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Definitions

pseudocircle . . . simple closed curve

arrangement . . . collection of pcs. s.t. intersection of any
two pcs. either empty or 2 points where curves cross
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Definitions

simple . . . no 3 pcs. intersect in common point

connected . . . intersection graph is connected

assumptions
throughout
presentation

Krupp NonKrupp 3-Chain

circularizable . . . ∃ isomorphic arrangement of circles
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Classes of Arrangements

cylindrical . . . ∃ two cells separated by each of the pcs.

intersecting . . . any 2 pseudocircles cross twice

connected . . . graph of arrangement is connected

arr. of great-pseudocircles . . . any 3 pcs. form a Krupp

digon-free . . . no cell bounded by two pcs.
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Enumeration of Arrangements

n 3 4 5 6 7

connected 3 21 984 609 423 ?

+digon-free 1 3 30 4 509 ?

intersecting 2 8 278 145 058 447 905 202

+digon-free 1 2 14 2 131 3 012 972

great-p.c.s 1 1 1 4 11

Table: # of combinatorially different arragements of n pcs.
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Circularizability Results

• non-circularizability of intersecting n = 6 arrangement
[Edelsbrunner and Ramos ’97]
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Circularizability Results

• non-circularizability of intersecting n = 6 arrangement
[Edelsbrunner and Ramos ’97]

• non-circularizability of n = 5 arrangement
[Linhart and Ortner ’05]

• circularizability of all n = 4 arrangements
[Kang and Müller ’14]

• NP-hardness of circularizability [Kang and Müller ’14]
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Noncircularizability of N 1
5

d

b

a

c

• assume there is a circle representation of N 1
5

• shrink the yellow, green, and red circle

• cyclic order is preserved (also for blue)

• blue and black: 4 crossings – contradiction

cannot exist!

Inzidenceth.
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Circularizability Results

Theorem. There are exactly 3 non-circularizable digon-free

intersecting n = 6 arrangements (2131 classes).

N△
6 is unique digon-free intersecting

with 8 triangular cells

Grünbaum Conjecture: p3 ≥ 2n− 4

non-circularizability proof based on
sweeping argument in 3-D
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle

representation) if and only if it has a great-circle repr.
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Proof.
C1, . . . , Cn . . . circles on sphere realizing the arrangement

E1, . . . , En . . . planes spanned by C1, . . . , Cn

for t ≥ 1, sweep Ei to
1
tEi (towards origin)

all triples are Krupp, thus intersections remain inside
sphere during sweep, thus no flip

as t → ∞, we obtain great-circle arrangement
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Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle

representation) if and only if it has a great-circle repr.

Corollaries:

• ∃ circularizable arr. of pseudocircles with a disconnected
realization space

• Deciding circularizability is ∃R-complete

• Every non-stretchable arr. of pseudolines has a
corresponding non-circularizable arr. of pseudocircles
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Non-Circularizability Proofs of N△
6

C1, . . . , C6 . . . circles

E1, . . . , E6 . . . planes

for t ≥ 1, sweep Ei to t · Ei (to ∞)

No greatcircle arr., thus events occur

Proof.
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Non-Circularizability Proofs of N△
6

C1, . . . , C6 . . . circles

E1, . . . , E6 . . . planes

for t ≥ 1, sweep Ei to t · Ei (to ∞)

first event is triangle flip (no digons)

but triangle flip not possible as all
triangles in NonKrupp

No greatcircle arr., thus events occur

Proof.
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Computational Part

• intersecting arrangements encoded via dual graph

• connected arrangements encoded via primal-dual graph

arrangement primal-dual gr. primal graph dual graph
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Computational Part

• enumeration via recursive search on flip graph

△-flip

digon-flip
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Computational Part

• circle representations heuristically

• hard instances by hand
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Thank you for your attention!


