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Abstract
For integers d ≥ 2 and k ≥ d + 1, a k-hole in a set S of points in general position in Rd is a k-tuple
of points from S in convex position such that the interior of their convex hull does not contain any
point from S. For a convex body K ⊆ Rd of unit d-dimensional volume, we study the expected
number EHK

d,k(n) of k-holes in a set of n points drawn uniformly and independently at random
from K.

We prove an asymptotically tight lower bound on EHK
d,k(n) by showing that, for all fixed

integers d ≥ 2 and k ≥ d + 1, the number EHK
d,k(n) is at least Ω(nd). For some small holes, we

even determine the leading constant limn→∞ n−dEHK
d,k(n) exactly. We improve the currently best

known lower bound on limn→∞ n−dEHK
d,d+1(n) by Reitzner and Temesvari (2019) and we show that

our new bound is tight for d ≤ 3. In the plane, we show that the constant limn→∞ n−2EHK
2,k(n)

is independent of K for every fixed k ≥ 3 and we compute it exactly for k = 4, improving earlier
estimates by Fabila-Monroy, Huemer, and Mitsche (2015) and by the authors (2020).

1 Introduction

For a positive integer d, let S be a set of points from Rd in general position. That is, no
d+ 1 points from S lie on a k-dimensional affine subspace of Rd. Throughout the paper we
only consider point sets that are finite and in general position.

A point set P is in convex position if no point from P is contained in the convex hull of
the remaining points from P . A k-hole H in S is a set of k points from S in convex position
such that the convex hull conv(H) of H does not contain any point of S in its interior.

The study of k-holes in point sets was initiated by Erdős [7], who asked whether, for each
k ∈ N, every sufficiently large point set in the plane contains a k-hole. This was known to be
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true for k ≤ 5, but, in the 1980s, Horton [11] constructed arbitrarily large point sets without
7-holes. The question about the existence of 6-holes was a longstanding open problem until
2007, when Gerken [10] and Nicolas [15] showed that every sufficiently large set of points in
the plane contains a 6-hole.

The existence of k-holes was considered also in higher dimensions. Valtr [20] showed
that, for k ≤ 2d + 1, every sufficiently large set of points in Rd contains a k-hole. He
also constructed arbitrarily large sets of points in Rd that do not contain any k-hole with
k > 2d−1(P (d−1)+1), where P (d−1) denotes the product of the first d−1 prime numbers.
Very recently Bukh, Chao, and Holzman [6] improved this construction.

Estimating the number of k-holes in point sets in Rd attracted a lot of attention; see [1].
In particular, it is well-known that the minimum number of (d+ 1)-holes (also called empty
simplices) in sets of n points in Rd is of order O(nd). This is tight, as every set of n points
in Rd contains at least

(
n−1
d

)
(d+ 1)-holes [3, 12].

The tight upper bound O(nd) can be obtained by considering random point sets drawn
from a convex body. More formally, a convex body in Rd is a compact convex subset of Rd
with a nonempty interior. We use λd to denote the d-dimensional Lebesgue measure on Rd
and Kd to denote the set of all convex bodies in Rd of volume λd(K) = 1. For an integer
k ≥ d+ 1 and a convex body K ∈ Kd, let EHK

d,k(n) be the expected number of k-holes in a
set S of n points chosen uniformly and independently at random from K. Note that S is in
general position with probability 1.

Bárány and Füredi [3] proved the upper bound EHK
d,d+1(n) ≤ (2d)2d2 ·

(
n
d

)
for every

K ∈ Kd. Valtr [21] improved this bound in the plane by showing EHK
2,3(n) ≤ 4

(
n
2
)
for any

K ∈ K2. Very recently, Reitzner and Temesvari [16, Theorem 1.4] showed that this bound
on EHK

2,3(n) is asymptotically tight for every K ∈ K2. This follows from their more general
bounds limn→∞ n−2EHK

2,3(n) = 2 and

2
d! ≤ lim

n→∞
n−dEHK

d,d+1(n) ≤ d

(d+ 1)
κd+1
d−1κd2

κd−1
d κ(d−1)(d+1)

(1)

for d ≥ 2, where κd = π
d
2 Γ(d2 + 1)−1 is the volume of the d-dimensional Euclidean unit

ball. Moreover, the upper bound in (1) holds with equality in the case d = 2, and if K is a
d-dimensional ellipsoid with d ≥ 3. Note that, by (1), there are absolute positive constants
c1, c2 such that

d−c1d ≤ lim
n→∞

n−dEHK
d,d+1(n) ≤ d−c2d

for every d ≥ 2 and K ∈ Kd.
Considering general k-holes in random point sets in Rd, the authors [2] recently proved

that EHK
d,k(n) ≤ O(nd) for all fixed integers d ≥ 2 and k ≥ d+ 1 and every K ∈ Kd. More

precisely, we showed

EHK
d,k(n) ≤ 2d−1 ·

(
2d2d−1

(
k

bd/2c

))k−d−1
· n(n− 1) · · · (n− k + 2)

(k − d− 1)! · (n− k + 1)k−d−1 . (2)

In this paper, we also study the expected number EHK
d,k(n) of k-holes in random sets

of n points in K. In particular, we derive a lower bound that asymptotically matches the
upper bound (2) for all fixed values of k. Moreover, for some small holes, we even determine
the leading constants limn→∞ n−dEHK

d,k(n).
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2 Our Results

Our main result is that for all fixed integers d ≥ 2 and k ≥ d+ 1 the number EHK
d,k(n) is in

Ω(nd), which matches the upper bound (2) by the authors [2] up to the leading constant.

I Theorem 2.1. For all integers d ≥ 2 and k ≥ d+ 1, there are constants C = C(d, k) > 0
and n0 = n0(d, k) such that, for every integer n ≥ n0 and every convex body K ⊆ Rd of unit
volume, we have EHK

d,k(n) ≥ C · nd.

In particular, we see that random point sets typically contain many k-holes no matter
how large k is, as long as it is fixed. This contrasts with the fact that, for every d ≥ 2, there
is a number t = t(d) and arbitrarily large sets of points in Rd without any t-holes [11, 20].

Theorem 2.1 together with (2) shows that EHK
d,k(n) = Θ(nd) for all fixed integers d and

k and every K ∈ Kd, which determines the asymptotic growth rate of EHK
d,k(n). We thus

focus on determining the leading constants limn→∞ n−dEHK
d,k(n).

For a convex body K ⊆ Rd (of a not necessarily unit volume), we use pKd to denote
the probability that the convex hull of d+ 2 points chosen uniformly and independently at
random from K is a d-simplex. That is, the probability that one of the d+ 2 points falls in
the convex hull of the remaining d + 1 points. The problem of computing pKd is known as
the d-dimensional Sylvester’s convex hull problem for K and it has been studied extensively.
Let pd = maxK pKd , where the maximum is taken over all covnex bodies K ⊆ Rd. We note
that the maximum is achieved, since it is well-known that every affine-invariant continuous
functional on the space of convex bodies attains a maximum.

First, we prove the following lower bound on the expected number EHK
d,d+1(n) of empty

simplices in random sets of n points in K, which improves the lower bound from (1) by
Reitzner and Temesvari [16] by a factor of d/pd−1.

I Theorem 2.2. For every integer d ≥ 2 and every convex body K ⊆ Rd of unit volume, we
have

lim
n→∞

n−dEHK
d,d+1(n) ≥ 2

(d− 1)!pd−1
.

Using the trivial fact p1 = 1 with the inequality EHK
2,3(n) ≤ 2(1 + o(1))n2 proved by

Valtr [21], we see that the leading constant in our estimate is asymptotically tight in the
planar case. An old result of Blaschke [4, 5] implies that Theorem 2.2 is also asymptotically
tight for simplices in R3.

I Corollary 2.3. For every convex body K ⊆ R3 of unit volume, we have

3 ≤ lim
n→∞

n−3EHK
3,4(n) ≤ 12π2

35 ≈ 3.38.

Moreover, the left inequality is tight if K is a tetrahedron and the right inequality is tight if
K is an ellipsoid.

Note that, in contrast to the planar case, the leading constant in EHK
3,4(n) depends on

the body K.
By Theorem 2.2, better upper bounds on pd−1 give stronger lower bounds on EHK

d,d+1(n).
The problem of estimating pd is equivalent to the problem of estimating the expected d-
dimensional volume EV Kd of the convex hull of d + 1 points drawn from a convex body
K ⊆ Rd uniformly and independently at random, since pKd = (d+2)EV K

d

λd(K) for every K ∈ Kd;
see [14, 18]. In the plane, Blaschke [4, 5] showed that EV K2 is maximized if K is a triangle,
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which we use to derive the lower bound in Corollary 2.3. For d ≥ 3, it is one of the major
problems in convex geometry to decide whether EV Kd is maximized if K is a simplex [19].

Besides empty simplices, we also consider larger k-holes. The expected number EHK
2,4(n)

of 4-holes in random planar sets of n points was considered by Fabila-Monroy, Huemer, and
Mitsche [9], who showed EHK

2,4(n) ≤ 18πD2n2 + o(n2) for any K ∈ K2, where D = D(K) is
the diameter of K. Since we have D ≥ 2/

√
π, by the Isodiametric inequality [8], the leading

constant in their bound is at least 72 for any K ∈ K2. This result was strengthened by the
authors [2] to EHK

2,4(n) ≤ 12n2 + o(n2) for every K ∈ K2. Here we determine the leading
constant in EHK

2,4(n) exactly.

I Theorem 2.4. For every convex body K ⊆ R2 of unit area, we have

lim
n→∞

n−2EHK
2,4(n) = 10− 2π2

3 ≈ 3.420.

Our computer experiments support this result. We sampled random sets of n points
from a square and from a disk and the average number of 4-holes was around 3.42n2 for n =
25000 in our experiments. The source code of our program is available on the supplemental
website [17].

For larger k-holes in the plane, we do not determine the value limn→∞ n−2EHK
2,k(n)

exactly, but we can show that it does not depend on the convex body K. We recall that
this is not true in larger dimensions already for empty simplices.

I Theorem 2.5. For every integer k ≥ 3, there is a constant C = C(k) such that, for every
convex body K ⊆ R2 of unit area, we have

lim
n→∞

n−2EHK
2,k(n) = C.

The proof of our main result, Theorem 2.1, is quite technical. So is the proof of Theo-
rem 2.2, which is based on the Blaschke–Petkantschin formula (see Theorem 7.2.7 in [19])
and the well-known Lebesgue’s dominated convergence theorem. Therefore we decided to
devote Section 3 to an illustration of the proofs of Theorems 2.4 and 2.5. We only sketch
the idea of the proof for 3-holes, because the proof for k-holes becomes more technical as k
grows, but the main underlying idea remains the same. The full proofs of our results can
be found in the appendices.

2.1 Open problems
As we remarked earlier, any nontrivial upper bound on the probability pd−1 translates into
a stronger lower bound on limn→∞ n−dEHK

d,d+1(n). However, we are not aware of any such
estimate on pd−1. Kingman [13] showed

pB
d

d =
(d+ 2)

(
d+ 1
d+1

2

)d+1

2d
((d+ 1)2

(d+1)2

2

) ,

which is of order d−Θ(d). We conjecture that the upper bound on pKd is of this order for any
convex body from Kd.

I Conjecture 2.6. There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd.
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We also believe that our lower bound from Theorem 2.2 is tight for simplices in arbitrarily
large dimension d, not only for d ≤ 3.

I Conjecture 2.7. For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then
limn→∞ n−dEHK

d,d+1(n) = 2
(d−1)!pd−1

.

As remarked earlier, it is widely believed that pKd is maximized if K is a simplex. If this
is true, then it follows from the proof of Theorem 2.2 that Conjecture 2.7 is true as well.

It might also be interesting to determine limn→∞ n−2EHK
2,k(n) exactly for as many values

k > 4 as possible. Recall that, by Theorem 2.5, the number limn→∞ n−2EHK
2,k(n) is the

same for all convex bodies K ∈ K2.

3 Sketch of the proof for empty simplices in planar point sets

We sketch the proof that the expected number of 3-holes in a set S of n points selected
uniformly and independently at random from a convex body K ⊆ R2 of unit volume is
2n2 + o(n2). For two points pi and pj from S, we count the expected number of 3-holes in
S where pi and pj determine the longest edge.

Without loss of generality we can assume that pi = (0, 0) and pj = (`, 0) for some
` > 0, as otherwise we apply a suitable isometry to S. Let R be the set of points from
K ∩ ([0, `] × [− 2

` ,
2
` ]) that are at distance at most ` from pi and also from pj . Note that

the set R is convex. The third point pk of the 3-hole satisfies x(pi) < x(pk) < x(pj), as
otherwise pipj is not the longest edge of the 3-hole. If |y(pk)| > 2

` , then the convex hull of
the 3-hole has area larger than 1, which is impossible. Consequently, pk lies in R. For a real
number y ∈ [− 2

` ,
2
` ], let Iy be the line segment formed by points r ∈ R with y(r) = y. Note

that |Iy| ≤ ` for every y and that |I0| = `; see Figure 1.

pi

2
`

K
R

[0, `]× [− `
2 ,

`
2 ]

pj

pk

I0

Iy

`

Figure 1 Sketch of the proof.

Since there are n− 2 candidates for pk among S \ {pi, pj}, we can express the expected
number of 3-holes in S where pi and pj determine the longest edge as

(n− 2) ·
∫ 2/`

−2/`
|Iy| · Pr[pipjpk is empty in S]dy = (n− 2) ·

∫ 2/`

−2/`
|Iy| ·

(
1− |y| · `2

)n−3
dy.
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We now substitute Y = yn and obtain

n− 2
n
·
∫ 2n/`

−2n/`
|IY/n| ·

(
1− |Y | · `2n

)n−3
dY.

By the Lebesgue dominated convergence theorem, we get for n→∞

2 ·
∫ ∞

0
|I0| · e−Y ·`/2dY = 2 ·

∫ ∞
0

` · e−Y ·`/2dY = 4.

Since there are
(
n
2
)
pairs {pi, pj} in S, the expected number of 3-holes in S is 4(1+o(1))·

(
n
2
)

=
2n2 + o(n2) for n going to infinity.
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