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—— Abstract

Given two distinct point sets P and @ in the plane, we say that @ blocks P if no two points of P
are adjacent in any Delaunay triangulation of P U Q. Aichholzer et al. (2013) showed that (the
Delaunay triangulation of) any set P of n points in general position (that is, no three collinear and

no four cocircular) can be blocked by %n points and that every set P of n points in convex position
can be blocked by %n points. Moreover, they conjectured that, if P is in convex position, n blocking
points are sufficient and necessary. The necessity was recently shown by Biniaz (2021) who proved
that every point set in general position requires n blocking points.

Here we investigate the variant, where blocking points can only lie outside of the convex hull of
the given point set. We show that %n — O(1) such exterior-blocking points are sometimes necessary,
even if the given point set is in convex position. As a consequence we obtain that, if the conjecture
of Aichholzer et al. for the original setting was true, then minimal blocking sets of some point
configurations P would have to contain points inside of the convex hull of P.

1 Introduction

Delaunay triangulations, Delaunay graphs, Voronoi diagrams (their dual structures), and
various generalizations have been intensively studied in the last century; see for example
the standard textbook in Computation Geometry [6]. A Delaunay triangulation DT (P) of
a given point set P in the plane is a triangulation of P in which for every edge between
two distinct points p1, ps € P there exists a circle through py, ps that contains no point of
P\ {p1,p2} in its interior. An edge spanned by P with this property is called Delaunay edge.
For a point set in general position, that is, no three points of P lie on a common line and no
four points of P lie on a common circle, the Delaunay triangulation is unique. Figure 1(a)
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(a) (b)

Figure 1 (a) A set P (blue) of five points in convex position, and its unique Delaunay
triangulation DT'(P). (b) A set @ (red) of two points that blocks two of the edges of DT(P).
(c) A set Q of five points from the exterior of conv(P) that blocks P.

shows the unique Delaunay triangulation of a point set in conver position, that is, the points
are the vertices of a convex polygon.

In this article we continue the investigation of blocking points for Delaunay edges. For
two point sets P, @, we say that @ blocks an edge p1p2 spanned by P if every circle through
p1, p2 contains at least one point of P U@ in its interior. Equivalently, p1p2 is not an edge of
any Delaunay triangulation of P U Q. We say that @ blocks P if @ blocks all edges spanned
by P. Equivalently, no two points of P are adjacent in any Delaunay triangulation of P U Q.
If moreover no point of @ lies in the interior of the convex hull of P, we say that @ blocks P
from the exterior. Figures 1(b) and 1(c) shows examples where @ blocks P.

Aronov et al. [3] showed that every set P of n points in general position can be blocked by
a set of 2n — 2 points, and that, if P is in convex position, %n blocking points are sufficient.
Both of their bounds were improved by Aichholzer et al. [1], who showed that, for general
position, %n blocking points are sufficient, and that, for convex position, %n blocking points
are sufficient. They also showed that n — 1 blocking points are always needed and posed the
following conjecture.

» Conjecture 1.1 ([1]). If P is a set of n points in convex position in the plane, then n
blocking points are necessary and sufficient, that is, every blocking set of P contains at least
n points and this bound is tight.

Biniaz [5] recently strengthened the lower bound by showing that, for every set of n points
in general position, n blocking points are necessary and that there are sets of n points in
convex position which can be blocked by n points. While this confirms the necessity part
from Conjecture 1.1, the question about sufficiency remains open.

For many sets P of n points in convex position, a simple construction suffices to indeed
block all Delaunay edges with exactly n points: place a single point of @ close to the mid
point of each edge of the convex hull of P, on the outer side; see Figure 1(c). Placing the
points arbitrary close to the convex hull edges ensures that all those edges are blocked, and
indeed every convex hull edge requires at least one point somewhere outside the convex hull
to be blocked. Moreover, this simple construction often enough also blocks all interior edges
of DT(P). This may suggest that a similar approach could actually always work.

Inspired by these observations, we investigate the variant where blocking points have
to lie outside of the convex hull of the given n-point set P. We show that %n — O(1) such
exterior-blocking points are sometimes necessary, even if P is in convex position.

» Theorem 1.2. For k € N, there is a set P of 4k points in general position that requires at
least 5k — 5 exterior-blocking points.
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As a direct consequence of Theorem 1.2 we obtain for the original setting that, if
Conjecture 1.1 was true, then minimal blocking sets of certain point sets P would have to
contain points inside of the convex hull of P.

Note that the construction of size [5n] given in [1] might contain interior points. The
reason is that in the induction blocking points placed for a subproblem in the exterior of an
edge (Case (a) in the proof of Theorem 3 in [1]) might end up to be interior for the overall
triangulation. Modifying their approach, a blocking set of size ~ %n can be obtained by
iterativly cutting ears ((n, 3, 4)-cuts in the terminology of [1]).

2 Proof of Theorem 1.2

To prove Theorem 1.2, we first give a configuration with collinear points in Section 2.1, which
we then perturb in Section 2.2 to obtain a configuration which is in general position.

2.1 Construction with Collinear Points

Our construction consists of k gadgets, each containing 4 points (a top point t;, a left point
L;, middle point m;, and a right point r;, where the latter three are called bottom points),
which gives us a set Py of n = 4k points in total. We place all 3k bottom points on the

t1

4)

z-axis and all k top points on a line segment (above the x-axis) with negative slope.

4

_> o
Y P

Figure 2 An illustration of the point set Py of size 4k and the set of circles Co where at least
5k — 3 exterior-blocking points are required. The red, blue, and yellow points and circles illustrate
the first, second, and third gadget of the construction, respectively.

Explicit coordinates for the points {¢;, m;,7;,t;} in the i-th gadget are {(—2,0), (0,0),
(2,0),(0,3)}, scaled by 27%, and with z-offset of 3 + 143,277 = 3+ 14(1 — 277). By
construction, all points have positive z-coordinate, all top points lie on the z-axis, and all
bottom points lie on the line {(x,y) : 3z + 14y = 51}.

Further, each gadget ¢ with 1 <4 < k contains 5 circles and the k-th gadget contains 4
circles, which gives us a set Cy of 5k — 1 circles in total. They are defined as follows:

)

a circle Fl(z through ¢; and ¢;, which is tangent to the z-axis in /;;

a circle G@ through ¢; and r;, which is tangent to the z-axis in r;,

) with the segment ¢;m; as diameter,

a circle FQ(Z
a circle Gg) with the segment m;r; as diameter; and

a circle H® with the segment ril;11 as diameter.
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See Figure 2 for an illustration of the construction. On each circle, there are exactly two
points of Py and no circle contains points of P, in its interior. Further, any two “neighboring’
bottom circles are tangent in their common point of Py, that is, FQ@ N Géi) = {m;},
GO N HY = {r:}, and HY 0 B = {4,41).

It is necessary that each of the circles contains a blocking point of ) in its interior
as otherwise there is an edge in the Delaunay graph of Py (and hence in any Delaunay
triangulation). For each circle C, we denote the region in the interior of C' and in the
exterior of the convex hull of Py as its blocking area. Note that the circles Fl(i) and G(li) are
both tangent the x-axis and thus only contain points above the x-axis in their interior, and
that the circles H* can only be blocked from points below x-axis. Therefore no two circles
(except in the first and last gadget) have a common exterior-blocking area. Therefore, five
exterior-blocking points are required to block all circles of a gadget for 1 < i < k. For the
first and last gadget, 4 and 3 exterior-blocking points are required, respectively. As none of
these points can be used for two gadgets simultaneously, a total of 5k — 3 points is required
to block P, from the exterior.

)

2.2 Transformation to General Position

We will slightly perturb the point set Py such that all points are in convex position. We also
add two more circles for each gadget ¢ with 1 < i < k to the set Cy and remove the circles
Fl(i) and Ggi) for i = 1, k. We denote the resulting set or circles by C{,. The new circles are
defined as follows; see Figures 3(b) and 3(c) for an illustration.

a circle F?Ez) through t; and m,;, which is tangent to the segment ¢;¢,41; and

a circle ng‘) through t; and m;, which is tangent to the segment £;m;.

(tiny) area to block

) -

area to block

area to block

—

area to block

S

(tiny) area to block (tiny) area to block

(c) (d)

area to block

=

Figure 3 The gadget for the general case construction. (a) — (d) show how to align circles (the
red circle is always tangent to the red line) and highlight the exterior blocking area using red arrows.

Note that a circle C through a point p cannot simultaneously be tangent to two line
segments at p with different slopes. Thus, the arguments from Section 2.1 will not apply
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)

the convex hull of Py. In the following we will deal with this issue.

anymore after we perturb Py, because circles Fl(l and Ggi) will intersect other circles outside

Transformation. We define P(7) as the continuous transformation of Py = P(0) where
all bottom points are transformed as (z,y) — (x,y + 72%) and

all top points are transformed as (z,y) — (z,y — 72°).

The transformation is illustrated in Figure 4.

Figure 4 An illustration of the point set Py = P(0) and the perturbed set P(7) for sufficiently
small 7. Note that, if 7 is not small enough, the resulting set might not be in convex position and
hence might not have the desired properties .

Analogously, we define C(7) as the transformation of C{, which preserves the defined
properties of the circles, where for 1 < i < k, we keep the tangency of Fl(i) with r;_1¢; and
the one of Ggi) with r;4;11. See Figures 3(a) and 3(d). Since all circles in C{j have finite radii,
we can choose Tq: > 0 such that all points of P(7) are in general position and lie on the
boundary of the convex hull and all circles of C(7) have finite radii for 0 < 7 < 7y,,4,. Details
are deferred to the full version; see Appendix A for a version with appendix.

In the following, we denote by ¢(C) the center of a circle C' and by r(C) the radius of C,
and we define d¢,, := ||p — ¢(C)|| — r(C) to indicate whether the point p lies

inside the circle C' (d¢,, < 0),

on the circle C' (d¢,, = 0), or

outside the circle C' (d¢, > 0).

Since every circle C' in ) contains exactly 2 points a,b of Py (and no points of Py in its
interior), we have d¢, = dcp = 0 and dg,, > 0 for every other point p of Py. Analogously,
we define d¢ ,(7) at time 7. As d¢,(7) and P(7) are both continuous functions, there exists
0 < ec,p < Tmas such that de,(7) has the same sign for any 0 < 7 < ¢ ,. We remark that
ec,p does not need to be maximal — we just need some ec;, > 0 for our purposes.

Note that in the i-th gadget (1 < i < k) the lower intersection point of the circles Fl(i)
and Fg(i) (as depicted in Figure 5) lies inside the convex hull of P(7) at time 7 = 0. Moreover,
as this intersection point moves continuously on time, we can choose ; > 0 such that at any
time 0 < 7 < ¢; this intersection point lies inside the convex hull. In an analogous manner,
we can choose €; > 0 for 1 < i < k such that at any time 0 < 7 < ¢} the lower intersection
point of the circles Ggi) and Ggi) (as depicted in Figure 5) lies inside the convex hull.

Since we have a finite number of points and a finite number of circles, we can choose a
common ¢ > 0 small enough such that at any time 0 <7 < ¢

every circle in C(7) contains exactly 2 points of P(7) (and no point in its interior), and

no two exterior blocking areas overlap for 1 < i < k, except for the blocking areas of Fl(i)

and F3(i) on top, and the blocking areas of Ggi) and Ggi) on top.

EuroCG’'22
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Figure 5 Analysis of a gadget and its corresponding circles. The colored arrows indicate the
regions of the disks, which can be blocked by exterior points after the perturbation.

Analysis. We first show that two points are required to block the circles Fli)7 éi), and F;i).

) . Thus assume

If Fl(i) is blocked from above then we need at least a second point to block FQ(z
there is no point blocking Fl(i) from above. Since the above blocking area of F?Ei) is fully
contained in Fl(i), the circle Féi) is also not blocked from above. Since the bottom blocking
areas of Fl(i) and FS(i) are disjoint, at least two blocking points have to be placed in FZ(i). As
a consequence, two points are required to block Fl(i), Féi), and F2(i).

In an analogous manner one can show that two points are required to block the circles
Ggi), Ggi), and Ggi). It is easy to see, that

the union of blocking areas of Fl(i), Fg(i), and Fz(i’),

the union of blocking areas of Ggi), Ggi), and Gg), and

the blocking area of H
are mutually disjoint. Consequently, at least five exterior blocking points are required for
the i-th gadget (1 < i < k). Further, the blocking areas of the bottom circles of the first and
last gadget (Fg(l), Ggl), HW, FQ(k)7 and G;k)) are all disjoint from all other blocking areas.
Hence, at least 5k — 5 points are required in total, which completes the proof of Theorem 1.2.

3 Discussion and Further Related Work.

The idea of blocking points can also be extended to other graph classes. For example, Biedl
et al. [4] investigated blocking sets of so-called @¢-graphs, a structure related to Delaunay
graphs: In a ©g-graph of a point set, every pair of points shares an edge if there is an empty
equilateral triangle (instead of an empty disks).

From an algorithmic point of view, we can ask how fast a minimal blocking set can be
computed. For the general problem, where blocking points can also be placed in the interior
of the convex hull of the Delaunay triangulation, this would help to identify cases where
many blocking points are needed. In fact, we tried several approaches to find a set of n
points which requires more than n points to be blocked, but without success. We therefore
would not be surprised if Conjecture 1.1 always holds. But even if Conjecture 1.1 is true,
then there is still the algorithmic question how fast a blocking set of n points can be found.

The anonymous reviewers pointed out that the degenerate construction from Section 2.1
can be improved as follows. By removing the "middle" point m; from gadget ¢ and replacing
the circles FQ(i) and Ggi) by a circle Iéi) with the segment ¢;7; as diameter, the constructed set
of 3k points (depicted in Figure 7) requires 4k — 2 exterior-blocking points. However, when
making this construction non-degenerate via a perturbation as in Section 2.2, the number of
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required exterior-blocking points also drops significantly.

» Theorem 3.1. For k € N, there is a set P of 3k points that requires at least 4k — 2
exterior-blocking points.

Figure 6 A degenerate construction with 3k points where at least 4k — 2 exterior-blocking
points are required. The red, blue, and yellow points and circles illustrate the first, second, and
third gadget of the construction, respectively.

A reviewer also pointed out that the gadgets in the degenerate construction need not
to be scaled. Figure 7 gives an illustration of the alternative construction. However, when
making this construction non-degenerate via a perturbation as in Section 2.2, the number of
required exterior-blocking points significantly drops because, for 1 < i < k, the circles Ggi)
can be blocked by points that are to the left of ¢; and slightly above ¢;_1t;. Also note that,
in contrast to our construction from Section 2.1, here the four points m;,t;, m;,t; lie on a
common circle for every 1 <i¢ < j < k.

Figure 7 An alternative construction with isometric gadgets. The red, blue, and yellow points
and circles illustrate the first, second, and third gadget of the construction, respectively.
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A  Perturbation to general position

Here me make an short excursion to Linear Algebra and give a formal proof for the existence

of a sufficiently small e > 0 such that the point set P(7) is in general position for 0 < 7 < e.

First, we show that for every three points p, ¢, r there exists €p4, > 0 such that the perturbed
points p, g, do not lie on a common line in P(7) for 0 < 7 < gpq. Second, we show that for
every four points p, g, r, s there exists €p4rs > 0 such that the perturbed points p, ¢, 7, s do
not lie on a common circle in P(7) for 0 < 7 < €pqrs. We can then find our desired ¢ as the
minimum among the (finitely many) epqr and epqrs values.

The major idea in the following is that collinearity and cocircularity can be expressed

in terms of determinants (see e.g. Chapter 9 in [6]): three points p = (pz,py), ¢ = (G2, y),

r = (r4,ry) are collinear if and only if

1 1 1
det [ pr gz 72 | =0,
Py qy Ty

and four points p = (pg,py), ¢ = (G2, qy), 7 = (T3, 7y), $ = (84, 5y) are cocircular if and only
if

1 1 1
det pI qm Tf — 0.
Py 4y Ty

24Dl i4q T4l

Collinearity: In P(0), there are two lines which contain more than two points, namely the
top and the bottom line. Any three points from one of these two lines are collinear, and
moreover, any other triple of points is not collinear. We have to cope with the perturbation
which maps a point p = (ps, py) to (z,y + 7op23) where 0, = +1 (resp. 0, = —1) if pis a
bottom point (resp. top point). Hence, we define

1 1 1
Ipgr(T) := det De Gz T
Py + Tappi qy + Taqqg Ty + TO'TTS;

for any three points p, g, r of the construction. Note that I, (7) is polynomial in 7 and is
thus either identically zero or has a finite number of roots.

Consider three bottom points p, g, r; top points will be treated analogously. We use the
multilinearity of the determinant to write

1 1 1 1 1 1
Ipgr(T) =det [ pe ¢ 72| +7-det | pp gz T2 | = Apgr + 7 Bpgr
Dy qy Ty pd ¢
=tApgr =:Bpgr

where the coefficients A, and Bpg. are not depending on 7. Therefore I, is either
identically zero or has at most one root in 7 = — Avar

Next, observe that Bq, is the determinant of a generahzed Vandermonde matrix, namely

1 1 1
qur = | Pz 4z Tz = (qg: _pw) . (rw _pm) . (T;E - q;r) . (px + g + Tw)~
vy 4 i

EuroCG’'22
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Note that this identity can easily be verified using a computer algebra system such as
SageMath [7]. Since all points have positive z-coordinate, the term p, + g, + 7, is always
positive. Hence, the case By, = 0 occurs if and only if two values of p;, g5, r, coincide.
Since no two bottom points have the same z-coordinate, we have By, # 0. Thus, I, (7) is
not identically zero and we find a sufficiently small 4, > 0 such that the perturbed points
D, ¢, 7 are not collinear in P(7) for 0 < 7 < gpqy-

Cocircularity: A similar argument can be used to deal with cocircularity. For any four
points p, ¢,7, s of the construction, we define the polynomial J,q.s(7) as

1 1 1 1

Dz qx Ty S
det 3 3 3 3
Py + TORP; Qy + TO4q; Ty + TORT Sy + TOsS,

2t oy +7opps)® Gt (@ +TOg)? 3+ (ry +Torrg)? o (sy + T0ss3)”
To show that Jpgrs(7) is not identically zero, we write
Tpqrs(T) = Apgrs + 7 Bpgrs + 72 - Cpgrs +7° - Dpgrs,

where Apqrs, Bpgrs, Cpgrs, and Dpqrs do not depent on 7 and assume that all coeflicients are
zero, i.e., the four points p, ¢, 7, s are cocircular in P(7) for every 7. The constant term

1 1 1 1
Apgrs = [T Jpgrs (T) = Jpgrs(0) = det Pz e " S
pars = [T Jpars(T) = Jpgrs(0) Py % ry 5y

P, G tq ridr, si+s
is zero if and only if p, g, r, s are cocircular in P(0). The coefficient of the cubic term is

1 1 1 1

_ [-3 _ Pz dz Tz Sx
Dypgrs = [7°] Jpgrs(T) = det 2 2 2 2
OpPy  OqQs OrTs 0555

6 6 6 6

pw Q:Iz T‘(lj S.T'

is again the determinant of a generalized Vandermonde matrix, which we can rewrite as

Dypgr = (e —Dz) (e = Dz) - ("2 — Qz) * (P2 + Gz +72) - Z P?qgrgsi
«a,B,v,0eN
a+pB+y+6=4

Note that this identity can easily be verified using a computer algebra system such as
SageMath [7]. Since all points have positive z-coordinate, the last term in the is always
positive. Hence, the case D, = 0 occurs if and only if two values of p;, g5, 75, s, coincide.

In P(0), there are two lines which contain more than three points, namely the top and the
bottom line. Any four points from the top line (resp. the bottom line) are cocircular because
a line is a circle of infinite radius. More precisely, the bottom points ¢1,my,71, ..., ¢k, Mk, Tk
lie on the x-axis and the top points ¢; lie on the line {(z,y) : 3z + 14y = 51}. However, among
each of such cocircular 4-tuple, all four points have distinct x-coordinates, i.e., ps, ¢z, Tz, Sz
are distinct and therefore D45 is non-zero in this case.

It remains to deal with the case, where the four points p, g, r, s from P(0) lie on common
a circle of finite radius. Since any three top points (resp. three bottom points) determine



Aichholzer, Hackl, Loffler, Pilz, Parada, Scheucher, and Vogtenhuber 9:11

a line and the fourth point would have to lie on this line, there are precisely two bottom
points (say p,q) and two top points (say r, s). Moreover, we can relabel the four points so
that p is to the left of g and r is to the left of s. Because of the negative slope of the top line,
there are five possibilities how the four points p, g, 7, s can occur from left to right, which are
illustrated in Figure 8:

Do < Tz < Sz < gz (see the purple circle);
De < Tz < gz = Sy (see the red circle);
Do < Tz < gz < Sz (see the yellow circle);
De =Tz < gz < Sz (see the green circle);
Ty < Pz < ¢z < Sz (see the blue circle).

Figure 8 An illustration of cocircular points. Here a’ (resp. b') denotes the point on the top
line which lies directly above a (resp. b).

In particular, we have p, # r, or q, # s,. We assume that p;, q.,, are distinct; the
case where q., T, s, are distinct will be treated in an analogous manner. Since p and q are
bottom points and r is a top point, they are not collinear and we have I,,4-(0) # 0. Since
Pz, e, T2 are distinct, there exists 7* € R such that the perturbed points p, ¢, r are collinear
in P(7*). Since the perturbed points p,q,r, s are assumed to be cocircular at any time 7,
the four perturbed points p, g, r, s are collinear in P(7*). This, however, is only possible if
all four points have distinct z-coordinates, that is, p,, qc, 7z, S are pairwise distinct. Again,
it follows that Dy, is non-zero and hence Jpqrs(7) is not identically zero. We again find

€pgrs > 0 such that the perturbed points p, ¢, 7, s are not cocircular in P(7) for 0 < 7 < pgrs.

This complete the proof that there is a sufficiently small € > 0 such that the point set
P(7) is in general position for 0 < 7 < e.
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