

EuroCG 2022 Perugia

ARRANGEMENTS OF PSEUDOCIRCLES: ON DIGONS AND TRIANGLES

Stefan Felsner, Sandro Roch, Manfred Scheucher

Pseudocircle arrangements

Example:

Pseudocircle arrangements

Example:

Each two pseudocircles...

Pseudocircle arrangements

Example:

Each two pseudocircles...

Or or

...either cross exactly twice, ...

...have a single touching

No intersection of ≥ 3 pseudocircles in single point

Conjecture: In every pseudocircle arrangement, there are at most 2n-2 digons. (Grünbaum, 1972)

Conjecture: In every pseudocircle arrangement, there are at most 2n-2 digons. (Grünbaum, 1972)

Conjecture: In every pseudocircle arrangement, there are at most 2n-2 digons. (Grünbaum, 1972)

Equivalent: At most 2n-2 touchings.

Cylindrical pseudocircle arrangement:

Exist two cells separated by each pseudocircle

Cylindrical pseudocircle arrangement:

Exist two cells separated by each pseudocircle

Cylindrical pseudocircle arrangement:

Exist two cells separated by each pseudocircle

Agarwal et al. (2004):

- ullet Cylindrical case: At most 2n-2 touchings
- General case: At most O(n) touchings

Theorem (Felsner, R., Scheucher)

If three pseudocircles pairwise touch, then the arrangement has at most 2n-2 touchings.

Main idea: Reduction to cylindrical case

Step 1: Transformation of the inner and outer area

Concentrate intersections between same type in small areas

Step 2: Make arrangement cylindrical

At most 2n-2 touchings.

Conjecture (Grünbaum 1972): Arrangements without digons and touchings have $p_3 \ge 2n - 4$ triangles.

Conjecture (Grünbaum 1972): Arrangements without digons and touchings have $p_3 \ge 2n - 4$ triangles.

- Snoeyink and Hershberger (1991): $p_3 \ge \frac{4}{3}n$
- Felsner and Scheucher (EuroCG 2017): Examples with $p_3 < \frac{16}{11}n$, Grünbaum's conjecture disproved
- Felsner, R., Scheucher (2022): **Theorem:** For $n \ge 6$ there exist examples with $p_3 = \lceil \frac{4}{3}n \rceil$.

Replace iteratively blue pseudocircle by 4 twisted pseudocircles:

Each iteration increases n by 3 and p_3 by 4.

Questions?

Theorem 1: If three pseudocircles pairwise touch, then the pseudocircle arrangement has at most 2n-2 touchings.

Theorem 2: There exist digon and touching free pseudocircle arrangements with $p_3 = \lceil \frac{4}{3}n \rceil$ triangles.