

Arrangements of Pseudocircles: On Circularizability

Stefan Felsner and Manfred Scheucher

pseudocircle ... simple closed curve

arrangement ... collection of pcs. s.t. intersection of any two pcs. either empty or 2 points where curves cross

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

Krupp

NonKrupp

simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

circularizable ... ∃ isomorphic arrangement of circles

connected ... graph of arrangement is connected *intersecting* ... any 2 pseudocircles cross twice

connected ... graph of arrangement is connected *intersecting* ... any 2 pseudocircles cross twice *arr. of great-pseudocircles* ... any 3 pcs. form a Krupp

connected ... graph of arrangement is connected *intersecting* ... any 2 pseudocircles cross twice arr. of great-pseudocircles ... any 3 pcs. form a Krupp *digon-free* ... no cell bounded by two pcs.

Enumeration of Arrangements

<i>n</i>	3	4	5	6	7
connected	3	21	984	609 423	?
+digon-free	1	3	30	4 509	?
intersecting	2	8	278	145 058	447 905 202
+digon-free	1	2	14	2 131	3 012 972
great-p.c.s	1	1	1	4	11

Table: # of combinatorially different arragements of n pcs.

• non-circularizability of intersecting n = 6 arrangement [Edelsbrunner and Ramos '97]

- non-circularizability of intersecting n = 6 arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of n = 5 arrangement [Linhart and Ortner '05]

- non-circularizability of intersecting n = 6 arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of n = 5 arrangement [Linhart and Ortner '05]
- circularizability of all n = 4 arrangements [Kang and Müller '14]

- non-circularizability of intersecting n = 6 arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of n = 5 arrangement [Linhart and Ortner '05]
- circularizability of all n = 4 arrangements [Kang and Müller '14]
- NP-hardness of circularizability [Kang and Müller '14]

Theorem. There are exactly 4 non-circularizable n = 5 arrangements (984 classes).

Theorem. There are exactly 4 non-circularizable n = 5 arrangements (984 classes).

- assume there is a circle representation of \mathcal{N}_5^1
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

- assume there is a circle representation of \mathcal{N}_5^1
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

- assume there is a circle representation of \mathcal{N}_5^1
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)

blue and black: 4 crossings – contradiction

cannot exist!

Theorem. There are exactly 3 non-circularizable digon-free intersecting n = 6 arrangements (2131 classes).

Theorem. There are exactly 3 non-circularizable digon-free intersecting n = 6 arrangements (2131 classes).

 $\mathcal{N}_6^{\triangle}$ is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture: $p_3 \ge 2n - 4$

Theorem. There are exactly 3 non-circularizable digon-free intersecting n = 6 arrangements (2131 classes).

 \mathcal{N}_6^{Δ} is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture: $p_3 \ge 2n - 4$

non-circularizability proof based on sweeping argument in 3-D

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Proof.

 $C_1, \ldots, C_n \ldots$ circles on sphere realizing the arrangement $E_1, \ldots, E_n \ldots$ planes spanned by C_1, \ldots, C_n for $t \ge 1$, sweep E_i to $\frac{1}{t}E_i$ (towards origin)

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Proof.

 $C_1, \ldots, C_n \ldots$ circles on sphere realizing the arrangement $E_1, \ldots, E_n \ldots$ planes spanned by C_1, \ldots, C_n for $t \ge 1$, sweep E_i to $\frac{1}{t}E_i$ (towards origin) all triples are Krupp, thus intersections remain inside sphere during sweep, thus no flip

as $t \to \infty$, we obtain great-circle arrangement

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

• Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles
- Deciding circularizability is ∃ℝ-complete

Great-Circle Theorem:

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

Corollaries:

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles
- Deciding circularizability is ∃ℝ-complete
- ∃ circularizable arr. of pseudocircles with a disconnected realization space

Non-Circularizability Proofs of $\mathcal{N}_6^{ riangle}$

Proof. $C_1, \ldots, C_6 \ldots$ circles $E_1, \ldots, E_6 \ldots$ planes for $t \ge 1$, sweep E_i to $t \cdot E_i$ (to ∞) No greatcircle arr., thus events occur Non-Circularizability Proofs of $\mathcal{N}_6^{ riangle}$

Proof.

 $C_1,\ldots,C_6\ldots$ circles

 $E_1,\ldots,E_6\ldots$ planes

for $t \geq 1$, sweep E_i to $t \cdot E_i$ (to ∞)

No greatcircle arr., thus events occur

first event is triangle flip (no digons)

but triangle flip not possible as all triangles in NonKrupp

Computational Part

- connected arrangements encoded via primal-dual graph
- intersecting arrangements encoded via dual graph

Computational Part

• enumeration via recursive search on flip graph

Computational Part

- circle representations heuristically
- hard instances by hand

Thank you for your attention!