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|Goodman and Pollack '83]: two point sets S and T' have
the same order type if there is a bijection ¢ : S — T such
that any triple (p,q,r) € S® has the same orientation as

the image (¢(p), v(q), ¢(r)) € T*
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Order Types

triple orientations: clockwise, counter clockwise, collinear

|Goodman and Pollack '83]: two point sets S and T' have
the same order type if there is a bijection ¢ : S — T such
that any triple (p,q,r) € S® has the same orientation as

the image (¢(p), v(q), ¢(r)) € T*

equivalence relation on point sets
equivalence classes: the order types

fixed size = finitely many classes
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Point Set Representation

e List of coordinates

0160 7359
1768 6530
2592 6679
4239 6333
3955 5593
2960 5759
2338 4960
2330 4320
2960 2520
5759 7359
3076 5497
2634 5783
3113 5976
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Point Set Representation

List of coordinates

Figure of the point set

+ spanned lines / segments

= identification of
(non)redundant edges!
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Geometric Graphs

e geometric graph (on S ). vertices mapped to set S,
edges drawn as straight-line segments
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Geometric Graphs

e geometric graph (on S): vertices mapped to set S,
edges drawn as straight-line segments

e geometric graphs G, H topologically equivalent if 3
homeomorphism of the plane transforming GG into H

e equivalence class describable by cyclic order around
vertices and crossings 5



Geometric Graphs

e we consider "topology-preserving deformations”

Definition: A geometric graph GG supports a set S of
points if every " continuous deformation” that

o keeps edges straight and

e preserves topological equiv.
also preserves the order type of the vertex set.

crossing fixed, i.e.,
convex position




Geometric Graphs

e we consider "topology-preserving deformations”

Definition: A geometric graph GG supports a set S of
points if every " continuous deformation” that

o keeps edges straight and

e preserves topological equiv.
also preserves the order type of the vertex set.

no such continuous

transformation
< >




Geometric Graphs

Definition: A geometric graph GG supports a set S of
points if every ambient isotopy that

o keeps edges straight and

e preserves topological equiv.
also preserves the order type of the vertex set.

continuous map f: R? x [0,1] — R? is ambient isotopy
if f(-,%) is homeomorphism Vt € [0,1] and f(-,0) = Id



Exit Edges

e S finite point set in general position

o ab exit edge with witness ¢ if fp € S s.t.
line ap separates b from c or bp separates a from c
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Exit Edges

e S finite point set in general position

o ab exit edge with witness ¢ if fp € S s.t.
line ap separates b from c or bp separates a from c

e = exit graph of S



Exit Edges

e other lines might prevent witness from passing exit
edge



Exit Edges

and even worse...

<‘ stretchability!




Exit Edges

Proposition. S ... point set in general position

S(t) ...continuous deformation of S

(a,b,c) ...first triple to become collinear at time t5 > 0
If ¢ lies on segment ab in S(ty),

then ab is an exit edge in S(0) with witness ¢
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Exit Edges

Proposition. S ... point set in general position

S(t) ...continuous deformation of S

(a,b,c) ...first triple to become collinear at time t5 > 0
If ¢ lies on segment ab in S(ty),

then ab is an exit edge in S(0) with witness ¢

Corollary. The exit graph of every point set is supporting.

e the inversion of the statement is not true in general —
exit edges might not be necessary for a supporting

graph

e strongly related to " minimal reduced systems”
[Bokowski and Sturmfels '86]
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Properties

Lower Bound: 32 + O(1) bound ...n — 3 construction
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Properties

Lower Bound: 32 + O(1) bound ...n — 3 construction

Upper Bound: O(n?)
(empty A in line arr., < ”(ng_l) [Roudneff '72, Blanc '11])

s* t*

12



Properties

Theorem. If |S| > 9, then any supporting graph contains a
crossing.

13



Properties

Theorem. If |S| > 9, then any supporting graph contains a
crossing.

Proof:

(G ...crossingfree geometric graph on S.

13



Properties

Theorem. If |S| > 9, then any supporting graph contains a
crossing.

Proof:
(G ...crossingfree geometric graph on S.

V plane graph d plane straight-line embedding with
/1 /2 points on a line [Dujmovi¢ '17].

= G drawn on S’ with order type different to S

13



Properties

Theorem. If |S| > 9, then any supporting graph contains a
crossing.

Proof:
(G ...crossingfree geometric graph on S.

V plane graph d plane straight-line embedding with
/1 /2 points on a line [Dujmovi¢ '17].

= G drawn on S’ with order type different to S

Continuously morph S into S’, keeping planarity and

topologically equivalence to G.
[Alamdari, Angelini, Barrera-Cruz, Chan, Da Lozzo, Di Battista,
Frati, Haxell, Lubiw, Patrignani, Roselli, Singla, Wilkinson '17]
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Properties

Theorem. If |S| > 9, then any supporting graph contains a
crossing.

Proof:
(G ...crossingfree geometric graph on S.

V plane graph d plane straight-line embedding with
/1 /2 points on a line [Dujmovi¢ '17].
= G drawn on S’ with order type different to S

Continuously morph S into S’, keeping planarity and
topologically equivalence to G [Alamdari et al. '17]

= (& does not support S.
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Properties

Theorem. Let GG be the exit graph of S. Every vertex in
the unbounded face of G is extremal, i.e., lies on the
boundary of convex hull of S.
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Properties

Theorem. Let GG be the exit graph of S. Every vertex in
the unbounded face of G is extremal, i.e., lies on the
boundary of convex hull of S.

f stretchability!
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o different order types may yield the same exit edges
(exit graphs not topologically equivalent)
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the construction based on example of two line arrangements
with the "same” triangles [Felsner and Weil '00]
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o different order types may yield the same exit edges
(exit graphs not topologically equivalent)
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the construction based on example of two line arrangements
with the "same” triangles [Felsner and Weil '00]
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Thank you for your attention!
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