Finding Domino Tilings with Maximal Monotonic Paths using Wagner's Method

Franklin Liu

TU Berlin

Febuary 2, 2023

Table of Contents

- Problem
 - i) Definitions
 - ii)Theoretical Background
- 2 Implementation of Wagner's Method
 - i) Naive Encoding
 - ii) Alternative Encoding
- 3 Results and Evaluation
 - i) Results with Naive Encoding
 - ii) Results with Alternative Encoding

Problem

Problem

Given $N, M \in \mathbb{N}$ and a $N \times M$ grid, what is the domino tiling that maximizes the number of unique monotonic paths from the top left corner point of the grid to the bottom right corner point.

Definitions

- A **Domino** is a 1×2 (horizontal) or a 2×1 (vertical) tile.
- A **Domino Tiling** is a full covering of a grid using dominos, such that all dominos are within the grid and disjoint.
- A Monotonic Path is a path along the edges of dominos that only traverses the grid rightwards and downwards.

Example of Domino Tiling (N = 4, M = 4)

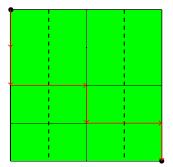


Figure 1: Standard Horizontal tiling with valid path

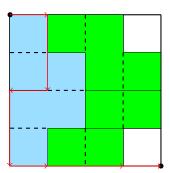


Figure 2: Invalid tiling with invalid path

A few Remarks

Corollary (Existence of Domino Tilings)

A domino tiling exists for a $N \times M$ grid if and only if $N \cdot M$ is even.

Proof.

⇒ : A domino has area 2 and thus a tiling can only cover a grid with even area.

 $\begin{tabular}{ll} \longleftarrow \end{tabular}$: Assume w.l.o.g. N is even, then the standard vertical tiling is a valid tiling.

Remark (Number of Dominos in Tiling)

Every domino tiling consists of $\frac{N \cdot M}{2}$ dominos.

Current Hypothesis for N = M

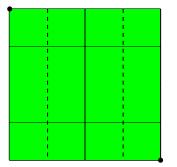


Figure 3: Standard Horizontal tiling

Figure 4: Standard Vertical tiling

Hypothesis

The standard horizontal and vertical tilings have the most montonic paths with $\frac{(\frac{3N}{2})!}{N!(\frac{N}{2})!}$ unique paths.

Known: Number of Domino Tilings in $N \times M$ Grid

Theorem (Kastelyn, 1961)

The number of domino tilings $D_{N,M}$ in a $N \times M$ grid with $N \cdot M \mod 2 = 0$ is given by

$$D_{N,M} = \prod_{j=1}^{\left\lceil\frac{M}{2}\right\rceil} \prod_{k=1}^{N} \left(2\sqrt{\cos^2\frac{\pi j}{M+1} + \cos^2\frac{\pi k}{N+1}}\right).$$

Naive Encoding

Idea

Using the observation that each tiling has $\frac{N \cdot M}{2}$ dominos, encode a tiling with a binary string of length $\frac{N \cdot M}{2}$, where 0 represents a horizontal tile and 1 a vertical tile. Induce a numbering on the grid, which uniquely maps each valid tiling to a binary string.

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Figure 5: Numbering in Grid

Advantages and Disadvantages of Naive Encoding

Pros Cons Only linear space required Mapping from valid domino for encoding and tiling easily tilings to binary string is not constructed from binary surjective, i.e. a lot of binary string. strings do not correspond to a valid tiling. (Big problem for Wagner's Method!) • $D_{N,M} \ll 2^{\frac{N \cdot M}{2}}$ for large $N, M \in \mathbb{N}$

Alternative Encoding (1)

 Domino tilings are equivalent to perfect matchings in an appropriately defined graph.

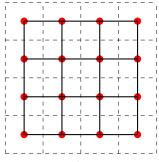


Figure 6: Graph

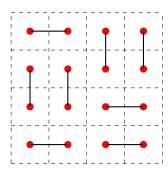


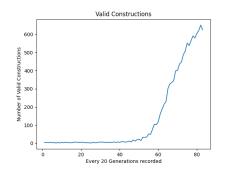
Figure 7: Perfect Matching

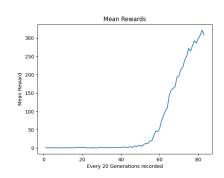
Alternative Encoding (2)

- Give each edge a weight of 1 or -1 and compute a maximum weighted perfect matching.
- Use binary string of length $N \cdot M (N-1) (M-1)$ to encode the weighting for each edge.
- Reward function is the number of unique paths, which can be computed using dynamic programming.

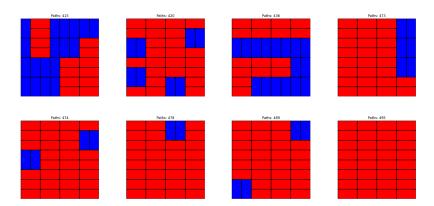
11 / 18

Results with Naive Encoding for N = M = 8

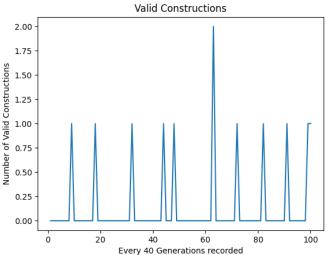




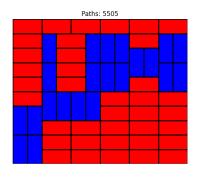
Progression of Constructed Tilings (1)

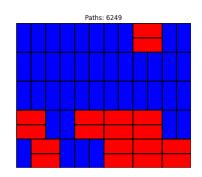


Results with Naive Encoding for N = 10, M = 12

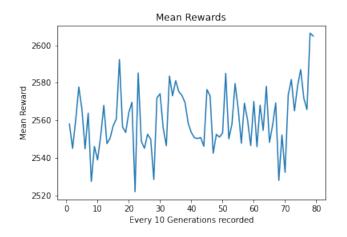


Progression of Constructed Tilings (2)

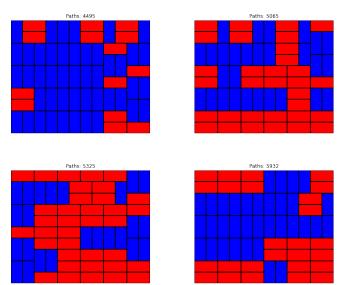




Results with Alternative Encoding for N = 10, M = 12



Progression of Tilings with Alternative Encoding (3)



References

- Wagner, A. Z. (2021, April 29). Constructions in Combinatorics via neural networks. arXiv.org. Retrieved January 26, 2023, from https://arxiv.org/abs/2104.14516
- Borys, K. (2015). Domino Tiling. University of Chicago http://math.uchicago.edu/may/REU2015/REUPapers/Borys.pdf

