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Thepractice ofmathematicsinvolves discovering patterns andusing theseto
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conjecture’,a Millennium Prize problent’, Here we prov ideexamplesof new
fundamental resultsinpure mathematicsthat have been discoveredwith the
assistance of machine learning—demonstratinga method by which machine learning
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processof using machinelearningto discover potential patterns and relations
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machine-leam‘mg-guided frameworkand demonstrate its successful application
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problems:anew connection between the algebraic and geometricstructure of
and acandidate algorithm predicredby the combinatorial invariance conject
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Generating structures using reinforcement learning

e Encode instances by fixed length word w over fin. alphabet
Example: Graph on n vertices as w € {0, 1}(3)
e Start with empty word

e |n :-th step:
predictor

(wl, cee L Wi—1,0, ..., O) > probability dist.
=& | for next digit w;

€; —gp
Sample w; randomly!



Generating structures using reinforcement learning

Deep cross-entropy method:
e Generate N > 0 instances

e For each instance: Evaluate score function
Ex.: ,,How close is instance to conjectured bound?”

e For top y percentage of instances:

Training: Fit predictor on pairs
((wl,...,wi_l,O,...,O), 62') —  Cw;

e Keep top x < y percentage of instances
for next iteration(s)



Generating structures using reinforcement learning

Architecture of predictor

e Neural network with three hidden layers:
dense layers with 128 / 64 / 4 nodes
activation function: RelLU

e Output layer: sigmoid (binary case)
e Loss function: Cross entropy

e Optimizer: SGD



Example

M. Aouchiche and P. Hansen, A survey of automated
conjectures in spectral graph theory, 2010:

Conjecture: GG connected graph, n > 3, largest
eigenvalue A1, matching number . Then:

)\1—|—,LLZ\/TL—1—|—1

Apply cross-entropy method:
Fix n, minimize score function A1 + 1



Example

For n = 19, average score after many iterations:

average reward in top 10% sessions
14 7 co--- Conjectured best (v19 -1 + 1)
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Pattern avoiding 0-1-matrices

Definition: 0-1-matrix patterns

The 0-1-matrix A € {0,1}"** contains 0-1-matrix
P € {0, 1}k><l, if there exists a submatrix D € {0, 1}k><l

with P < D.
Otherwise, A avoids P.

Example:

contains




Pattern avoiding 0-1-matrices

o Pr:=[0;i))i; €10,1}"*" permutation matrix of m € S,

e Def: 0-1-matrix M contains (resp. avoids) ™ € S,
if M avoids (resp. contains) P.

e Example: 312-avoiding 0-1-matrices:

e Obs.: P, avoids P, iff m avoids ¢ as permutation pattern.



Permanent in pattern avoiding 0-1-matrices

Motivation: If A € {0,1}"*" avoids 7, then the permanent
per(A) := Z Hai,a(i)
ceS,, 1=1

counts (7-avoiding) permutations S,, contained in A.

Question (Brualdi & Cao, 2020):
Given n € N and 7w € Sk, what is the value of

fr(n) := max {per(A) : A e {0,1}""" A avoids 7T}

Here: Wagner finds bounds on f315.



Permanent in pattern avoiding 0-1-matrices

Using the cross-entropy method, find 312-avoiding matrices

with high permanent:
. = =1 iy ﬁ

per(4;) = per(As) = 2 per(Az) =4 per(As) =8 per(As) = 16

E

.

per(Ajg) = 424 per(Aj) = 795 per(Ajz) = 1484 per(Aiz) = 2809

Breaks conjectured value f312(5) = 12 by Brualdi and Cao!



Permanent in pattern avoiding 0-1-matrices

Theorem:

20.88n S f312(n) S 247’&/4 ~ 21.15n




Proof of lower bound:

Ax B :=

Observation:
e per(A x B) > per(A) - per(B)
o f312(n +m) > fai2(n) - fai2(m)

Idea: Use per(A;3) = 2809 > 29-88'13 and Fekete's Lemma.
[]



Proof of upper bound:

Theorem (Bregman & Minc, 1973):
For A € {0,1}"*™ with row sums 71, ..., 7:

per(A) < [ [(r:h)*/"
1=1

Proposition (Brualdi & Cao, 2020):
At most 4n — 4 one entries in 312-avoiding matrix
M € {0,1}™*™.

Idea: rhs. expression maximized when all r; = 4.



Organization of the seminar

For obtaining 6 LP:

e Read Wagner's paper, understand the method

e Pick a problem and think of an Al-attack:
e Encoding of instances
e Variation of Wagner’'s method

e Send me a short draft of your approach

e Set up the environment, implement your approach
(and modifications of it)

e Give a short presentation in the end of the semester
about the problem, the approach and the result.



Don't avoid questions!




