Arrangements of Pseudocircles: On Circularizability

Stefan Felsner and Manfred Scheucher

Definitions

pseudocircle . . . simple closed curve

arrangement . . collection of pcs. s.t. intersection of any two pcs. either empty or 2 points where curves cross

Definitions

simple ... no 3 pcs. intersect in common point connected ... intersection graph is connected

Definitions

simple ...no 3 pcs. intersect in common point connected . . . intersection graph is connected

Definitions

simple ... no 3 pcs. intersect in common point connected ... intersection graph is connected

assumptions throughout presentation

Krupp

NonKrupp

3-Chain

Definitions

simple ... no 3 pcs. intersect in common point connected ... intersection graph is connected assumptions
throughout
presentation
circularizable $\ldots \exists$ isomorphic arrangement of circles

Krupp

NonKrupp

3-Chain

Classes of Arrangements

connected ...graph of arrangement is connected \uparrow
intersecting ... any 2 pseudocircles cross twice

Classes of Arrangements

connected ... graph of arrangement is connected
\square
intersecting ... any 2 pseudocircles cross twice
\uparrow
arr. of great-pseudocircles ... any 3 pcs. form a Krupp

Classes of Arrangements

connected ...graph of arrangement is connected

intersecting ... any 2 pseudocircles cross twice
\uparrow
arr. of great-pseudocircles ... any 3 pcs. form a Krupp
\square
digon-free ... no cell bounded by two pcs.

Classes of Arrangements

connected ... graph of arrangement is connected

intersecting ... any 2 pseudocircles cross twice

arr. of great-pseudocircles ... any 3 pcs. form a Krupp

digon-free ... no cell bounded by two pcs.
cylindrical ... \exists two cells separated by each of the pcs.

Enumeration of Arrangements

n	3	4	5	6	7
connected	3	21	984	609423	$?$
+ digon-free	1	3	30	4509	$?$
intersecting	2	8	278	145058	447905202
+ digon-free	1	2	14	2131	3012972
great-p.c.s	1	1	1	4	11

Table: \# of combinatorially different arragements of n pcs.

Circularizability Results

- non-circularizability of intersecting $n=6$ arrangement [Edelsbrunner and Ramos '97]

Circularizability Results

- non-circularizability of intersecting $n=6$ arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of $n=5$ arrangement [Linhart and Ortner '05]

Circularizability Results

- non-circularizability of intersecting $n=6$ arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of $n=5$ arrangement [Linhart and Ortner '05]
- circularizability of all $n=4$ arrangements [Kang and Müller '14]

Circularizability Results

- non-circularizability of intersecting $n=6$ arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of $n=5$ arrangement [Linhart and Ortner '05]
- circularizability of all $n=4$ arrangements [Kang and Müller '14]
- NP-hardness of circularizability [Kang and Müller '14]

Circularizability Results

Theorem. There are exactly 4 non-circularizable $n=5$ arrangements (984 classes).

Circularizability Results

Theorem. There are exactly 4 non-circularizable $n=5$ arrangements (984 classes).

Noncircularizability of \mathcal{N}_{5}^{1}

Noncircularizability of \mathcal{N}_{5}^{1}

- assume there is a circle representation of \mathcal{N}_{5}^{1}
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

Noncircularizability of \mathcal{N}_{5}^{1}

- assume there is a circle representation of \mathcal{N}_{5}^{1}
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

Noncircularizability of \mathcal{N}_{5}^{1}

- assume there is a circle representation of \mathcal{N}_{5}^{1}
- shrink the yellow, green, and red circle cannot exist!
- cyclic order is preserved (also for blue)

Inzidenceth.

- blue and black: 4 crossings - contradiction

Circularizability Results

Theorem. There are exactly 3 non-circularizable digon-free intersecting $n=6$ arrangements (2131 classes).

Circularizability Results

Theorem. There are exactly 3 non-circularizable digon-free intersecting $n=6$ arrangements (2131 classes).

$\mathcal{N}_{6}^{\triangle}$ is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture: $p_{3} \geq 2 n-4$

Circularizability Results

Theorem. There are exactly 3 non-circularizable digon-free intersecting $n=6$ arrangements (2131 classes).

$\mathcal{N}_{6} \triangle$ is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture: $p_{3} \geq 2 n-4$
non-circularizability proof based on sweeping argument in 3-D

Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Great-(Pseudo)Circles

Great-Circle Theorem:
An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Proof.

$C_{1}, \ldots, C_{n} \ldots$ circles on sphere realizing the arrangement $E_{1}, \ldots, E_{n} \ldots$ planes spanned by C_{1}, \ldots, C_{n} for $t \geq 1$, sweep E_{i} to $\frac{1}{t} E_{i}$ (towards origin)

Great-(Pseudo)Circles

Great-Circle Theorem:
An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Proof.

$C_{1}, \ldots, C_{n} \ldots$ circles on sphere realizing the arrangement
$E_{1}, \ldots, E_{n} \ldots$ planes spanned by C_{1}, \ldots, C_{n}
for $t \geq 1$, sweep E_{i} to $\frac{1}{t} E_{i}$ (towards origin)
all triples are Krupp, thus intersections remain inside sphere during sweep, thus no flip
as $t \rightarrow \infty$, we obtain great-circle arrangement

Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles

Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles
- Deciding circularizability is $\exists \mathbb{R}$-complete

Great-(Pseudo)Circles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles
- Deciding circularizability is $\exists \mathbb{R}$-complete
- \exists circularizable arr. of pseudocircles with a disconnected realization space

Non-Circularizability Proofs of $\mathcal{N}_{6}^{\triangle}$

Proof.

$C_{1}, \ldots, C_{6} \ldots$ circles
$E_{1}, \ldots, E_{6} \ldots$ planes
for $t \geq 1$, sweep E_{i} to $t \cdot E_{i}$ (to ∞)
No greatcircle arr., thus events occur

Non-Circularizability Proofs of $\mathcal{N}_{6}^{\triangle}$

Proof.

$C_{1}, \ldots, C_{6} \ldots$ circles
$E_{1}, \ldots, E_{6} \ldots$ planes
for $t \geq 1$, sweep E_{i} to $t \cdot E_{i}$ (to ∞)
No greatcircle arr., thus events occur
first event is triangle flip (no digons)
but triangle flip not possible as all triangles in NonKrupp

Computational Part

- connected arrangements encoded via primal-dual graph
- intersecting arrangements encoded via dual graph

arrangement

primal-dual gr.

primal graph dual graph

Computational Part

- enumeration via recursive search on flip graph

Computational Part

- circle representations heuristically
- hard instances by hand

Thank you for your attention!

