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Networks of fast nonlinear elements may display slow fluctuations if interactions are strong. We find a transition
in the long-term variability of a sparse recurrent network of perfect integrate-and-fire neurons at which the Fano
factor switches from zero to infinity and the correlation time is minimized. This corresponds to a bifurcation
in a linear map arising from the self-consistency of temporal input and output statistics. More realistic neural
dynamics with a leak current and refractory period lead to smoothed transitions and modified critical couplings
that can be theoretically predicted.
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How can slow fluctuations build up in a network of fast
elements? This is a fundamental question for many systems in
physics and biology, ranging from spin glasses [1] to systems
generating 1/f noise [2]. The problem is particularly appealing
in neuroscience because the propensity of neural networks for
slow change may endow them with what is reminiscent of
short-term memory [3–5] and what is required for a number
of cognitive functions [6,7]. That is why slow fluctuations and
processes on large time scales in such networks have received
attention by physicists since the 1980’s [8–11] and continue to
be in the focus of current research [12–16].

For recurrent networks of spiking neurons, it is hotly
debated what kind of transition is observed when the coupling
strength is varied—do such networks show a phase transition
(manifest by diverging correlation times) as do networks of
rate units [8]? Here, we address this problem via a self-
consistency condition for the temporal correlations of the
single neuron and validate the results by extensive simulations
of a large (>105 neurons) and sparse recurrent network.
A key insight of our study is that for strong coupling the
fluctuations seen as well as generated by a single neuron in
the network become strongly colored—slow fluctuations are
most strongly amplified while high-frequency noise remains
limited.

It is clear that this colored-noise problem cannot be solved
in the otherwise very successful Fokker-Planck framework
[17,18], which assumes white (uncorrelated) Gaussian noise
as the effective input to a neuron in the network. Here, we
employ a recent theory for the spike statistics of integrate-
and-fire (IF) neurons driven by noise with arbitrary temporal
correlations [19] in order to predict the critical coupling at
which long-range temporal correlations of spiking emerge.
We show that around this critical coupling, Fano factors of
individual neurons strongly increase and their correlation time
attains a pronounced minimum, which is in marked contrast
to a maximized correlation time close to a phase transition
[8]. The transition becomes a true bifurcation for networks
of perfect IF neurons (neglecting leak currents). Its hallmarks
are still present for networks that include leak currents and an
absolute refractory period.

Network model. We consider the classical setup by Brunel
[18], a random network of NE excitatory and NI inhibitory

integrate-and-fire (IF) neurons, all obeying

τmv̇k = −γ vk + R[Iext + Isyn,k(t)], (1)

with a membrane time constant of τm = 20 ms. The kth
neuron fires whenever the voltage vk(t) reaches vT = 20 mV
and is reset to vR = 10 mV after a refractory period τref .
The instances of threshold crossings tk,i define the spike
train, xk(t) = ∑

i δ(t − tk,i), of the kth neuron. Neurons are
coupled by current-based instantaneous synapses, including a
transmission delay of D = 1.5 ms,

Isyn,k(t) = Jτm

R

⎡
⎣ CE∑

j=1

x�k,j
(t − D) − g

CI∑
j=1

xκk,j
(t − D)

⎤
⎦.

(2)

Here, the excitatory (inhibitory) input spike trains x�k,j
(t)

[xκk,j
(t)] belong to CE (CI ) presynaptic neurons �k,j (κk,j ),

chosen at random from the NE (NI ) excitatory (inhibitory)
neurons of the network. We use a sparse fixed connectivity
[18] with CE = 103, CI = 250. The constant external input is
RIext = 30 mV (mean-driven regime of the single neurons) and
g = 4 (balanced recurrent input from the network), keeping the
network in the asynchronous firing regime [18], where cross
correlations between neurons are negligible. We focus on the
spike-train power spectrum in a time window T , ST

xx(f ) =
〈|x̃k,T (f )|2〉/T , expressed in terms of the Fourier transform
x̃k,T = ∫ T

0 dte2πif t [xk(t) − r0] and the firing rate r0 = 〈xk′(t)〉,
where in simulations 〈·〉 is taken as the average over 103

neurons of the network (and—for the firing rate—also over the
time window T). In the following, Sxx(f ) = limT →∞ ST

xx(f ).
In all network simulations, we set NE/NI = 4. Moreover,
NE = 105 and T = 100 s unless explicitly indicated.

Single-neuron iterative scheme. Self-consistency in the
homogeneous network requires that in the asynchronous state
the corresponding single-neuron IF model,

v̇ = (RIext − γ v)/τm + J r0(CE − gCI )

+ J
√

CE + g2CIη(t), (3)

with the fire-and-reset rule introduced above, has a firing rate
r0 = 〈x(t)〉 [determining the drift term in Eq. (3)] and a power
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spectrum ST
xx(f ) that is equal to the power spectrum of the

noise η(t) in Eq. (3), i.e., ST
xx(f ) = ST

ηη(f ). Both the rate and
spectrum can be approximately determined in a single-neuron
simulation scheme of Eq. (3), in which iteratively a single
neuron is stimulated over several “generations” with surrogate
Gaussian noise, the power spectrum of which matches the
previous generation’s spike-train spectrum [20,21]. Formally,
we iterate a functional map M that leads from the rate
and spectrum of the nth generation to those of the (n +
1)th, (r0,Sxx)n+1 = M[(r0,Sxx)n]—the fixed point of this map
yields the self-consistent solution. We use Eq. (3) for 103

realizations and iterate over 102 generations to estimate the
firing rate and spike-train power spectrum in a time window
T for a sparse network in the asynchronous state. For both the
full network simulations and the iterative scheme, we discard
an additional transient of 10 s.

Network of perfect IF neurons. Switching off the leak term
in Eq. (1), γ = 0, we obtain a network of perfect IF neurons.
For simplicity, we set τref = D = 0 ms. Then, the self-
consistent rate is r0 = τ−1

m RIext/[vT − vR − J (CE − gCI )],
which is independent of coupling strength for perfect balance,
g = CE/CI = 4. Hence, the functional map M reduces to one
solely for the power spectrum.

For a perfect IF neuron, driven by a weak Gaussian
noise with arbitrary temporal correlations, expressions for
the spike-train autocorrelation function have recently been
derived [19] but are too complicated to solve the functional
map analytically for its fixed point Sxx(f ). However, it turns
out that at zero frequency, the power spectrum of the output
is just determined by the input power spectrum at zero
frequency [22]. The corresponding spike-train spectrum at
zero frequency is important because it is related to the Fano
factor F (T ) = 〈	N2(T )〉/〈N (T )〉 [variance over mean of the
spike count N (T )] via ST

xx(0) = r0F (T )—a small (large) value
indicates a weak (strong) long-term variability and, generally,
the suppression (enhancement) of slow fluctuation in the spike
train. Remarkably, the resulting relation between the input
spectrum (or the spectrum of the previous generation) and
output spectrum (or the spectrum of the next generation) is
linear and not limited to a weak input noise or Gaussian noise
statistics:

Sxx,n+1(0) = J 2(CE + g2CI )

(vT − vR)2 Sxx,n(0). (4)

A bifurcation in the stability of this linear map occurs at

Jc = vT − vR√
CE + g2CI

. (5)

For a coupling J < Jc, the power spectrum at zero frequency
will decrease to zero. This limit implies the absence of any
long-term variability in the spike trains of weakly coupled
perfect IF neurons. In the opposite limit of J > Jc, the power
spectrum in the map Eq. (4) (and the Fano factor) grows
without bound.

These expectations are confirmed by spike-train power
spectra from both network simulations and the single-neuron
iterative scheme, shown in Fig. 1. Because of limitations in
network size, number of generations, simulation time step,
and time window T for the Fourier transform, we cannot
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FIG. 1. (Color online) Network of perfect IF neurons: Single-
neuron spike-train power spectra from network simulations (solid
lines) and from iterative single-neuron simulations (dashed lines)
for subcritical, critical, and supercritical synaptic coupling with
Jc = (

√
2/10) mV ≈ 0.14 mV. Firing rates estimated from the same

simulations in the three cases are r0 = 145, 141, and 352 Hz for
J = Jc/2, Jc, and 2Jc, respectively. For longer simulation times and
shorter time steps, firing rates in all three cases get closer to the
theoretical value of r0 = 150 Hz.

expect to see the exact asymptotic limits of the map, Eq. (4).
What we see instead is a drastic effect of the value of the
coupling constant J (changed by a modest factor of 4) on
the power spectra at low frequencies that differ by seven
orders of magnitude if we go from subcritical to supercritical
coupling strength. This is in line with previous observations of
increased low-frequency power in other models in which the
coupling strength was varied [23,24]. The spike-train power
spectra obtained from the iterative simulations (dashed lines in
Fig. 1) are generally close to those determined from network
simulations, which supports the above line of reasoning and
indicates that neglected features such as correlations among
the neurons do not play a significant role.

Remarkably, the zero-frequency limit in the subcritical case
is not approached via a completely deterministic spike train
(which would have zero power at zero frequency), but by
negative correlations of its interspike intervals [25]. Note that
ST

xx(0) as obtained in our simulations is small but not exactly
zero because of the finite time step of 	t = 0.1 ms; reducing
	t leads to a further reduction of ST

xx(0) (not shown).
At critical coupling, the power spectrum looks similar to

spectra that have been measured in cortical cells [26]: There is
reduced power at low frequencies and a small hump close to
the firing rate of the cell. In the supercritical case at J = 2Jc,
the power spectrum shows a pronounced 1/f α (with α ≈ 1.8)
divergence, in accordance with the divergence of the map in
this case.

Two characteristics can be extracted from the power spectra,
the Fano factor and the correlation time. By taking ST

xx(0)/r0,
we obtain the Fano factor F (T ), i.e., a measure of the
spike train’s long-term variability in the time window of the
simulation.
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FIG. 2. (Color online) Network of perfect IF neurons: (a) Fano
factor and (b) correlation time as functions of normalized synaptic
coupling strength (here, Jc ≈ 0.14 mV) for different values of
network size and time window from network simulations (solid lines)
and iterative scheme (dashed lines).

Further, given the spike train’s correlation function c(τ ) =
〈x(t)x(t + τ )〉 − 〈x〉2, following Ref. [27] we consider its
continuous part ĉ(τ ) = c(τ ) − r0δ(τ ) and define the correla-
tion time as the integral over the normalized square of this
function,

τc =
∫ +∞

−∞
dτ

[
ĉ(τ )

ĉ(0)

]2

=
∫ ∞

−∞
df

(Sxx(f ) − r0)2

r4
0

. (6)

In the last step, we used the Parseval theorem to express τc by
the power spectrum.

When the coupling strength is varied, the Fano factor
[Fig. 2(a)] shows a sharp transition at J 	 Jc, separating
exponentially small values (J < Jc) from exponentially large
values (J > Jc) with an overall variation over eight orders of
magnitude if J is varied by less than a factor of ten. Increasing
the time window by a factor of ten leads to a similar increase
of the Fano factor for J > Jc. In contrast, an increase of the
network size (from NE = 104 to NE = 105) has only a little
effect on the Fano factor curve.

The correlation time shows at the first glance a surprising
minimum around the critical value J ≈ Jc, which stands in
marked contrast to the maximum predicted in the rate network
with all-to-all coupling by Sompolinsky et al. [8]. From our
simple map, Eq. (4), we would expect that the divergence is
more pronounced for stronger coupling and so it is plausible
that τc grows with J once we are beyond the critical coupling.
In the other limit, for J → 0, neurons fire asynchronously but
perfectly regularly and thus we expect τc → ∞ in this limit as
well.

Network of leaky IF neurons. How much of the transition
effect remains if we switch on a finite leak term (γ > 0) in
Eq. (1) and take into account an absolute refractory period

network
iterative scheme
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FIG. 3. (Color online) Network of leaky IF neurons: Single-
neuron spike-train power spectra from network simulations (solid
lines) and from the iterative scheme (dashed lines) for weak and
strong synaptic coupling and two values of the leak parameter γ as
indicated.

and a finite transmission delay D = 1.5 ms? In numerical
simulations of large networks of leaky IF (LIF) neurons
we find that the (supercritical) divergence or (subcritical)
vanishing of the spectrum at zero frequency is smoothed to
finite values (Fig. 3). However, these values still differ by
orders of magnitude for the Fano factor [Fig. 4(a)]; networks
of leaky IF neurons still show a remarkably deep minimum
of the spike train’s correlation time as a function of the
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FIG. 4. (Color online) Network of leaky IF neurons: (a) Fano
factor and (b) correlation time as functions of synaptic coupling
strength with different values of the leak parameter (γ = 0.1,1) and
refractory period (τref = 0,2,4 ms) from network simulations (solid
lines) and iterative scheme (dashed lines). Arrows indicate the critical
coupling according to Eq. (8).
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coupling strength [Fig. 4(b)]. In the supercritical case with
the standard value of leak (γ = 1) the correlation time attains
values of a few tens of ms, which is an order of magnitude
larger than the mean interspike interval (ISI) of the single cell,
i.e., the time scale of the fast units the network is made of.
Hence, although modified quantitatively, the mechanism for
the emergence of slow fluctuations in networks of LIF neurons
is the self-consistent amplification of low-frequency noise.

This view is supported by the following estimation of the
critical value of the coupling. A linear map similar to Eq. (4)
exists for IF neurons in the mean-driven regime [19] that holds
true for intermediate noise levels [28]:

Sxx,n+1(0) = J 2r2
0 (CE + g2CI )Z̃2(0)Sxx,n(0). (7)

Here, Z̃(f ) = r0
∫ 1/r0

0 dt Z(t)e2πif t is the Fourier transform
of the neuron’s infinitesimal phase response curve (PRC) [29].
For the perfect IF model, Z(t) is just a constant and Eq. (7) re-
duces to Eq. (4). For the leaky IF model, we have Z(t) = θ (t −
τref) exp[γ (t − τref)/τm]/(μ − γ vR/τm) with μ = RIext/τm +
J r0(CE − gCI ) and r0 = [τref + τm

γ
ln (μτm−γ vR

μτm−γ vT
)]

−1
. Both at

very regular and very irregular inputs the linear map for Sxx(0)
is not valid anymore but has to be replaced by the full functional
map, leading to finite fixed points of the Fano factor for both
weak and strong coupling. However, the map above still allows
for an estimation of the critical coupling strength for our
perfectly balanced case (g = CE/CI = 4), yielding

Jc = (
r0Z̃(0)CE

√
C−1

E + C−1
I

)−1
. (8)

Inspection of this formula reveals a surprisingly moderate
effect of the choice of γ on this critical value but a
considerable change if the refractory period τref is varied. The
theoretically predicted shifts of Jc to substantially larger values
by increasing τref from 0 to 2 or 4 ms are confirmed in our
network simulations and by the iterative scheme [cf. arrows in
Fig. 4(a)].

Conclusions. Our results show that arbitrarily slow time
scales can emerge in the fluctuations of a sparsely connected
random network of spiking neurons if the synaptic coupling
exceeds a critical value. The transition from low to high
Fano factor can be understood in a network of perfect IF
neurons, in which the self-consistent connection between the

low-frequency variability of the input spikes to a neuron and
the low-frequency variability of its output spikes attains the
simple form of a linear map. This map becomes unstable at the
critical coupling and, hence, for stronger coupling, the spectral
power at low frequencies—or, equivalently, the asymptotic
Fano factor—grows without bound if time windows and the
system size are enlarged. Remarkably, close to the critical
value, the time scale of the system attains a minimum.

Measured Fano factors and correlation times change quan-
titatively, but the main effects reported survive if we use a
network of leaky integrate-and-fire neurons with nonvanishing
absolute refractory period and transmission delays. We are
confident that the effect explained in a simple way for a
network of perfect IF models is the same as reported recently
by Ostojic [14]. It might be that our findings are also relevant
for explaining slow fluctuations in networks with clustered
connections [12], in which clustering may lower the value of
the critical coupling constant. We note that the “heterogeneity
of firing rates,” i.e., the broad spike-count distribution for time
windows extending over several ISIs observed in Ref. [14],
is just a consequence of the slow temporal fluctuations in the
single neuron’s spiking and of the independence of neurons
in the network. This view is underpinned by the quantitative
agreement of rate histograms in network simulations and the
iterative scheme (not shown), where the latter solely uses the
self-consistency condition in a single-neuron setup. Further
support comes from the correct prediction of the critical
coupling when varying the leak term and the refractory period
of the neuron.

We finally note that the slow fluctuations are in part
based on large deviations towards negative membrane voltage.
This is in line with recent observations in the fluctuation-
dominated regime of the considered networks [13] and is a
rather unphysiological feature of the model. It remains to be
seen whether networks of IF neurons with conductance-based
instead of current-based synapses can display similar slow
fluctuations as were observed here.
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01GQ1001A) and by the European Research Council under
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