Correction to: Couplings via comparison principle and exponential ergodicity of SPDEs in the hypoelliptic setting

Oleg Butkovsky^{1,2} Michael Scheutzow³

June 25, 2025

Abstract

This is a correction to the article [BS20]. The proof of the existence of the invariant measure π in [BS20, Theorem 2.4] had an error. We provide a correct proof here.

In our recent paper [BS20], the existence of the invariant measure π in Theorem 2.4 was proved using an incorrect argument. In this note, we correct this error and provide the correct proof.

Let E be a Polish space equipped with the complete metric ρ , and let $(P_t)_{t\geq 0}$ be a Markov transition function over E. We use the same notation also for the semigroup corresponding to this transition function. Let $W_{\rho\wedge 1}$ denote the corresponding Wasserstein (Kantorovich-Rubinstein) metric, see [BS20, Section 2]. We showed in [BS20, p. 1020, lines 1-8] that under the conditions of [BS20, Theorem 2.4] for any $x \in E$

$$W_{\rho\wedge 1}(P_t(x,\cdot),P_s(x,\cdot))\to 0, \text{ as } s,t\to\infty,$$

and hence there exists a measure π such that

$$W_{\rho \wedge 1}(P_t(x, \cdot), \pi) \to 0, \text{ as } t \to \infty.$$

However, since we do not assume that the semigroup $(P_t)_{t\geq 0}$ is Feller, this does **not** necessarily imply that the measure π is invariant for $(P_t)_{t\geq 0}$, as was claimed in our paper [BS20, p. 1020, lines 12-13]. Indeed, consider the following simple counterexample.

Example 1. Consider a Polish space $E := \{0, 1, \frac{1}{2}, \frac{1}{4}, ...\}$ equipped with the Euclidean metric ρ . Let $(P_t)_{t\geq 0}$ correspond to a Markov process that jumps to the next state (in the given order) at rate 1. Then the sequence $(P_t(x, \cdot))_{t\geq 0}$ is Cauchy with respect to $W_{\rho} = W_{\rho\wedge 1}$ for any $x \in E$. Furthermore, the transition probabilities $P_t(x, \cdot)$ converge weakly to δ_0 as $t \to \infty$ for any $x \in E$. On the other hand, the measure δ_0 is not invariant for this Markov process.

¹Weierstrass Institute, Mohrenstrasse 39, 10117, Berlin. Email: oleg.butkovskiy@gmail.com

²Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489, Berlin.

³Technische Universität Berlin, MA 7-5, Strasse des 17 Juni 136, 10623 Berlin, Germany. Email: ms@math.tu-berlin.de

Nevertheless, we still claim that under the assumptions of [BS20, Theorem 2.4], the semigroup $(P_t)_{t\geq 0}$ has an invariant measure, and thus the statement of [BS20, Theorem 2.4] holds true. The main idea is to show that the sequence of measures $(P_t(x, \cdot))_{t\geq 0}$ is Cauchy with respect to a Kolmogorov metric introduced below.

Let \leq be a partial order on E and suppose that the set

$$\Gamma := \{ (x, y) \in E \times E \colon x \preceq y \}$$
(1)

is closed (condition (2.1) of [BS20]). A subset A of E is called increasing if $x \in A$ and $x \leq y$ implies $y \in A$. We denote by \mathcal{J} the set of measurable and increasing subsets of E and by \mathscr{G} the set of measurable and increasing functions $E \to [0, 1]$. We assume that the transition function $(P_t)_{t\geq 0}$ is order-preserving, that is, it maps \mathscr{G} to \mathscr{G} . Let $\mathcal{P}(E)$ be the set of all probability measures on $(E, \mathcal{B}(E))$.

Definition 2. The *Kolmogorov metric* on the space of probability measures on $\mathcal{P}(E)$ is defined as

$$\kappa(\mu,\nu) := \sup_{A \in \mathcal{J}} |\mu(A) - \nu(A)|, \quad \mu,\nu \in \mathcal{P}(E).$$

Proposition 3. We have

$$\kappa(\mu,\nu) = \sup_{g \in \mathscr{G}} \left| \int_E g(x)\mu(dx) - \int_E g(x)\nu(dx) \right|.$$
(2)

Proof. Since the function $g := \mathbb{1}_A$ is increasing for any set $A \in \mathcal{J}$, we see that the lefthand side of (2) is smaller than the right-hand side. To derive the converse inequality, we note that for any $g \in \mathscr{G}$ we have

$$\left| \int_{E} g(x)\mu(dx) - \int_{E} g(x)\nu(dx) \right| = \left| \int_{E} \int_{0}^{1} \mathbb{1}(g(x) \ge y) \, dy\mu(dx) - \int_{E} \int_{0}^{1} \mathbb{1}(g(x) \ge y) \, dy\nu(dx) \right|$$
$$= \left| \int_{0}^{1} \left(\mu(\{x : g(x) \ge y\}) - \nu(\{x : g(x) \ge y\}) \right) \, dy \right|$$
$$\leq \int_{0}^{1} \kappa(\mu,\nu) \, dy = \kappa(\mu,\nu), \tag{3}$$

where in (3) we used Theorem 2 and the fact that the set $\{x : g(x) \ge y\}$ is increasing for any $y \in [0, 1]$.

It is known that the Kolmogorov metric κ is complete in the case $E = \mathbb{R}^d$, equipped with the following partial order: $x \leq y$ if each coordinate $x_i \leq y_i$ [CR98]. However, we were unable to find any results that establish completeness of the metric for a general Polish space. The closest result we are aware of is [KS19, Theorem 4.1], which proves completeness under additional assumptions on E. Nevertheless, the following holds.

Lemma 4. Let $(\mu_t)_{t\geq 0}$ be a Cauchy sequence of probability measures on E with respect to κ . Let $\pi \in \mathcal{P}(E)$. Suppose further that

$$\mu_t \to \pi$$
, weakly, as $t \to \infty$.

Then

$$\kappa(\mu_t, \pi) \to 0, \quad as \ t \to \infty.$$
 (4)

Proof. Fix $\varepsilon > 0$. Let $t_{\varepsilon} \in \mathbb{N}$ be such that $\kappa(\mu_t, \mu_s) < \varepsilon$ whenever $s, t \ge t_{\varepsilon}$. Fix any $s > t_{\varepsilon}$. Then for any $t > t_{\varepsilon}$ by [KS19, Theorem 3.1], there exists a pair of random variables $(X_{t,s}, Y_{t,s})$ taking values in E such that

$$\mathsf{P}(X_{t,s} \preceq Y_{t,s}) > 1 - \varepsilon; \quad \operatorname{Law}(X_{t,s}) = \mu_t, \ \operatorname{Law}(Y_{t,s}) = \mu_s.$$

Note that for fixed s the sequence of pairs $(X_{t,s}, Y_{t,s})_{t>t_{\varepsilon}}$ is tight in $E \times E$ because the sequence $(\mu_t)_{t\geq 0}$ is tight. Using Prokhorov's theorem and passing to a converging subsequence, we see that there exists a pair of random variables (X_s, Y_s) such that

 $(X_{t,s}, Y_{t,s}) \to (X_s, Y_s), \text{ weakly, as } t \to \infty; \text{ Law}(X_s) = \pi, \text{ Law}(Y_s) = \mu_s.$

Furthermore since the set Γ defined in (1) is closed, the Portmanteau theorem implies

$$\mathsf{P}(X_s \preceq Y_s) = \mathsf{P}((X_s, Y_s) \in \Gamma) \ge \limsup_{t \to \infty} \mathsf{P}((X_{t,s}, Y_{t,s}) \in \Gamma) > 1 - \varepsilon.$$

Thus, using again [KS19, Theorem 3.1], we see

$$\sup_{A\in\mathcal{J}}(\pi(A)-\mu_s(A))<\varepsilon$$

Similarly, we get $\sup_{A \in \mathcal{J}} (\mu_s(A) - \pi(A)) < \varepsilon$, which yields $\kappa(\mu_s, \pi) < \varepsilon$. Since s was an arbitrary number in $(t_{\varepsilon}, \infty)$, this implies (4).

Now we have all the ingredients to prove the key step towards establishing the existence of the invariant measure.

Lemma 5. Suppose that all the assumptions of [BS20, Theorem 2.4] hold. Then, for every $x \in E$, the sequence of measures $(P_t(x, \cdot))_{t\geq 0}$ is Cauchy with respect to κ .

Proof. The proof is similar to the proof of the Cauchy property of $(P_t(x, \cdot))_{t\geq 0}$ with respect to the Wasserstein metric in [BS20, Section 5.1].

Fix $x, y \in E$. Let $\{X^x(s), s \ge 0\}$ and $\{X^y(s), s \ge 0\}$ be independent Markov processes with the transition function $(P_t)_{t\ge 0}$ and the initial conditions $X^x(0) = x$ and $X^y(0) = y$. Introduce stopping times

$$\tau_{x \preceq y} := \inf\{n \in \mathbb{Z}_+ : X^x(n) \preceq X^y(n)\}, \tau_{y \preceq x} := \inf\{n \in \mathbb{Z}_+ : X^y(n) \preceq X^x(n)\}.$$

Then, using consecutively [FS24, Theorem 3.5(i)] and [BS20, p. 1019, lines 14–16], we get

$$\sup_{g \in \mathscr{G}} \left| \mathsf{E}g(X_t^x) - \mathsf{E}g(X_t^y) \right| \le \mathsf{P}\big(\tau_{x \preceq y} > t\big) \lor \mathsf{P}\big(\tau_{y \preceq x} > t\big) \le C\big(1 + V(x) + V(y)\big)e^{-\lambda t}, \quad (5)$$

r

for a constant C > 0. Then for any $s, t \ge 0, x \in E$ we derive

$$\begin{split} \kappa(P_t(x,\cdot),P_{t+s}(x,\cdot) &= \sup_{g \in \mathscr{G}} |P_tg(x) - P_{t+s}g(x)| = \sup_{g \in \mathscr{G}} \left| P_tg(x) - \int_E P_tg(y) P_s(x,dy) \right| \\ &\leq \sup_{g \in \mathscr{G}} \int_E |P_tg(x) - P_tg(y)| P_s(x,dy) \\ &\leq \int_E C \left(1 + V(x) + V(y) \right) e^{-\lambda t} P_s(x,dy) \\ &\leq C (1 + 2V(x) + \frac{K}{\gamma}) e^{-\lambda t} \to 0 \quad \text{as } t \to \infty, \end{split}$$

where in the penultimate line we used (5), and the last inequality follows from [BS20, Formula (2.2)]. Thus the sequence $(P_t(x, \cdot))_{t\geq 0}$ is Cauchy with respect to κ .

Now we can complete the proof of the existence of the invariant measure.

Corrected proof of existence of invariant measure for (P_t) in [BS20, Theorem 2.4]. Fix arbitrary $x \in E$. By [BS20, p. 1020, lines 1-8] there exists a measure $\pi \in \mathcal{P}(E)$ such that

$$W_{\rho \wedge 1}(P_t(x, \cdot), \pi) \to 0, \text{ as } t \to \infty.$$

By Theorem 5, the sequence of measures $(P_t(x, \cdot))_{t\geq 0}$ is Cauchy with respect to κ . Therefore, Theorem 4 yields

$$\kappa(P_t(x,\cdot),\pi) \to 0, \quad \text{as } t \to \infty.$$
 (6)

Take arbitrary $f \in \mathscr{G}$ and $s \geq 0$. We derive

$$\int_{E} f(z)P_{s}\pi(dz) = \int_{E} P_{s}f(z)\pi(dz)$$

$$= \lim_{n \to \infty} \int_{E} P_{s}f(z)P_{t}(x,dz) \qquad (7)$$

$$= \lim_{n \to \infty} \int_{E} f(z)P_{t+s}(x,dz)$$

$$= \int_{E} f(z)\pi(dz). \qquad (8)$$

Here in (7), we used that the semigroup P_t maps bounded increasing measurable functions to bounded increasing measurable functions ([BS20, Assumption 1, Theorem 2.3]). Therefore, $P_s f \in \mathscr{G}$, and thus (7) follows from Theorem 3 and (6). Identity (8) follows from (6) and the fact that $f \in \mathscr{G}$. Thus, $P_s \pi(A) = \pi(A)$ for each $A \in \mathcal{J}$. Since two probability measures which agree on all measurable and increasing sets are equal (see, e.g., [FS24, Lemma 2.8] or [KK78, Lemma 1]) and since s > 0 is arbitrary it follows that π is invariant for $(P_t)_{t\geq 0}$.

References

- [BS20] Oleg Butkovsky and Michael Scheutzow. Couplings via comparison principle and exponential ergodicity of SPDEs in the hypoelliptic setting. *Comm. Math. Phys.*, 379(3):1001–1034, 2020.
- [CR98] Santanu Chakraborty and B. V. Rao. Completeness of Bhattacharya metric on the space of probabilities. *Statist. Probab. Lett.*, 36(4):321–326, 1998.
- [FS24] Sergey Foss and Michael Scheutzow. Compressibility and stochastic stability of monotone Markov chains. arXiv preprint arXiv:2403.15259, 2024.
- [KK78] T. Kamae and U. Krengel. Stochastic partial ordering. Ann. Probab., 6(6):1044– 1049, 1978.
- [KS19] Takashi Kamihigashi and John Stachurski. A unified stability theory for classical and monotone Markov chains. J. Appl. Probab., 56(1):1–22, 2019.