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k-Gons

a finite point set P in the plane is

in general position if @ collinear points in P
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k-Gons

a finite point set P in the plane is

in general position if @ collinear points in P

throughout this presentation, every set is in general position
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k-Gons

a k-gon (in P ) is the vertex set of a convex k-gon

a finite point set P in the plane is

in general position if @ collinear points in P

5-gon 6-gon
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k-Gons

a k-gon (in P ) is the vertex set of a convex k-gon

a finite point set P in the plane is

in general position if @ collinear points in P

Theorem (Erdős and Szekeres ’35).

∀ k ≥ 3, ∃ a smallest integer g(k) such that

every set of g(k) points contains a k-gon.
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k-Gons

Theorem. 2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
. [Erdős–Szekeres ’35]

equality conjectured by Szekeres, Erdős offered 500$ for a proof
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k-Gons

Theorem. 2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
. [Erdős–Szekeres ’35]

... several improvements of order 4k−o(k)
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k-Gons

Theorem. 2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
. [Erdős–Szekeres ’35]

Theorem. g(k) ≤ 2k+o(k). [Suk ’17]

... several improvements of order 4k−o(k)
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k-Gons

Theorem. 2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
. [Erdős–Szekeres ’35]

Theorem. g(k) ≤ 2k+o(k). [Suk ’17]

Known: g(4) = 5, g(5) = 9, g(6) = 17

computer assisted proof, 1500 CPU hours [Szekeres–Peters ’06]

... several improvements of order 4k−o(k)
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k-Gons

Theorem. 2k−2 + 1 ≤ g(k) ≤
(
2k−4
k−2

)
. [Erdős–Szekeres ’35]

Theorem. g(k) ≤ 2k+o(k). [Suk ’17]

Known: g(4) = 5, g(5) = 9, g(6) = 17

computer assisted proof, 1500 CPU hours [Szekeres–Peters ’06]

NEW: 1 hour using SAT solvers

... several improvements of order 4k−o(k)
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k-Holes

a k-hole (in P ) is the vertex set of a convex k-gon

containing no other points of P

5-hole not a 6-hole

4



k-Holes

Erdős, 1970’: Is h(k) finite for every k?

a k-hole (in P ) is the vertex set of a convex k-gon

containing no other points of P

h(k) minimal s.t. any set of h(k) points contains k-hole
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k-Holes

Erdős, 1970’: Is h(k) finite for every k?

a k-hole (in P ) is the vertex set of a convex k-gon

containing no other points of P

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

h(k) minimal s.t. any set of h(k) points contains k-hole
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k-Holes

Erdős, 1970’: Is h(k) finite for every k?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

a k-hole (in P ) is the vertex set of a convex k-gon

containing no other points of P

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

h(k) minimal s.t. any set of h(k) points contains k-hole
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k-Holes

Erdős, 1970’: Is h(k) finite for every k?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

a k-hole (in P ) is the vertex set of a convex k-gon

containing no other points of P

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

h(k) minimal s.t. any set of h(k) points contains k-hole
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k-Holes

Erdős, 1970’: Is h(k) finite for every k?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

• Sufficiently large point sets ⇒ ∃ 6-hole

[Gerken ’08 and Nicolás ’07, independently]

a k-hole (in P ) is the vertex set of a convex k-gon

containing no other points of P

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole

h(k) minimal s.t. any set of h(k) points contains k-hole
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k-Holes

• h(4) = 5, h(5) = 10, 30 ≤ h(6) ≤ 463, h(7) =∞

Harborth ’78

Overmars ’02

Gerken ’08, Nicolas ’07, Koshelev ’09

Horton’83
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k-Holes

• h(4) = 5, h(5) = 10, 30 ≤ h(6) ≤ 463, h(7) =∞

Harborth ’78

Overmars ’02

Gerken ’08, Nicolas ’07, Koshelev ’09

Horton’83

exact value still unknown
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k-Holes

4 points, no 4-hole (h(4) = 5)
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k-Holes

9 points, no 5-hole (h(5) = 10)
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k-Holes

29 points, no 6-hole [Overmars ’02] (30 ≤ h(6) ≤ 463)
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k-Holes

29 points, no 6-hole [Overmars ’02] (30 ≤ h(6) ≤ 463)

• found by computer

(simulated annealing)

• contains 7-gon
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k-Holes

29 points, no 6-hole [Overmars ’02] (30 ≤ h(6) ≤ 463)

• found by computer

(simulated annealing)

• contains 7-gon • larger gons

give 6-holes

• ∃ 6-hole-free sets

with 8-gons
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k-Holes

Horton’s construction for n = 21 points, no 7-holes
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k-Holes

Horton’s construction for n = 22 points, no 7-holes
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k-Holes

Horton’s construction for n = 23 points, no 7-holes
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k-Holes

Horton’s construction for n = 23 points, no 7-holes
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k-Holes

Horton’s construction for n = 24 points, no 7-holes
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k-Holes

Horton’s construction for n = 24 points, no 7-holes
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k-Holes

Horton’s construction: n = 2k points, no 7-holes (h(7) =∞)
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h3(n) ≥ b 13
(
n
2

)
c = Ω(n2)

e

∀ edge e

∃ 3-hole with closest point
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h3(n) ≥ b 13
(
n
2

)
c = Ω(n2)

e

∀ edge e

∃ 3-hole with closest point

7



Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

e
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

not empty

e
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

e
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h4(n) ≥ Ω(n2)
∀ crossed edge e

∃ 4-hole with diagonal e

O(n) uncrossed edges

(planar graph)

e
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h5(n) ≥ b 1
10nc = Ω(n)
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

• h5(n) ≥ b 1
10nc = Ω(n)
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

+1

+1

+1

• h5(n) ≥ b 1
10nc = Ω(n)
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Quantity of k-Holes

hk(n) = minimum # of k-holes among all sets of n points

+1

+1

+1

• h5(n) ≥ b 1
10nc = Ω(n) • same idea: h6(n) ≥ Ω(n)
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Quantity of k-Holes

• h3(n) and h4(n) quadratic

Bárány and Füredi ’87, Bárány and Valtr ’04
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Quantity of k-Holes

• h3(n) and h4(n) quadratic

• h5(n) = Ω(n log4/5 n) and h6(n) = Ω(n)

Aichholzer, Balko, Hackl, Kynl, Parada, S., Valtr, and Vogtenhuber ’17

Gerken ’08, Nicolás ’07
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Quantity of k-Holes

• h3(n) and h4(n) quadratic

• h5(n) = Ω(n log4/5 n) and h6(n) = Ω(n)

• hk(n) = 0 for k ≥ 7

Horton ’83
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Quantity of k-Holes

• h3(n) and h4(n) quadratic

• h5(n) = Ω(n log4/5 n) and h6(n) = Ω(n)

• hk(n) determined for small values of n

n 9 10 11 12 13 14 15 16 17 18 19

h5(n) 0 1 2 3 3 6 9 11 ≤ 16 ≤ 21 ≤ 26

via SAT

Bachelor’s thesis (S’13)Dehnhart ’87Harborth ’78

• hk(n) = 0 for k ≥ 7
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Disjoint k-Holes

not disjoint disjoint

Hosono and Urabe ’01:

What is the smallest number h(k1, k2) such that

every set of h(k1, k2) points determines a

k1-hole and a k2-hole, that are disjoint?
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Disjoint k-Holes

not disjoint disjoint

“interior-disjoint”

Hosono and Urabe ’01:

What is the smallest number h(k1, k2) such that

every set of h(k1, k2) points determines a

k1-hole and a k2-hole, that are disjoint?
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Disjoint k-Holes

Hosono–Urabe (’01, ’05, ’08)

2 3 4 5

2 4 5 6 10

3 6 7 10

4 9 12

5 17..20

Minimum number h(k1, k2) of points

such that disjoint k1- and k2-holes exist
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Disjoint k-Holes

Hosono–Urabe (’01, ’05, ’08)

Minimum number h(k1, k2) of points

such that disjoint k1- and k2-holes exist

2 3 4 5

2 4 5 6 10

3 6 7 10

4 9 12

5 17..19

Bhattacharya–Das ’11
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Disjoint k-Holes

Hosono–Urabe (’01, ’05, ’08)

NEW

Minimum number h(k1, k2) of points

such that disjoint k1- and k2-holes exist

2 3 4 5

2 4 5 6 10

3 6 7 10

4 9 12

5 17*

Bhattacharya–Das ’11

Theorem: h(5, 5) = 17.
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Disjoint k-Holes

Hosono–Urabe (’01, ’05, ’08)

NEW

2 3 4 5

2 10 11 11..14 17*

3 12 13..14 17..19*

4 15..17 17..23*

5 22*..27*

2 3 4

2 8 9 11

3 10 12

4 14

NEW

h(k1, k2, 4) h(k1, k2, 5)

2 3 4 5

2 4 5 6 10

3 6 7 10

4 9 12

5 17*

You–Wei ’15 3-parametric

2-parametric
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Disjoint k-Holes

Fk(n) . . . min. # of disjoint k-holes in n points

Fk(n) = bn/kc for k = 1, 2, 3

3n/13 + o(n) ≤ F4(n) < n/4

b2n/17c ≤ F5(n) < n/6

bn/h(6)c ≤ F6(n) < n/12

Fk(n) = 0 for k ≥ 7.

Bárány–Károlyi ’01 and Hosono–Urabe (’01, ’08)

NEW
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Disjoint k-Holes

Variant: also interior-disjoint holes have been studied

3 4 5

3 4 5 10

4 7 10

5 15*
NEW

Devillers et al. 2003

Sakai–Urrutia 2007

Cano et al. 2015

Biniaz–Maheshwari–Smid 2017

Hosono–Urabe 2018

. . .

9



SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

+

–

a
b

c

d

χabc = sgn det

 1 1 1

xa xb xc
ya yb yc


10



SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

det(x1, . . . , xr) · det(y1, . . . , yr) =
r∑

i=1

det(yi, x2, . . . , xr) · det(y1, . . . , yi−1, x1, yi+1, . . . , yr)

Grassmann-Plücker relations for r-dim. vectors (we have r = 3):
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

Grassmann-Plücker relations:

det(x1, . . . , xr) · det(y1, . . . , yr) =
r∑

i=1

det(yi, x2, . . . , xr) · det(y1, . . . , yi−1, x1, yi+1, . . . , yr)

• exchange axioms:

if χyi,x2,...,xr · χy1,...,yi−1,x1,yi+1,...,yr ≥ 0 for every i,

then χx1,...,xr · χy1,...,yr ≥ 0
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

• alternating axioms:

χxπ(1),xπ(2),xπ(3)
= sgn(π) · χx1,x2,x3

• exchange axioms:

if χyi,x2,...,xr · χy1,...,yi−1,x1,yi+1,...,yr ≥ 0 for every i,

then χx1,...,xr · χy1,...,yr ≥ 0

Θ(n6) many

Θ(n3) many
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

• alternating axioms:

χxπ(1),xπ(2),xπ(3)
= sgn(π) · χx1,x2,x3

• exchange axioms:

if χyi,x2,...,xr · χy1,...,yi−1,x1,yi+1,...,yr ≥ 0 for every i,

then χx1,...,xr · χy1,...,yr ≥ 0

Θ(n6) many

necessary conditions but not sufficient (stretchability!)

Θ(n3) many
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

• alternating axioms:

χxπ(1),xπ(2),xπ(3)
= sgn(π) · χx1,x2,x3

• signotope axioms: for i < j < k < l,

the sequence χijk, χijl, χikl, χjkl (lex. order)
changes sign at most once

Θ(n4) many

Felsner–Weil ’01, Balko–Fulek–Kynčl ’15:

Θ(n3) many
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

• crossings (two crossing edges = 4-gon),

otherwise containment (point-in-triangle)

χabc 6= χabd and χcda 6= χcdb

a

bc

d
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

• crossings (two crossing edges = 4-gon),

otherwise containment (point-in-triangle)

• k-gons and k-holes

(Carathéodory: every 4-tuple in k-gon is in convex positon)
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SAT Model

• variables for triple-orientations: χabc ∈ {+,−}

• axiomatize ”point set”: chiritope/signotope axioms

• crossings (two crossing edges = 4-gon),

otherwise containment (point-in-triangle)

• k-gons and k-holes

• disjointness also via triple-orientations

one red
one blue
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Crucial Elements

• Lemma: Let S = {s1, . . . , sn}, s1 extremal, and

s2, . . . , sn sorted around s1.

There exists S̃ of the same order type as S

(in particular, sorted around first point)

with increasing x-coordinates.
w.l.o.g.

• Harborth’s result: Any 10 consecutive points give 5-hole

11



SAT Model Modifications

• Counting 5-holes:

variables Xabcde;k indicates whether a < . . . < e form

the k-th 5-hole in lexicographic order

• Interior-disjoint Holes

• Classical Erdős–Szekeres:

g(6) = 17 in about 1 hour
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(Un)Satisfiablity and SAT-Solvers

• Given Boolean formula, is there an assignment such

that the formula is true?

• NP-complete, but quite good heuristics

• Satisfiability efficiently verifiable (check solution)

• UNSAT certificates (e.g. DRAT, tool DRAT-trim)

• we used the SAT-solvers glucose and picosat
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A Python/Pycosat Example

$ ipython

Python 2.7.15

...

In [1]: import pycosat

In [2]: CNF = [[1,2,3],[-1,-2,-3]]

In [3]: for sol in pycosat.itersolve(CNF): print sol

[-1, -2, 3]

[-1, 2, -3]

[-1, 2, 3]

[1, 2, -3]

[1, -2, 3]

[1, -2, -3]

(x1 ∨ x2 ∨ x3)

(¬x1 ∨ ¬x2 ∨ ¬x3)
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