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Abstract
The investigation of arrangements of pseudolines and their cell structure goes back to Levi in the
1920’s. In Grünbaum’s monograph from the 1970’s, he started the investigation of arrangements of
pseudocircles and posed several interesting problems and conjectures, some of which are still open.
Here we discuss the cell-structure of arrangements of pairwise intersecting pseudocircles.

First, we discuss the maximum number of digons or touching points. Grünbaum conjectured that
every arrangement of n pairwise intersecting pseudocircles has at most 2n − 2 digons or equivalently
at most 2n − 2 touchings. Using a result from Agarwal et al. (2004), who proved the conjecture
for cylindrical arrangements, we show that the conjecture holds for any arrangement, where a
triple of pseudocircles is pairwise touching. Even though the general conjecture remains open, this
substantially narrows the options for potential counter-examples.

Second, we discuss the minimum number of triangular cells (triangles) in an arrangement of n

pairwise intersecting pseudocircles without digons and touchings. While Snoeyink and Hershberger
(1991) showed that there are at least p3 ≥ 4

3 n triangles, Felsner and Scheucher (2017) showed
that there exist arrangements on n ≥ 6 pseudocircles with p3 < ⌈ 16

11 n⌉ triangles, which disproved
a long-standing conjecture of Grünbaum. Here we provide a construction for n ≥ 6 with only
p3 = ⌈ 4

3 n⌉ triangles, showing that the lower bound of Snoeyink and Hershberger is tight.

1 Introduction

An intersecting arrangement of pseudocircles is a collection of simple closed curves on the
sphere or plane such that any two of the curves either touch in a single point or intersect in
exactly two points where they cross. Throughout this article, we consider all arrangements
to be simple, that is, no three pseudocircles meet in a common point. An arrangement A
partitions the plane into cells. Cells which have k crossings on their boundary are k-cells
and we denote their number by pk(A). We also call 2-cells digons and 3-cells triangles.

The investigation of cells in arrangements started about 100 years ago with the study
of arrangements of (pairwise intersecting) pseudolines by Levi [7], who showed that in the
projective plane every pseudoline is incident to at least 3 triangles and proved the famous
extension lemma. In the 1970’s, Grünbaum [6] intensively investigated arrangements of
pseudolines and initiated the study of arrangements of pseudocircles.
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1.1 Digons and touchings
Concerning digons in intersecting arrangements of pseudocircles, Grünbaum [6, Conjec-
ture 3.6]1 posed the following conjecture:

▶ Conjecture 1.1 (Grünbaum’s digon conjecture [6]). Every intersecting arrangement of
n pseudocircles has at most 2n− 2 digons.

An intersecting arrangement of pseudocircles is called cylindrical, if there is a pair of cells
which are separated by each pseudocircle of the arrangement. It was shown by Agarwal et al.
[1, Corollary 2.12] that Conjecture 1.1 holds for simple cylindrical arrangements.

Moreover, Agarwal et al. show for intersecting arrangements of pseudocircles that the
number of digons is at most linear in n. The proof of this linear bound is based on the fact that
every arrangement of intersecting pseudocircles can be stabbed by constantly many points.
That is, there exists an absolute constant k, called the stabbing number, such that, for every
arrangement of n pseudocircles in the plane, there exists a set of k points with the property
that each pseudocircle contains at least one such point in its interior. In the literature, the
stabbing number is also often referred to as piercing number or transversal number. Hence
the arrangement can be decomposed into constantly many cylindrical subarrangements. The
multiplicative constant of the linear term however remains unknown. In [5] we verified the
conjecture for up to n = 7 pseudocircles.

Here we show that Grünbaum’s digon conjecture (Conjecture 1.1) holds for simple
arrangements with three pseudocircles that pairwise form a digon; see Section 2. Before
we state the result, let us introduce some notation which will be used extensively. Any
arrangement A of pseudocircles can be perturbed so that any selection of its digons become
touching points. Figure 1 gives an illustration. It is therefore sufficient to find an upper
bound on the number of touchings. The touching graph T (A) consists of the pseudocircles
as vertices, and two of them share an edge if they have a touching.

Figure 1 Contracting some of the digons to touchings.

▶ Theorem 1.2. Let A be an arrangement of n pairwise intersecting pseudocircles. If the
touching graph T (A) contains a triangle, then there are at most 2n− 2 touchings.

1.2 Triangles in digon- and touching-free arrangements
The study of triangles in arrangements goes back to Levi [7], who showed that every
arrangement of n pseudolines in the projective plane contains at least n triangles. Since
pseudoline arrangements are in correspondence with arrangements of great-pseudocircles (see

1 Originally the conjecture extends to non-simple arrangements which are non-trivial, i.e., arrangements
with at least 3 crossing points.
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e.g. [4, Section 4]), it directly follows that an arrangement of n great-pseudocircles contains
at least p3 ≥ 2n triangles.

Grünbaum conjectured that every digon- and touching-free intersecting arrangement
on n pseudocircles contains at least p3 ≥ 2n− 4 triangles [6, Conjecture 3.7]. Snoeyink and
Hershberger [10] proved a sweeping lemma for arrangements of pseudocircles. Using this
powerful tool, they concluded that in every digon- and touching-free intersecting arrangement
every pseudocircle has two triangles on each of its two sides (interior and exterior) and
derived the lower bound p3(A) ≥ 4n/3; see Section 4.2 in [10].

In [5] we constructed an infinite family of arrangements with p3 <
16
11n which shows that

Grünbaum’s conjecture is wrong and verified that the lower bound p3 ≥ 4n/3 by Snoeyink
and Hershberger is tight for 6 ≤ n ≤ 14. We now have:

▶ Theorem 1.3. For every n ≥ 6, there exists a digon- and touching-free arrangement An

of n pairwise intersecting pseudocircles with p3 = ⌈ 4
3n⌉ triangles.

All arrangements constructed in Section 3 contain A6 (depicted on the left of Figure 7)
as a subarrangement. This remarkable arrangement has been studied as the arrangement
N ∆

6 in [4] where it was shown that N ∆
6 is non-circularizable, i.e., N ∆

6 cannot be represented
by an arrangement of proper circles. As a consequence, all arrangements constructed in
Section 3 are as well non-circularizable. In fact, all known counter-examples to Grünbaum’s
triangle conjecture contain N ∆

6 and are therefore non-circularizable. Hence, Grünbaum’s
conjecture may still be true when restricted to arrangements of proper circles.

▶ Conjecture 1.4 (Weak Grünbaum triangle conjecture, [5, Conjecture 2.2]). Every intersecting
digon- and touching-free arrangement of n circles has at least 2n− 4 triangles.

1.3 Discussion
For intersecting arrangements of unit-circles, Pinchasi showed an upper bound of p2 ≤ n+ 3
[8, Lemma 3.4 and Corollary 3.10]. For arrangements of unit circles there is a classical con-
struction of Erdős [3] with n not necessarily pairwise intersecting circles and Ω(n1+c/ log log n)
touchings. An upper bound of O(n3/2+ϵ) on the number of digons in circle arrangements
was shown by Aronov and Sharir [2]. We are not aware of upper bounds on the number of
digons in the case of not necessarily intersecting pseudocircles.

Concerning intersecting arrangements with digons, the number of triangles behaves
slightly different. While our best lower bound so far is p3 ≥ 2n/3, we have used computer
assistance to verify that p3 ≥ n − 1 is a tight lower bound for 3 ≤ n ≤ 7 [5]. It remains
open, whether p3 ≥ n− 1 is a tight lower bound for every n ≥ 3 [5, Conjecture 2.10]. For the
maximum number of triangles in intersecting arrangements in [5], we have shown an upper
bound p3 ≤ 4

3
(

n
2
)

+O(n) which is optimal up to a linear error term.

2 Sketch of the proof of Theorem 1.2

We outline the proof of Theorem 1.2. A complete proof is given in Appendix A.
Since the touching graph T (A) contains a triangle, there are three pseudocircles in A

that pairwise touch. Let K be the subarrangement induced by these three pseudocircles and
let △ and △′ denote the two triangle cells in K. We label the three touching points, which
are also the corners of △ and △′, as a, b, c. Furthermore, we label the three boundary arcs
of △ (resp. △′) as α, β, γ (resp. α′, β′, γ′), as shown in Figure 2(a).

Assume that all digons in A are contracted to touchings.

EuroCG’22



24:4 Arrangements of Pseudocircles: On Digons and Triangles

c

a

b

α′
α

ββ′

γγ′

4

4′

(a)

c

a

b

(b)

c

a

b

(c)

Figure 2 (a) An illustration of the subarrangement K. (b) and (c) illustrate an additional
pseudocircle C (red). The pc-arcs inside both △ and △′ are highlighted.

The intersection of a pseudocircle C ∈ A \ K with △ ∪ △′ results in three connected
segments, which we denote as the three pc-arcs of C, see Figures 2(b) and 2(c). Note that
each pc-arc in △ connects two of α, β or γ while a pc-arc in △′ connects two of α′, β′ and γ′.
Depending on the boundary arcs on which they start and end, they belong to one of the
types αβ, βγ, αγ, α′β′, β′γ′ or α′γ′.

▶ Claim 2.1. If two pc-arcs inside △ or △′ have a touching or cross twice, then they are of
the same type.

Proof of Claim 2.1. Suppose towards a contradiction that two distinct pseudocircles C,C ′

from A\K contain pc-arcs A ⊂ C∩△ and A′ ⊂ C ′ ∩△ of different types that have a touching
or cross twice. One needs to check the four cases depicted in Figure 3. In none of these cases,
pc-arc A′ can be completed to a pseudocircle extending the intersecting arrangement of the
four given pseudocircles. This is a contradiction. △
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Figure 3 An illustration of the proof of Claim 2.1. The pseudocircles C and C′ are highlighted
blue and red, respectively. The pc-arcs A and A′ are emphasized.
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Next we explain how to transform A into another intersecting arrangement A′ by changing
the intersection pattern of pc-arcs within △ and △′. This transformation will ensure that
the touching graphs of A and A′ are identical and the arrangement A′ \ K will turn out to
be cylindrical.

In both triangles, △ and △′, we concentrate all crossings and touchings of each arc type
in a narrow region as depicted in Figure 4. For example, all the crossings of αβ pc-arcs are
in a region close to c and none of the crossings or touchings of these arcs is separated from c

by an arc of type αγ or βγ. This is done in a way such that for each type of pc-arcs the
arrangement of these arcs stays the same and all the endpoints of all pc-arcs stay at their
original position.

By applying Claim 2.1, one can check that this transformation preserves the crossing
and touching relations between any pair of pseudocircles. Hence we obtain again a valid
intersecting pseudocircle arrangement A′ with the same number of touchings.

c

a

b

β

α

γ

c

a

b

β

α

γ

Figure 4 Concentrate all crossings and touchings of one arc type in a narrow region. The
narrow regions are indicated by dashed rectangles.

Moreover, one can verify that A′ can always be drawn as in Figure 5 on a cylinder, so
that all pseudocircles except the three pseudocircles of K wrap around the cylinder. This
means that the following claim holds:

▶ Claim 2.2. The arrangement induced by A′ \ K is cylindrical.

Next we replace the three pseudocircles of K by six pseudocircles as illustrated in Figure 6,
so that the resulting arrangement A′′ is cylindrical. Each of the three touching points a, b, c in
K is replaced by two new touching points and altogether we obtain touchings a′, a′′, b′, b′′, c′, c′′.
Hence, when transforming A into A′′, the number of pseudocircles is increased by 3 and the
number of touchings is also increased by 3.

An intersecting arrangement of pseudoparabolas is a collection of infinite x-monotone
curves, called pseudoparabolas, where each two of them either have a single touching or
intersect in exactly two points where they cross. As every cylindrical pseudocircle arrangement
can be represented as an arrangement of pseudoparabolas and vice versa, Agarwal et al. [1]
proved the p2(A) ≤ 2n − 2 upper bound on the number of touchings in arrangements of
cylindrical intersecting arrangements by bounding the number of touchings in an intersecting
arrangement of pseudoparabolas. They show that their touching graph is planar and
bipartite [1, Theorem 2.4]. In fact, the drawing of A′′ in Figure 6 can be seen as an

EuroCG’22
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a b c

Figure 5 A cylindrical drawing of A′ \ K.
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Figure 6 Replace each of the three pseudocircles of K by two new pseudocircles so that the
entire arrangement is now cylindrical. On the left: the touching graph T (A′′) of the arrangement.

intersecting arrangement of pseudoparabolas. We review their proof to prove the following
claim.

▶ Claim 2.3. T (A′′) remains planar and bipartite after adding a certain edge.

Since T (A′′) remains planar and bipartite after adding an edge, and since planar bipartite
n-vertex graphs have at most 2n− 4 edges, we obtain

p2(A) + 3 = p2(A′′) ≤ 2(n+ 3) − 5 =⇒ p2(A) ≤ 2n− 2.

This completes the sketch of the proof of Theorem 1.2.

3 Proof of Theorem 1.3

We denote by A6, A7, and A8 the three arrangements shown in Figure 7. These three
arrangements on 6, 7, and 8 pseudocircles, respectively, are digon- and touching-free and
contain 8, 10, and 11 triangles, respectively. In each of the three arrangements, there is a
pseudocircle C and four incident triangles which are alternatingly inside and outside of C in
the cyclic order around C. In fact, this alternation property holds for all pseudocircles of
these three arrangements.
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Figure 7 Digon- and touching-free intersecting arrangements of n = 6, 7, 8 pseudocircles with 8,
10, 11 triangles, respectively. Triangular cells are highlighted gray. [5, Fig. 2]

4 4

4 4

(a) (b)

Figure 8 Replacing one pseudocircle with the alternation property (i.e., four triangles on
alternating sides) by a particular arrangement of four pseudocircles.

To recursively construct An for n ≥ 9, we replace a pseudocircle C with the alternation
property from An−3 by a particular arrangement of four pseudocircles as depicted in Figure 8.

With this replacement we destroy 4 triangles incident to C in the original arrangement,
and in total the four new pseudocircles are incident to eight new triangles. Hence, we have
p3(An) = p3(An−3) + 4 = ⌈ 4

3 (n− 3)⌉ + 4 = ⌈ 4
3n⌉.

Moreover, for each of the four new pseudocircles, there are four new triangles (among the
eight new triangles) that lie on alternating sides. This allow us to recurse by using one of
the four new pseudocircles in the role of C for the next iteration. This completes the proof.

It is worth noting that A6 can be created as illustrated in Figure 9 by extending the
Krupp arrangement of three pseudocircles, in which all cells are triangles.

Figure 9 Extending the Krupp arrangement (left) to the arrangement A6 (right).

EuroCG’22
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A Complete proof of Theorem 1.2

Since the touching graph T (A) contains a triangle, there are three pseudocircles in A that
pairwise touch. Let K be the subarrangement induced by these three pseudocircles and let
△ and △′ denote the two triangle cells in K. We label the three touching points, which are
also the corners of △ and △′, as a, b, c. Furthermore, we label the three boundary arcs of △
(resp. △′) as α, β, γ (resp. α′, β′, γ′), as shown in Figure 10(a).
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c
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(c)

Figure 10 (a) An illustration of the subarrangement K. (b) and (c), respectively, illustrate an
additional pseudocircle C (red). The pc-arcs inside △ and △′, respectively, are highlighted.

Assume that all digons in A are contracted to touchings.
The intersection of a pseudocircle C ∈ A \ K with △ ∪ △′ results in three connected

segments, which we denote as the three pc-arcs of C, see Figures 10(b) and 10(c). Note that
each pc-arc in △ connects two of α, β or γ while a pc-arc in △′ connects two of α′, β′ and γ′.
Depending on the boundary arcs on which they start and end, they belong to one of the
types αβ, βγ, αγ, α′β′, β′γ′ or α′γ′.

▶ Claim 1.1. If two pc-arcs inside △ have a touching or cross twice, then they are of the
same type.

Proof of Claim 1.1. Suppose towards a contradiction that two distinct pseudocircles C,C ′

from A \ K contain pc-arcs A ⊂ C ∩ △ and A′ ⊂ C ′ ∩ △ of different types that have a
touching or cross twice. For simplicity, consider only the arrangement induced by the five
pseudocircles K ∪ {C,C ′}. By symmetry we may assume that A is of type αγ and A′ is of
type αβ. We may further assume that A and A′ have a touching, since otherwise, if they
cross twice, they form a digon and we can contract it. This allows us to distinguish four
cases which are depicted in Figure 11 (up to further possible contractions of digons formed
between C and the pseudocircles of K).

Case 1: C separates a from b and c.
Case 2: C separates b from a and c.
Case 3: C separates c from a and b.
Case 4: C does not separate a, b, c.

In the next paragraph we show that in neither case, it is possible to extend the arc A′ to a
pseudocircle C ′ intersecting the three pseudocircles of K. This is a contradiction.

Extend A′ starting from its endpoint on α. The only way to reach γ or γ′, avoiding an
invalid, additional intersection with C, is via the pseudocircle β ∪ β′. But the other endpoint
of A′ already lies on β, so either the pseudocircle extending A′ has at lest 3 intersections with
β ∪β′ or it misses γ ∪γ′. Both is prohibited in an intersecting arrangement extending K. △

Clearly a statement analog to Claim 1.1 holds with △′ replacing △.

EuroCG’22
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Figure 11 (a)–(d) illustrate Case 1–4 from the proof of Claim 1.1. The pseudocircles C and C′

are highlighted blue and red, respectively. The pc-arcs A and A′ are emphasized.

Next we explain how to transform A into another intersecting arrangement A′ by changing
the intersection pattern of pc-arcs within △ and △′. This transformation will ensure that
the touching graphs of A and A′ are identical and the arrangement A′ \ K will turn out to
be cylindrical.

In both triangles, △ and △′, we concentrate all crossings and touchings of each arc type
in a narrow region as depicted in Figure 12. For example, all the crossings of αβ pc-arcs are
in a region close to c and none of the crossings or touchings of these arcs is separated from c

by an arc of type αγ or βγ. This is done in a way such that for each type of pc-arcs the
arrangement of these arcs stays the same and all the endpoints of all pc-arcs stay at their
original position.

The transformation preserves the crossing and touching relations between any pair of
pc-arcs. For two pc-arcs ϕ, ψ ⊂ △ of the same type this is clear by construction. With
Claim 1.1 the only case that remains to show is when two pc-arcs ϕ and ψ are of different
types and cross exactly once. By symmetry we may assume that ϕ is of type αβ and ψ is of
type αγ. Since both endpoints of ϕ and ψ on α remain unchanged by the transformation,
ϕ and ψ cross exactly once in A′ if and only if they cross exactly once in A. For two pc-arcs
ϕ, ψ ⊂ △′ the argument is analogous.

It follows that the transformation preserves the crossing and touching relations between
any pair of pseudocircles. Hence, A′ is again a valid intersecting pseudocircle arrangement
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and the touching graphs T (A) and T (A′) are identical. In particular, A′ has the same
number of touchings as A.

c
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β
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γ

c

a

b

β

α

γ

Figure 12 Concentrate all crossings and touchings of one arc type in a narrow region. The
narrow regions are indicated by dashed rectangles.

▶ Claim 1.2. The arrangement induced by A′ \ K is cylindrical.

Proof of Claim 1.2. For each pseudocircle C ∈ A′ \ K, the intersection

C ∩ (△ ∪ △′) = (C ∩ △) ∪ (C ∩ △′)

consists of three pc-arcs, and each of these three pc-arcs is of a different type. The first arc
is of type αβ or α′β′ (depending whether it is inside △ or △′), the second is of type βγ or
β′γ′, and the third is of type αγ or α′γ′.

Now we redraw A′ on a cylinder as illustrated in Figure 13. Since all crossings and
touchings of the arc type are within a small region, all pseudocircles from A′ \ K wrap around
the cylinder, and hence the arrangement induced by A′ \ K is cylindrical. △

Next we replace the three pseudocircles of K by six pseudocircles as illustrated in Figure 14,
so that the resulting arrangement A′′ is cylindrical. Each of the three touching points a, b, c in
K is replaced by two new touching points and altogether we obtain touchings a′, a′′, b′, b′′, c′, c′′.
Hence, when transforming A into A′′, the number of pseudocircles is increased by 3 and the
number of touchings is also increased by 3.

An intersecting arrangement of pseudoparabolas is a collection of infinite x-monotone
curves, called pseudoparabolas, where each two of them either have a single touching or
intersect in exactly two points where they cross. As every cylindrical pseudocircle arrangement
can be represented as an arrangement of pseudoparabolas and vice versa, Agarwal et al. [1]
proved the p2(A) ≤ 2n − 2 upper bound on the number of touchings in arrangements of
cylindrical intersecting arrangements by bounding the number of touchings in an intersecting
arrangement of pseudoparabolas. They show that their touching graph is planar and
bipartite [1, Theorem 2.4]. In fact, the drawing of A′′ in Figure 14 can be seen as an
intersecting arrangement of pseudoparabolas. We review their proof to prove the following
claim.

▶ Claim 1.3. T (A′′) remains planar and bipartite after adding a certain edge.

EuroCG’22
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a b c

Figure 13 A cylindrical drawing of A′ \ K.

a′
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b′

b′′

c′

c′′

Figure 14 Replace each of the three pseudocircles of K by two new pseudocircles so that the
entire arrangement is now cylindrical. On the left: the touching graph T (A′′) of the arrangement.

Proof of Claim 1.3. We label the pseudoparabolas with starting segments sorted from top
to bottom as P1, . . . , Pn. In the touching graph T (A′′), we label the corresponding vertices
as 1, . . . , n.

Bipartiteness: the bipartition comes from the fact that the digons incident to one
pseudoparabola are either all from below or all from above. Suppose towards a contradiction
that a pseudoparabola Pj has a touching from above with Pi and from below with Pk

(i < j < k). Now, Pi and Pk cannot not intersect because Pj separates them – a contradiction
since the arrangement is intersecting.

We now further observe that the uppermost pseudoparabola P1 and the lowermost
pseudoparabola Pn belong to distinct parts of the bipartition, because P1 has all touchings
below (i.e. with parabolas of greater index); Pn has all touchings above (i.e. with parabolas
of smaller index). Hence, the touching graph remains bipartite after adding the edge {1, n}.

Planarity: For the planarity of T (A′′), Agarwal et al. [1] create a particular drawing:
the vertices are drawn on a vertical line and each edge e = {u, v} is drawn as y-monotone
curve according to the following drawing rule: For each w with u < w < v, we route e to
the left of w if the pseudoparabola Pw intersects Pu before Pv, and to right otherwise. It is
then shown that in the so-obtained drawing D, each pair of non-incident edges has an even
number of intersections. Hence, the Hanani–Tutte theorem (cf. Section 3 in [9]) asserts that
T (A′′) is planar.
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Notice that {1, n} is not an edge in T (A′′), since by construction, the lowermost and
uppermost pseudocircles do not touch. We further observe that, since all edges in D are
drawn as y-monotone curves, the entire drawing lies in a box which is bounded from above
by vertex 1 and from below by vertex n. Hence, we can draw an additional edge from 1 to n
which is routed entirely outside of the box and does not intersect any other edge. Again, by
the Hanani–Tutte theorem, we have planarity. △

Since T (A′′) remains planar and bipartite after adding an edge, and since planar bipartite
n-vertex graphs have at most 2n− 4 edges, we obtain

p2(A) + 3 = p2(A′′) ≤ 2(n+ 3) − 5 =⇒ p2(A) ≤ 2n− 2.

This completes the proof of Theorem 1.2.
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