

On Disjoint Holes in Point Sets

Manfred Scheucher

a finite point set P in the plane is in $general\ position$ if \nexists collinear points in P

a finite point set P in the plane is in *general position* if \nexists collinear points in P

throughout this presentation, every set is in general position

a finite point set P in the plane is in *general position* if \nexists collinear points in P

a k-gon (in P) is the vertex set of a convex k-gon

a finite point set P in the plane is in $general\ position$ if \nexists collinear points in P

a k-gon (in P) is the vertex set of a convex k-gon

Theorem (Erdős and Szekeres '35).

 $\forall k \geq 3$, \exists a smallest integer g(k) such that every set of g(k) points contains a k-gon.

Theorem.
$$2^{k-2}+1 \leq g(k) \leq {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

equality conjectured by Szekeres, Erdős offered 500\$ for a proof

Theorem. $2^{k-2}+1 \leq g(k) \leq {2k-4 \choose k-2}$. [Erdős–Szekeres '35]

several improvements of order $4^{k-o(k)}$

Theorem. $2^{k-2} + 1 \le g(k) \le {2k-4 \choose k-2}$. [Erdős–Szekeres '35]

several improvements of order $4^{k-o(k)}$

Theorem. $g(k) \le 2^{k+o(k)}$. [Suk '17]

Theorem.
$$2^{k-2} + 1 \le g(k) \le {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

several improvements of order $4^{k-o(k)}$

Theorem.
$$g(k) \leq 2^{k+o(k)}$$
. [Suk '17]

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$

computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

Theorem.
$$2^{k-2} + 1 \le g(k) \le {2k-4 \choose k-2}$$
. [Erdős–Szekeres '35]

 \vdots several improvements of order $4^{k-o(k)}$

Theorem.
$$g(k) \le 2^{k+o(k)}$$
. [Suk '17]

NEW: 1 hour using SAT solvers

Known:
$$g(4) = 5$$
, $g(5) = 9$, $g(6) = 17$

computer assisted proof, 1500 CPU hours [Szekeres-Peters '06]

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

h(k) minimal s.t. any set of h(k) points contains k-hole

Erdős, 1970': Is h(k) finite for every k?

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]

a k-hole (in P) is the vertex set of a convex k-gon containing no other points of P

- 3 points $\Rightarrow \exists$ 3-hole
- 5 points $\Rightarrow \exists$ 4-hole
- 10 points $\Rightarrow \exists$ 5-hole [Harborth '78]
- ∃ arbitrarily large point sets with no 7-hole [Horton '83]
- Sufficiently large point sets $\Rightarrow \exists$ 6-hole [Gerken '08 and Nicolás '07, independently]

4 points, no 4-hole (h(4) = 5)

9 points, no 5-hole (h(5) = 10)

29 points, no 6-hole [Overmars '02] ($30 \le h(6) \le 463$)

29 points, no 6-hole [Overmars '02] $(30 \le h(6) \le 463)$

Horton's construction for $n=2^1$ points, no 7-holes

Horton's construction for $n=2^2$ points, no 7-holes

Horton's construction for $n=2^3$ points, no 7-holes

Horton's construction for $n=2^3$ points, no 7-holes

Horton's construction for $n=2^4\,$ points, no 7-holes

Horton's construction for $n=2^4\,$ points, no 7-holes

Horton's construction: $n=2^k$ points, no 7-holes $(h(7)=\infty)$

 $h_k(n) = minimum \# of k$ -holes among all sets of n points

 $h_k(n) = \text{minimum } \# \text{ of } k\text{-holes among all sets of } n \text{ points}$

•
$$h_3(n) \ge \lfloor \frac{1}{3} \binom{n}{2} \rfloor = \Omega(n^2)$$

 \forall edge e

∃ 3-hole with closest point

 $h_k(n) = minimum \# of k$ -holes among all sets of n points

•
$$h_3(n) \ge \lfloor \frac{1}{3} \binom{n}{2} \rfloor = \Omega(n^2)$$

 \forall edge e

∃ 3-hole with closest point

 $h_k(n) = \text{minimum } \# \text{ of } k\text{-holes among all sets of } n \text{ points}$

• $h_4(n) \ge \Omega(n^2)$

 \forall crossed edge e

 \exists 4-hole with diagonal e

 $h_k(n) = \text{minimum } \# \text{ of } k\text{-holes among all sets of } n \text{ points}$

• $h_4(n) \ge \Omega(n^2)$

 \forall crossed edge e \exists 4-hole with diagonal e

 $h_k(n) = \text{minimum } \# \text{ of } k\text{-holes among all sets of } n \text{ points}$

•
$$h_4(n) \ge \Omega(n^2)$$

 \forall crossed edge e

 \exists 4-hole with diagonal e

 $h_k(n) = \text{minimum } \# \text{ of } k\text{-holes among all sets of } n \text{ points}$

•
$$h_4(n) \ge \Omega(n^2)$$

 \forall crossed edge e

 \exists 4-hole with diagonal e

O(n) uncrossed edges (planar graph)

 $h_k(n) = minimum \# of k$ -holes among all sets of n points

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$

 $h_k(n) = minimum \# of k$ -holes among all sets of n points

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$

 $h_k(n) = minimum \# of k$ -holes among all sets of n points

•
$$h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$$

 $h_k(n) = \text{minimum } \# \text{ of } k\text{-holes among all sets of } n \text{ points}$

- $h_5(n) \ge \lfloor \frac{1}{10}n \rfloor = \Omega(n)$
- same idea: $h_6(n) \ge \Omega(n)$

• $h_3(n)$ and $h_4(n)$ quadratic

Bárány and Füredi '87, Bárány and Valtr '04

- $h_3(n)$ and $h_4(n)$ quadratic
- $h_5(n) = \Omega(n \log^{4/5} n)$ and $h_6(n) = \Omega(n)$ Gerken '08, Nicolás '07

Aichholzer, Balko, Hackl, Kynl, Parada, S., Valtr, and Vogtenhuber '17

- $h_3(n)$ and $h_4(n)$ quadratic
- $h_5(n) = \Omega(n \log^{4/5} n)$ and $h_6(n) = \Omega(n)$
- $h_k(n) = 0$ for $k \ge 7$ Horton '83

- $h_3(n)$ and $h_4(n)$ quadratic
- $h_5(n) = \Omega(n \log^{4/5} n)$ and $h_6(n) = \Omega(n)$
- $h_k(n) = 0$ for $k \ge 7$
- $h_k(n)$ determined for small values of n

Harborth '78 Dehnhart '87 Bachelor's thesis (S'13)

Hosono and Urabe '01:

What is the smallest number $h(k_1, k_2)$ such that every set of $h(k_1, k_2)$ points determines a k_1 -hole and a k_2 -hole, that are disjoint?

Hosono and Urabe '01:

What is the smallest number $h(k_1, k_2)$ such that every set of $h(k_1, k_2)$ points determines a k_1 -hole and a k_2 -hole, that are disjoint?

Hosono-Urabe ('01, '05, '08)

	2	3	4	5
2	4	5	6	10
3		6	7	10
4			9	12
5				1720

Minimum number $h(k_1,k_2)$ of points such that disjoint k_1 - and k_2 -holes exist

Hosono-Urabe ('01, '05, '08)

Minimum number $h(k_1, k_2)$ of points such that disjoint k_1 - and k_2 -holes exist

Hosono-Urabe ('01, '05, '08)

Minimum number $h(k_1, k_2)$ of points such that disjoint k_1 - and k_2 -holes exist

Theorem: h(5,5) = 17.

Hosono-Urabe ('01, '05, '08)

	2	3	4	5	
2	4	5	6	10	-
3		6	7	10	
4			9	12	NEW
5				(17*)	2-parametric
				_	2

You-Wei '15

	2	3	4	
2	8	9	11	
3		10	12	
4			14	
$h(k_1,k_2,4)$				

	2	3	4	5 3-parametric	
2	10	11	1114		
3		12	1314	1719* 1723*	
4			1517	1723*	
5				22*27*	
$h(k_1,k_2,5)$					

Bárány-Károlyi '01 and Hosono-Urabe ('01, '08)

 $F_k(n)$... min. # of disjoint k-holes in n points

$$F_k(n) = \lfloor n/k \rfloor \quad \text{ for } k=1,2,3$$

$$3n/13 + o(n) \leq F_4(n) < n/4$$

$$\text{NEW} - \lfloor 2n/17 \rfloor \leq F_5(n) < n/6$$

$$\lfloor n/h(6) \rfloor \leq F_6(n) < n/12$$

$$F_k(n) = 0 \quad \text{ for } k \geq 7.$$

Variant: also interior-disjoint holes have been studied

Devillers et al. 2003 Sakai-Urrutia 2007 Cano et al. 2015 Biniaz-Maheshwari-Smid 2017 Hosono-Urabe 2018

		3	4	5	
_	3	4	5	10	_
	4		7	10	N1 - \//
	5			15*	▲ NEW

. . .

• variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": chiritope/signotope axioms

Grassmann-Plücker relations for r-dim. vectors (we have r=3):

$$\det(x_1, ..., x_r) \cdot \det(y_1, ..., y_r) = \sum_{i=1}^r \det(y_i, x_2, ..., x_r) \cdot \det(y_1, ..., y_{i-1}, x_1, y_{i+1}, ..., y_r)$$

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": <u>chiritope/signotope</u> axioms

Grassmann-Plücker relations:

$$\det(x_1, \dots, x_r) \cdot \det(y_1, \dots, y_r) = \sum_{i=1}^r \det(y_i, x_2, \dots, x_r) \cdot \det(y_1, \dots, y_{i-1}, x_1, y_{i+1}, \dots, y_r)$$

exchange axioms:

if
$$\chi_{y_i, x_2, ..., x_r} \cdot \chi_{y_1, ..., y_{i-1}, x_1, y_{i+1}, ..., y_r} \ge 0$$
 for every i , then $\chi_{x_1, ..., x_r} \cdot \chi_{y_1, ..., y_r} \ge 0$

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": chiritope/signotope axioms
 - alternating axioms: $\Theta(n^3)$ many $\chi_{x_{\pi(1)},x_{\pi(2)},x_{\pi(3)}}=\operatorname{sgn}(\pi)\cdot\chi_{x_1,x_2,x_3}$
 - exchange axioms: $\Theta(n^6) \text{ many}$ if $\chi_{y_i,x_2,...,x_r} \cdot \chi_{y_1,...,y_{i-1},x_1,y_{i+1},...,y_r} \geq 0$ for every i, then $\chi_{x_1,...,x_r} \cdot \chi_{y_1,...,y_r} \geq 0$

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": <u>chiritope/signotope</u> axioms
 - alternating axioms:

$$\Theta(n^3)$$
 many

$$\gamma_{r} = \operatorname{sgn}(\pi) \cdot \gamma_{r} = \operatorname{sgn}(\pi) \cdot \gamma_{r} = r_{r}$$

necessary conditions but not sufficient (stretchability!)

exchange axioms.

$$O(n)$$
 many

if
$$\chi_{y_i, x_2, ..., x_r} \cdot \chi_{y_1, ..., y_{i-1}, x_1, y_{i+1}, ..., y_r} \ge 0$$
 for every i , then $\chi_{x_1, ..., x_r} \cdot \chi_{y_1, ..., y_r} \ge 0$

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": chiritope/signotope axioms

Felsner-Weil '01, Balko-Fulek-Kynčl '15:

• signotope axioms: for i < j < k < l, $\Theta(n^4)$ many the sequence $\chi_{ijk}, \chi_{ijl}, \chi_{ikl}, \chi_{jkl}$ (lex. order) changes sign at most once

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": chiritope/signotope axioms
- crossings (two crossing edges = 4-gon),
 otherwise containment (point-in-triangle)

$$\chi_{abc} \neq \chi_{abd}$$
 and $\chi_{cda} \neq \chi_{cdb}$

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": chiritope/signotope axioms
- crossings (two crossing edges = 4-gon),
 otherwise containment (point-in-triangle)
- k-gons and k-holes (Carathéodory: every 4-tuple in k-gon is in convex positon)

- variables for *triple-orientations*: $\chi_{abc} \in \{+, -\}$
- axiomatize "point set": chiritope/signotope axioms
- crossings (two crossing edges = 4-gon),
 otherwise containment (point-in-triangle)
- k-gons and k-holes
- disjointness also via triple-orientations

Crucial Elements

• Lemma: Let $S = \{s_1, \ldots, s_n\}$, s_1 extremal, and s_2, \ldots, s_n sorted around s_1 .

There exists \tilde{S} of the same order type as S (in particular, sorted around first point) with increasing x-coordinates. w.l.o.g.

• Harborth's result: Any 10 consecutive points give 5-hole

SAT Model Modifications

Interior-disjoint Holes

Classical Erdős–Szekeres:

g(6) = 17 in about 1 hour

• Counting 5-holes:

variables $X_{abcde;k}$ indicates whether $a < \ldots < e$ form the k-th 5-hole in lexicographic order

(Un)Satisfiablity and SAT-Solvers

- Given Boolean formula, is there an assignment such that the formula is true?
- NP-complete, but quite good heuristics
- we used the SAT-solvers glucose and picosat
- Satisfiability efficiently verifiable (check solution)
- UNSAT certificates (e.g. DRAT, tool DRAT-trim)

A Python/Pycosat Example

```
$ ipython
Python 2.7.15
In [1]: import pycosat (x_1 \lor x_2 \lor x_3)
In [2]: CNF = [[1,2,3],[-1,-2,-3]] (\neg x_1 \lor \neg x_2 \lor \neg x_3)
In [3]: for sol in pycosat.itersolve(CNF): print sol
[-1, -2, 3]
[-1, 2, -3]
[-1, 2, 3]
[1, 2, -3]
[1, -2, 3]
[1, -2, -3]
```


