiking neurons can be obtained from
a population density equation [28-38]. This equation
tracks how many neurons occupy a given state in neuronal
state space (population density). A popular example is the
Fokker-Planck equation for one-dimensional integrate-
and-fire models driven by white noise [31,33,39,37]. Here,
the state variable is the membrane potential V (Figure 2a,
top). Accounting for additional variables such as gating
variables, adaptation, threshold and synaptic variables as
well as dendritic compartments is principally possible by
considering a multi-dimensional state space. Although
efficient numerical methods [34,40] and analytical
approaches [41-43] have been proposed for two-dimen-
sional population density equations, solutions on a multi-
dimensional state space are generally inefficient and
mathematically intractable. Here, we follow a different
approach, called refractory density method (RDM)
[30,44-47]. This approach yields an effectively one-
dimensional state space for various types of neurons.

The refractory density approach

The RDM is based on the idea that the #ime since the last
spike combined with the history of the population activity
is a fairly good predictor of the internal refractory state of
a given neuron. According to this hypothesis, the instan-
tancous probability to fire in a small time step (7, 7 + A7)
can be written as p,(t, H)Atz, where T denotes the time
since the neuron’s last spike and the subscript A indi-
cates a possible dependence on the history {A(s)},~, of
the population activity. In analogy to renewal theory
[52], survival analysis [53] or the theory of age-structured
population dynamics [54], the time since the last spike is
sometimes referred to as the “age” of the neuron. The
age-dependent firing rate p4(t, #) is called hazard rate.
The neuronal distribution across t-space, p(t, £), is called

refractory density and obeys the refractory density
equation (RDE) given by [3,30,37]:

dp  p_

7 T —pa(T,1)p, (1)
P0.0) A = 2 oy (. )plr 1)

(Figure 2b). Besides the increase of the age in time,
neurons can leave the state T because of spiking, resulting
in the outflux —p4(t, Hp(t, 7). After spiking, the age is
reset to zero, which enters in the boundary condition p(0,
7) = A(z) at zero age. Importantly, the population activity A
(H) results from the integration over all positive ages
(Figure 2b). Thus, the RDE is a first-order partial differ-
ential equation with non-local boundary condition. Such
standard transport equation allows for an efficient numer-
ical solution [44,55]. Despite the simple structure of the
RDE, its dynamics is extremely versatile in describing
different cell types. The rich flexibility is hidden in the
complex functional form of the hazard rate p,(t, 7). It
contains both the neuronal dynamics and the synaptic
interactions. Synaptic interactions are treated within a
standard mean-field approximation. To account for single
neuron dynamics, two main approaches have been pro-
posed: the phenomenological approach and the biophys-
ical approach. The phenomenological approach builds upon
two recent advancements: (i) the development of effi-
cient routines to extract the parameters of generalized
integrate-and-fire (GIF) models [37] from single-cell
recordings [19,56,20°°], and (ii) the quasi-renewal theory,
which provides a hazard rate p,(t, #) for populations of
GIF neurons [46]. GIF models are integrate-and-fire
models with a moving threshold or adaptation currents
and a stochastic spike-generation mechanism called
“escape noise”: at each moment in time # a spike is
realized with a probability depending on a deterministic
variable «#(7) (Figure 2b, bottom) that can be interpreted as
the average (or noiseless) voltage trajectory following the
most recent spike and ignoring the threshold. GIF models
can be regarded as biologically informed instances of
nonlinear Hawkes processes [57,58°] and generalized
linear models (GLLMs), for which efficient fitting routines
exist in statistics [59,19,58°]. These optimization methods
have been applied to neurons in the Allen Cell Types
Database [20°°] making GIF parameters publicly
available. Furthermore, the distance- and morphology/
dependent filtering of synaptic inputs by the dendritic
tree can be collapsed into an effective GIF point neuron
model [60] with different input filters. Remarkably, once
parameters have been optimized, GIF models predict up
to 90% of spike times in response to somatic, in-vivo-like
current injections. Applying clustering algorithms to GIF
parameters of different neurons [20°°] suggests a way to
define homogeneous populations based on average
parameters within clusters.
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Figure 2
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Neural refractoriness in rate-based models. (a) Fokker-Planck method for the evolution of membrane potential density p(V, t) of a noisy leaky
integrate-and-fire neuron. The flux of neurons through the threshold determines the firing rate A(t). (b) Refractory density method (RDM) for the
evolution of the age density p(z, ) and mean voltage u(z, t). At each point in t-space, the mean voltage u and variance o2 determine the flux to the
spike state, T = 0 (reset), proportional to the hazard function pa(z, t). The integral of the flux over t determines the firing rate A(t). (c) In response to
an input current-step, the simulated neuronal density p(V, t) oscillates and settles to a steady state. The oscillations reflecting neuronal
synchronization are not reproduced in a classical FR model (dashed line, t4 = t,,,). (d) Similarly, RDM describes the density p(z, f), resulting in the
same firing rate [48°°]. (e) The conductance-based RDM reproduces the experimental histograms of spikes, obtained in response to weak

Current Opinion in Neurobiology 2019, 58:155-166 www.sciencedirect.com



Mind the last spike — firing rate models for mesoscopic populations of spiking neurons Schwalger and Chizhov 159

How can populations of GIF neurons be treated by the
RDM? GIF neurons possess a memory of previous spikes
in their threshold and membrane potential. Single neuron
recordings have revealed that this memory decays on
multiple timescales including components lasting up to
several seconds [56]. This means that the instantaneous
firing probability depends on multiple previous spikes,
not only the last one. Thus, at first glance, the RDM does
not seem to be applicable to populations of GIF neurons.
It turns out, however, that the additional dependence of
the hazard rate on the history of A is in most cases
sufficient to approximate the influence of spikes that
occurred prior to the last one. This idea is the basis of
the quasi-renewal (QR) theory [46]: The effect of the last
spike (i.e. the age 1) is strong because of short-lived
refractory effects such as spike-afterhyperpolarization
and fast components of the threshold dynamics. Thus,
the dependence on t should be treated accurately. In
contrast, the influence of individual spikes prior to the
most recent one is typically weak but may accumulate
over many spikes. This suggests that the precise timing of
earlier spikes can be replaced by a population average if
spikes are not strongly synchronized. As a result, the QR
theory delivers an explicit hazard rate pu(7, ) for a
population of phenomenological GIF neurons. Recently,
this hazard rate has been used to analyze fluctuation
statistics and information filtering in GIF populations
[61] and the stability of fitted point-process GLLMs [58°].

The second, biophysical approach, called conductance-
based RDM, does not involve any parameter fitting. In
this approach, the neuronal dynamics enters the hazard rate
through the deterministic dynamics of the mean voltage #
governed by equations derived from a Hodgkin-Huxley-
type neuron model with noise [44,45]. The idea is that
neuronal state variables may be approximated by their
7-dependent means. Because the time-dependent input
is similar for all neurons of a population, the states of
neurons with close t are similar. For instance, in Hodg-
kin-Huxley-type models, the average state of a neuron is
given by a vector ¥(#) containing #(#) and active gating
variables. This vector evolves according to the differential
equation &y/dr = F(y,t), where F(¥,#) constitutes the
right-hand sides of the Hodgkin-Huxley equations. If the
dynamics is fast, the variables renew to roughly the same
reset value ¥, after firing. Slow variables such as adap-
tation currents are incremented [44], thus introducing
Freser (). The effective reset implies that the average state
variables are uniquely determined by 7 and 7z On the
population level, we therefore consider y =5(7,7) as

function of 7 and £ Since the age increases at unit
speed, dt/dr=1, the dynamics turns into %)7:
97+ 0.y =F(,r) with the boundary condition
¥(0,7) =¥, (7). Therefore, together with the equation
for p(t, 7), the conductance-based RDM amounts to
solving a system of one-dimensional transport equations
for p and y.

Approximations for the hazard rate have been derived for
white [44] and colored noise-currents [45] as solutions of a
first-passage-time problem given the time-dependent
mean voltage #(7). Quite remarkably, the resulting hazard
rate is of the form py(#, duldr), i.e. the firing probability
not only depends on the mean voltage but also on its
speed towards threshold, in line with earlier heuristic
approximations [62,63]. The derived hazard rate provides
a good match of RDM to Monte-Carlo solutions for
various neurons, including integrate-and-fire [48°°], adap-
tive Hodgkin-Huxley [44] and bursting ones [64]. In the
simplest case, for integrate-and-fire neurons, the model
consists of two first-order equations for p and #
(Figure 2b); its solution is very close to that of the
Fokker-Planck equation (Figure 2¢,d). One of the advan-
tages of the approach is its applicability to multi-compart-
ment neurons, which is crucial for accurately matching
simulations to experiments and for calculating local field
potentials, both requiring two compartments [65]. Simu-
lations of the visual cortex activity and epileptic dis-
charges matched a set of data obtained with patch-clamp
recordings and optical imaging [50,55,66°,67°].

Spiking noise in finite-size populations

The population density approach described so far is based
on the macroscopic limit of infinite neuron numbers,
N — oo. Clearly, this is an idealization that may not be
applicable for neural circuits in the brain. For example, in
the barrel cortex of mice, neuron numbers of excitatory
and inhibitory neurons per cortical layer and column have
been estimated to be on the order of 50 to 2000 cells [68].
Are these numbers large enough to justify the limit
N — oo? There are several reasons why a macroscopic
theory may not be sufficient. First, data of neural popula-
tion activities are noisy, which may (in part) originate
from spiking noise that is not averaged out in finite-size
(so-called mesoscopic) populations. These finite-size fluc-
tuations decrease with increasing population size as 1/v/N
(Figure 3a). Second, finite-size fluctuations may not
merely yield noisy data but may also play a constructive
role [69]. Many cognitive processes depend on noise. For
example, finite-size noise may excite oscillatory modes or

stepwise changes of the mean (left) or variance (right) of the current injected into a single neuron [48°°]. Experimental data reproduced with
permission from [49]. (f) A conductance-based RDM applied to modeling of visual cortex activity [50] reflects experimental recordings in tangential
slices of ferret visual cortex [51]. Top, pattern of a simulated voltage-sensitive dye signal in response to electrical stimulation at the site marked by
asterisk. Middle and bottom, postsynaptic potentials (PSPs) simulated and electro-physiologically registered in a representative neuron (arrow),
dependent on stimulus strengths, characterize excitability of neural tissue. The weak stimulus generated a pure excitatory EPSP, whereas the
moderate and strong ones evoked a compound excitatory/inhibitory PSPs. These and other simulated aspects of the visual cortex functioning are

consistent with a set of in-vitro and in vivo data [50].
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Figure 3
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Finite population sizes cause fluctuations of the population activity and emergent neural variability. (A) Population of uncoupled GIF
neurons receiving common input /(t). As the number of neurons N increases, the fluctuations of the population activity A(t) decrease. (B) Standard
network of excitatory and inhibitory neurons (20% connection probability) that settles into an asynchronous state for large network size after
oscillatory transient. For small networks, shared finite-size fluctuations of population activities cause partial synchronization and noisy oscillations.
The power spectrum of this activity is accurately reproduced by the corresponding integration of the mesoscopic model, Eqg. (2), (3). (C) Winner-
take-all network, where two excitatory populations are coupled via an intermediate inhibitory population, as used in models of perceptual
bistability. Because of finite-size fluctuations, the mesoscopic network state switches between two attractors (perceptions), which is accurately
reproduced by the mesoscopic model as shown by the power spectrum. Parameters as in [18°].

partially synchronize neurons leading to rhythmic popu-
lation activities (FFigure 3b) such as gamma oscillations
[70]. It can also induce transitions in multi-attractor net-
works (Figure 3¢, [18°°]) with important implications for

(slow) variability in cortex [24], perception [9], decision-
making [10] and memory [71°°]. Finite-size noise may
also trigger population spikes [13,72] as observed in
cultured networks. Third, statistical inference and

Current Opinion in Neurobiology 2019, 58:155-166
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decoding from noisy population rates requires probabilis-
tic population models, whereas macroscopic models are
deterministic. In conclusion, deriving stochastic popula-
tion models for finite-size neural populations is a crucial
task for understanding neural activity patterns, computa-
tions and cognitive processes.

Finite-size fluctuations have been derived for simple
non-spiking neuron models consisting of two or three
discrete states in the framework of birth-death Markov
processes [73,74]. How to model finite-size noise in
populations of spiking neurons? It is instructive to first
understand the case when spike-history dependencies
such as refractoriness are absent. To this end, let us
assume a population of Poisson neurons firing with instan-
taneous rate 7(7) = F(4(7)), where /(7) is the input potential
given by a filtered sum of spike train inputs:
Tmdh/dt = —h + %ZLI si(t) = —h + wA. Because Pois-
son firing does not depend on spike history, the popula-
tion activity for NV — oo is identical to the common firing
rate of single neurons, A(#) = F(/4(¢)). Thus, the population
dynamics converges exactly to the classical rate equation
in the macroscopic limit. It is simple to extend this
equation to the case of finite N [13]: the macroscopic
population activity is simply replaced by a population rate
A(2) = F(h(z)), from which the mesoscopic population
activity is randomly sampled:

_ Pois(NA(r)dt)

A@) Ndr

T'he first relation results from the fact that the total spike
count #(#, £+ Ar) in the time bin (7, 7+ A7) is Poisson
distributed with mean NA(#)Az. Thus, the population
activity is of discrete nature reflecting the finite number
of neurons V. In the limit of small Az, the total spike count
is practically either 0 or 1, and hence, the population
activity converges to a Dirac delta spike train with rate
NA(z) and overall factor 1/N. The second relation is an
optional Gaussian approximation for large but finite N,
where &(7) denotes zero-mean Gaussian white noise. This
form highlights that finite-size spiking noise is of order
1/v/N and exhibits a white-noise component. Let us turn
to populations of spiking neurons with realistic refracto-
riness and other spike-history dependencies. In this case,
the macroscopic dynamics of A(#) is given by a population
density equation as in Figure 2b. How to capture finite-
size noise within a population density approach? In anal-
ogy to the Poisson case, it is tempting to replace the
macroscopic population activity by a population rate
A(r) = [,° pa(z,2)p(z,7)dv and randomize the meso-
scopic population activity A(#) via Eq. (2) [26]. Unfortu-
nately, this approach generally fails: first, it violates the

conservation of the total number of neurons (i.e. the
probability density in no longer normalized) because
the randomized influx of neurons A(#) at the “reset”
T = 0 is not precisely compensated for by the total outflux
Z(Z) (integral of the r.h.s. of Eq. (1)). This imbalance may
result in unstable dynamics of numerical solutions. Sec-
ond, because fluctuations only enter at the reset t = 0, the
simple approach does not capture the immediate refrac-
tory effect of finite-size fluctuations on the population
rate A(7). In a recent extension of the RDM to finite N
[18°°], it has been shown that both the instability and the
treatment of refractoriness can be resolved by adding a
correction term to the rate A(7):

i) = / " pa(ntp(e.)dr
—|—A(z‘)<1— OOp(r,z‘)dr). (3)

0

As before, the mesoscopic population activity is given by
Eq. (2) and the density p(z, #) obeys the RDE, Figure 2b
(in which A(?) is now stochastic). The second term in
Eq. (3) corrects for the imbalance between influx and
outflux so as to minimize the normalization error and
therefore stabilizing the numerical integration. The factor
A(?) is a positive characteristic rate that depends on the
history of the population activity [18°°]. Thus, a large
positive fluctuation of A(#), for instance, increases the
density of neurons in the reset state (age t = 0) and, since
there is no counter-balance, also increases the overall
probability mass making the second term negative. As
a result, the expected activity A is reduced after a large
positive fluctuation. Thus, the auto-correlation of A(#) is
negative at short time lags reflecting the auto-correlation
structure of single neurons with refractoriness. In fact, the
mesoscopic RDE (Figure 2b together with Egs. (2), (3))
accurately reproduces power spectra of the population
activity obtained from microscopic simulations (Figure 3).
While power spectra were obtained by simulations of the
mesoscopic RDE, analytical results can be derived by
means of the linearized dynamics [61,75°].

Low-dimensional firing rate dynamics

So far we have seen that the mesoscopic dynamics of a
finite population of spiking neurons can be accurately
described by the RDE with stochastic boundary condi-
tions, Egs. (1)—(3). We now return to our original motiva-
tion to derive FR models from single neuron dynamics.
We argue that the RDE can be further reduced to a small
set of ordinary (stochastic) differential equations in the
spirit of classical FR equations. The low-dimensional
reduction of the RDE is based on the eigenfunction
method originally proposed for the Fokker-Planck equa-
tion [76,77,26,78,79°,80,81]. However, in contrast to the
latter and other approaches such as linear-nonlinear cas-
cade models [82,83°] or the Ott-Antonson theory
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[86°,71°°,88°%,84,85,87], the RDM permits a principled
treatment of finite-size noise and applies to a rich class
of neuron models.

To illustrate how this method works, we consider the
evolution operator L (#(7)) associated with the RDE,
Eq. (1). The operator may depend on one (or several)
time-dependent parameter(s) /4(#) representing, e.g.,
mean-field inputs [18°°] and slow adaptation variables
[78]. For a given value /() = £, a basis of eigenfunctions of
the operator L (%) with associated eigenvalues {A,(%4)} can
be constructed. The eigenvalues determine the relaxa-
tion dynamics of the time-dependent amplitudes 4,(7),
and hence deliver the characteristic time scales and
oscillation frequencies of the population rate. An approx-
imate low-dimensional dynamics is obtained by retaining
only the slowest (dominant) eigenmode: z; = Ay (4)a;+
[co(h) + c1(B)ay + c_1(h)ai)h + VA(7)/NE(r), where a;
denotes the complex conjugate of the amplitude «;
and ¢x(%) are complex functions that can be constructed
from the eigenmodes [26]. Fortunately, the correction
term in Eq. (3) completely vanishes upon insertion of the
eigenfunction expansion if the amplitude of the station-
ary mode «, is approximated by its macroscopic limit
1. This leads to a drastic simplification of Eq. (3):
A(r) = F(h(r)) — 2Refa; (7)/P, (1)), where Pj(%) is the
derivative of the Laplace transform P;(1) of the inter-
spike interval density Py(#). The population activity A(#) is
again given by Eq. (2) with the same realization of the
white noise &(7) as used for #,(7). This two-dimensional
dynamics supports spike-synchronization effects such as
oscillatory responses [81] and the temporal structure of
finite-size fluctuations. Interestingly, these equations
recover and theoretically explain the previous ad-hoc
result given in [26] thanks to the finite-size formulation

Table 1

of the RDM. In the Fokker-Planck framework, the main
difficulty has been the calculation of the eigenvalues A (%)
for arbitrary values of /4(#) [83°]. In contrast, the RDM
leads to a surprisingly simple and general theory for the
eigenvalues: For any renewal process, the eigenvalues are
given by the complex solutions of P,(1) = 1, or equiva-
lently, by the complex zeros of the Laplace transformed
survival function [94]. Both Laplace transforms are
known analytically for the perfect and leaky IF model
driven by white or escape noise as well as various hazard
rate neuron models.

Discussion

In this opinion article we reviewed recent theoretical
advances to bring rate-based models of neural population
dynamics closer to biology. We proposed that the refrac-
tory density method (RDM) is a powerful mathematical
framework to systematically link the dynamics of single
neurons with that of mesoscopic populations and to derive
low-dimensional dynamics using spectral methods. The
RDM turns out to be advantageous in several respects
(Table 1): (1) it can be directly calibrated by single neuron
recordings via the GIF point neuron model or by bio-
physical neuron models via the conductance-based RDM,
(11) the RDM constitutes a highly efficient, one-variable
population density method because it relies on the “age”
as a single neuronal state variable, and (iii) it allows to
incorporate finite-size noise for mesoscopic populations,
which is unknown for other population density methods
such as the Fokker-Planck method.

The development of rate-based models consistent with
spiking dynamics and finite population size has been a
challenging problem for quantitative neural population
modeling. The solutions discussed here suggest notable

Different levels of neuronal population dynamics description. Population models are under constraint of a certain aspects: types of
neurons, activity regimes, size of populations, complexity of network, efficiency of calculations. Their applicability(+)/inaplicability(-) and
other characteristics were estimated on a base of the references given in the main text. Questionmarks highlight open theoretical
problems. Abbreviations: MC - Monte-Carlo, FR - firing-rate, PDM - probability density method, FP - Fokker-Planck, RDM - refractory
density method, LIF - leaky integrate-and-fire, GIF - generalized integrate-and-fire, HH - Hodgkin-Huxley model, ODE - ordinary

differential equation, PDE - partial differential equation.

Population models

MC FR PDM low-dim. RDM expansion
FP-based RDM

Neuron models: LIF + - + + +

GIF + - - + ?

HH + - - + ?
Transient regimes well poor well well well
Mathematical complexity Thousands of ODEs few ODEs 2nd-order PDE few 1st- order PDEs few ODEs
Computational efficiency bad excellent good good excellent
Finite size + - - + +
Analyzability bad excellent good good good
Applicability to real data moderate poor poor good ?

simulations (LFP,
PSPs/PSCs, VSDI)
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progress in several directions. For instance, experimental
and modeling studies of sensory coding in visual cortex
have been traditionally focused on stationary mean firing
rates (“tuning curves”) [8], however, there is increasing
interest in understanding transient dynamics of mean
rates [89] and variability [15]. This requires new tools
that account for spike synchronization effects and finite-
size fluctuations such as the models described here.
Furthermore, with current computer technology, large-
scale simulations of brain areas are becoming feasible [2].
An equivalent mesoscopic model would not only gain a
significant speed-up but would also be accessible to
theoretical analysis. Moreover, consistent mesoscopic
models are crucial for multi-scale modeling approaches,
in which local circuits in focus are modeled in full
microscopic detail while background populations are
modeled mesoscopically. While multi-scale models have
become indispensable tools in various scientific fields,
such approaches have so far been difficult in neuroscience
due to the lack of theoretical methods for linking scales.
Consistent multi-scale models are also crucial for the
interpretation of multi-scale data such as extra-cellular
field potentials, which contain both spikes of individual
neurons and aggregate activity from populations of
neurons.

We believe that these developments are a promising step
towards next-generation population rate models that even-
tually replace the heuristic Wilson-Cowan equation as the
standard modeling framework for cortical dynamics. There
remain, however, important open problems to solve: for a
quantitative modeling of mesoscopic data such as local field
potentials (LFP) or wide-field calcium imaging data, there
is still a gap between the population activity in the model
and the actual observables. This gap may be filled by
additional biophysical or phenomenological models as
recently developed for the LFP using an elegant hybrid
modeling approach [90]. On the other hand, direct mea-
surements of the population activities from spike-sorted
multi-electrode recordings seem to be infeasible given the
strong subsampling of neural populations. Here, the multi-
scale approaches mentioned above could be useful to
extract a maximum of information from the full electrical
field data. Another open problem is the issue of heteroge-
neity. Heterogeneity of biological systems seems to be
incompatible with the assumption of homogeneous popu-
lations. We envision three scenarios how to address this
issue: first, it will be interesting to investigate how much
randomness in neuronal and synaptic parameters is toler-
ated by a corresponding homogeneous model based on
average parameters and possibly smoothed nonlinearities
(e.g. increased level of noise). For weak heterogeneity, this
approach is expected to result in a viable solution because
weak randomness about mean parameters is largely aver-
aged out on the population level. Second, for strong het-
erogeneity it might be possible to split populations into
smaller  subpopulations  which  are  themselves

homogeneous [91,48°%,92]. This scenario would crucially
benefit from the finite-size theory presented above. And
third, in structured neural networks such as those arising
from learning, the number of subpopulations of neurons
with similar tuning properties is large, hence the splitting
approach would amount to an intractable, high-dimen-
sional rate dynamics. However, various experiments indi-
cate that under given stimulus conditions the dynamics is
low-dimensional [93]. Furthermore, standard models in
theoretical neuroscience such as ring models [7,5] and
Hopfield networks [6,37] teach us that the dynamics can
often be described by only a few macroscopic variables that
are typically of the form of weighted averages of single
neuron activities. How to capture refractoriness and finite-
size noise in the dynamics of such generalized coordinates
will be a conceptually exciting question for future studies.
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