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Abstract

This is a correction to the article [BS20]. The proof of the existence of the
invariant measure π in [BS20, Theorem 2.4] had an error. We provide a correct
proof here.

In our recent paper [BS20], the existence of the invariant measure π in Theorem 2.4
was proved using an incorrect argument. In this note, we correct this error and provide
the correct proof.

Let E be a Polish space equipped with the complete metric ρ, and let (Pt)t≥0 be
a Markov transition function over E. We use the same notation also for the semigroup
corresponding to this transition function. Let Wρ∧1 denote the corresponding Wasserstein
(Kantorovich-Rubinstein) metric, see [BS20, Section 2]. We showed in [BS20, p. 1020,
lines 1-8] that under the conditions of [BS20, Theorem 2.4] for any x ∈ E

Wρ∧1(Pt(x, ·), Ps(x, ·)) → 0, as s, t → ∞,

and hence there exists a measure π such that

Wρ∧1(Pt(x, ·), π) → 0, as t → ∞.

However, since we do not assume that the semigroup (Pt)t≥0 is Feller, this does not
necessarily imply that the measure π is invariant for (Pt)t≥0, as was claimed in our paper
[BS20, p. 1020, lines 12-13]. Indeed, consider the following simple counterexample.

Example 1. Consider a Polish space E := {0, 1, 1
2
, 1
4
, ...} equipped with the Euclidean

metric ρ. Let (Pt)t≥0 correspond to a Markov process that jumps to the next state (in
the given order) at rate 1. Then the sequence (Pt(x, ·))t≥0 is Cauchy with respect to
Wρ = Wρ∧1 for any x ∈ E. Furthermore, the transition probabilities Pt(x, ·) converge
weakly to δ0 as t → ∞ for any x ∈ E. On the other hand, the measure δ0 is not invariant
for this Markov process.
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Nevertheless, we still claim that under the assumptions of [BS20, Theorem 2.4], the
semigroup (Pt)t≥0 has an invariant measure, and thus the statement of [BS20, Theo-
rem 2.4] holds true. The main idea is to show that the sequence of measures (Pt(x, ·))t≥0

is Cauchy with respect to a Kolmogorov metric introduced below.
Let ⪯ be a partial order on E and suppose that the set

Γ := {(x, y) ∈ E × E : x ⪯ y} (1)

is closed (condition (2.1) of [BS20]). A subset A of E is called increasing if x ∈ A and
x ⪯ y implies y ∈ A. We denote by J the set of measurable and increasing subsets of E
and by G the set of measurable and increasing functions E → [0, 1]. We assume that the
transition function (Pt)t≥0 is order-preserving, that is, it maps G to G . Let P(E) be the
set of all probability measures on (E,B(E)).

Definition 2. The Kolmogorov metric on the space of probability measures on P(E) is
defined as

κ(µ, ν) := sup
A∈J

|µ(A)− ν(A)|, µ, ν ∈ P(E).

Proposition 3. We have

κ(µ, ν) = sup
g∈G

∣∣∣∫
E

g(x)µ(dx)−
∫
E

g(x)ν(dx)
∣∣∣. (2)

Proof. Since the function g := 1A is increasing for any set A ∈ J , we see that the left-
hand side of (2) is smaller than the right-hand side. To derive the converse inequality, we
note that for any g ∈ G we have∣∣∣∫

E

g(x)µ(dx)−
∫
E

g(x)ν(dx)
∣∣∣ = ∣∣∣∫

E

∫ 1

0

1(g(x) ≥ y) dyµ(dx)−
∫
E

∫ 1

0

1(g(x) ≥ y) dyν(dx)
∣∣∣

=
∣∣∣∫ 1

0

(
µ({x : g(x) ≥ y})− ν({x : g(x) ≥ y})

)
dy

∣∣∣
≤

∫ 1

0

κ(µ, ν) dy = κ(µ, ν), (3)

where in (3) we used Theorem 2 and the fact that the set {x : g(x) ≥ y} is increasing for
any y ∈ [0, 1].

It is known that the Kolmogorov metric κ is complete in the case E = Rd, equipped
with the following partial order: x ⪯ y if each coordinate xi ≤ yi [CR98]. However, we
were unable to find any results that establish completeness of the metric for a general
Polish space. The closest result we are aware of is [KS19, Theorem 4.1], which proves
completeness under additional assumptions on E. Nevertheless, the following holds.

Lemma 4. Let (µt)t≥0 be a Cauchy sequence of probability measures on E with respect to
κ. Let π ∈ P(E). Suppose further that

µt → π, weakly, as t → ∞.

Then
κ(µt, π) → 0, as t → ∞. (4)
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Proof. Fix ε > 0. Let tε ∈ N be such that κ(µt, µs) < ε whenever s, t ≥ tε. Fix any
s > tε. Then for any t > tε by [KS19, Theorem 3.1], there exists a pair of random
variables (Xt,s, Yt,s) taking values in E such that

P(Xt,s ⪯ Yt,s) > 1− ε; Law(Xt,s) = µt, Law(Yt,s) = µs.

Note that for fixed s the sequence of pairs (Xt,s, Yt,s)t>tε is tight in E × E because the
sequence (µt)t≥0 is tight. Using Prokhorov’s theorem and passing to a converging subse-
quence, we see that there exists a pair of random variables (Xs, Ys) such that

(Xt,s, Yt,s) → (Xs, Ys), weakly, as t → ∞; Law(Xs) = π, Law(Ys) = µs.

Furthermore since the set Γ defined in (1) is closed, the Portmanteau theorem implies

P(Xs ⪯ Ys) = P((Xs, Ys) ∈ Γ) ≥ lim sup
t→∞

P((Xt,s, Yt,s) ∈ Γ) > 1− ε.

Thus, using again [KS19, Theorem 3.1], we see

sup
A∈J

(π(A)− µs(A)) < ε.

Similarly, we get supA∈J (µs(A) − π(A)) < ε, which yields κ(µs, π) < ε. Since s was an
arbitrary number in (tε,∞), this implies (4).

Now we have all the ingredients to prove the key step towards establishing the existence
of the invariant measure.

Lemma 5. Suppose that all the assumptions of [BS20, Theorem 2.4] hold. Then, for
every x ∈ E, the sequence of measures (Pt(x, ·))t≥0 is Cauchy with respect to κ.

Proof. The proof is similar to the proof of the Cauchy property of (Pt(x, ·))t≥0 with respect
to the Wasserstein metric in [BS20, Section 5.1].

Fix x, y ∈ E. Let {Xx(s), s ≥ 0} and {Xy(s), s ≥ 0} be independent Markov processes
with the transition function (Pt)t≥0 and the initial conditions Xx(0) = x and Xy(0) = y.
Introduce stopping times

τx⪯y := inf{n ∈ Z+ : Xx(n) ⪯ Xy(n)},
τy⪯x := inf{n ∈ Z+ : Xy(n) ⪯ Xx(n)}.

Then, using consecutively [FS24, Theorem 3.5(i)] and [BS20, p. 1019, lines 14–16], we get

sup
g∈G

∣∣Eg(Xx
t )− Eg(Xy

t )
∣∣ ≤ P

(
τx⪯y > t

)
∨ P

(
τy⪯x > t

)
≤ C

(
1 + V (x) + V (y)

)
e−λt, (5)

for a constant C > 0. Then for any s, t ≥ 0, x ∈ E we derive

κ(Pt(x, ·), Pt+s(x, ·) = sup
g∈G

|Ptg(x)− Pt+sg(x)| = sup
g∈G

∣∣∣Ptg(x)−
∫
E

Ptg(y)Ps(x, dy)
∣∣∣

≤ sup
g∈G

∫
E

|Ptg(x)− Ptg(y)|Ps(x, dy)

≤
∫
E

C
(
1 + V (x) + V (y)

)
e−λtPs(x, dy)

≤ C(1 + 2V (x) +
K

γ
)e−λt → 0 as t → ∞,

where in the penultimate line we used (5), and the last inequality follows from [BS20,
Formula (2.2)]. Thus the sequence (Pt(x, ·))t≥0 is Cauchy with respect to κ.
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Now we can complete the proof of the existence of the invariant measure.

Corrected proof of existence of invariant measure for (Pt) in [BS20, Theorem 2.4]. Fix ar-
bitrary x ∈ E. By [BS20, p. 1020, lines 1-8] there exists a measure π ∈ P(E) such that

Wρ∧1(Pt(x, ·), π) → 0, as t → ∞.

By Theorem 5, the sequence of measures (Pt(x, ·))t≥0 is Cauchy with respect to κ. There-
fore, Theorem 4 yields

κ(Pt(x, ·), π) → 0, as t → ∞. (6)

Take arbitrary f ∈ G and s ≥ 0. We derive∫
E

f(z)Psπ(dz) =

∫
E

Psf(z)π(dz)

= lim
n→∞

∫
E

Psf(z)Pt(x, dz) (7)

= lim
n→∞

∫
E

f(z)Pt+s(x, dz)

=

∫
E

f(z)π(dz). (8)

Here in (7), we used that the semigroup Pt maps bounded increasing measurable func-
tions to bounded increasing measurable functions ([BS20, Assumption 1, Theorem 2.3]).
Therefore, Psf ∈ G , and thus (7) follows from Theorem 3 and (6). Identity (8) follows
from (6) and the fact that f ∈ G . Thus, Psπ(A) = π(A) for each A ∈ J . Since two
probability measures which agree on all measurable and increasing sets are equal (see,
e.g., [FS24, Lemma 2.8] or [KK78, Lemma 1]) and since s > 0 is arbitrary it follows that
π is invariant for (Pt)t≥0.
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