

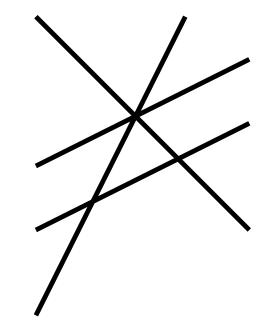
Mittagsseminar 13.01.2023

INTRODUCTION TO HYPERPLANE ARRANGEMENTS

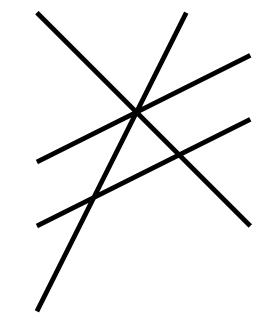
Based on selected topics from (Stanley, 2006)

Talk by Sandro Roch

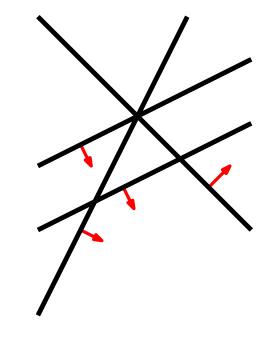
• hyperplane arrangement: finite set of hyperplanes in \mathbb{R}^n



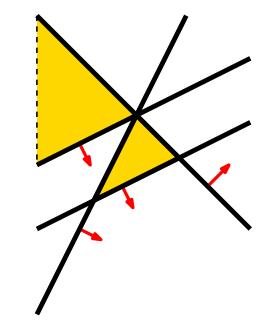
- hyperplane arrangement: finite set of hyperplanes in \mathbb{R}^n
- arrangement \mathscr{A} central, if $\bigcap_{H \in \mathscr{A}} H \neq \emptyset$



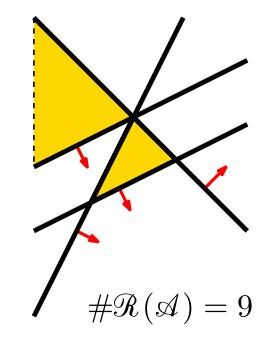
- hyperplane arrangement: finite set of hyperplanes in \mathbb{R}^n
- arrangement \mathscr{A} central, if $\bigcap_{H \in \mathscr{A}} H \neq \emptyset$
- rk(𝔄): dimension spanned by normal vectors



- hyperplane arrangement: finite set of hyperplanes in \mathbb{R}^n
- arrangement \mathscr{A} central, if $\bigcap_{H \in \mathscr{A}} H \neq \emptyset$
- rk(𝔄): dimension spanned by normal vectors
- chamber in \mathscr{A} : max. connected component of $\mathbb{R}^n \bigcup_{H \in \mathscr{A}} H$

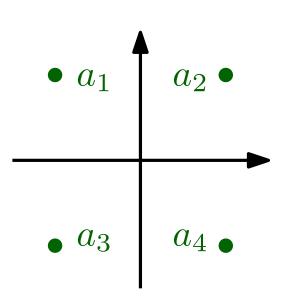


- hyperplane arrangement: finite set of hyperplanes in \mathbb{R}^n
- arrangement \mathscr{A} central, if $\bigcap_{H \in \mathscr{A}} H \neq \emptyset$
- rk(𝔄): dimension spanned by normal vectors
- chamber in \mathscr{A} : max. connected component of $\mathbb{R}^n \bigcup_{H \in \mathscr{A}} H$
- $\mathscr{R}(\mathscr{A})$: set of all chambers in \mathscr{A}



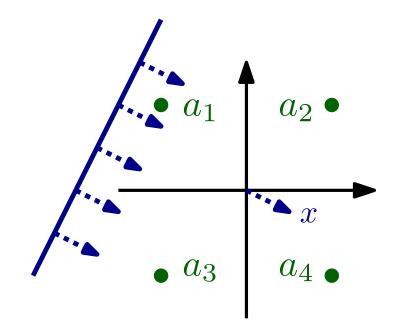
Chambers as sweep orders

Chambers as sweep orders



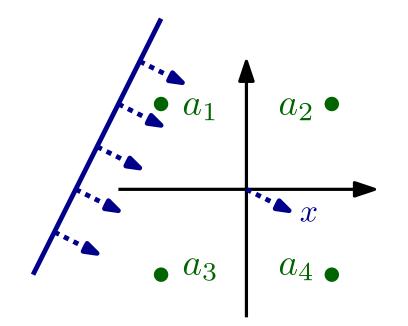
point set $A \subset \mathbb{R}^n$

Chambers as sweep orders



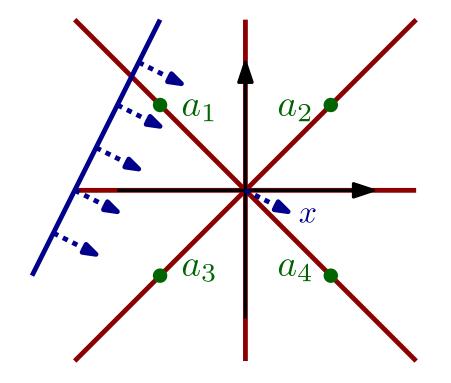
point set $A \subset \mathbb{R}^n$ sweep direction $x \in \mathbb{R}^n$

Chambers as sweep orders



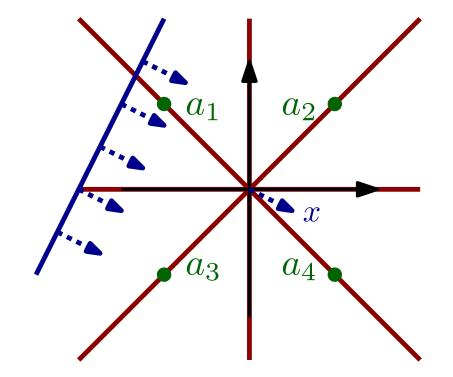
point set $A \subset \mathbb{R}^n$ sweep direction $x \in \mathbb{R}^n$ defines sweep order: $\pi_x = [a_1, a_3, a_2, a_4]$

Chambers as sweep orders



point set $A \subset \mathbb{R}^n$ sweep direction $x \in \mathbb{R}^n$ defines sweep order: $\pi_x = [a_1, a_3, a_2, a_4]$ $\mathscr{A}_A : H_{i,j} = \{(a_i - a_j) \cdot x = 0\}$

Chambers as sweep orders



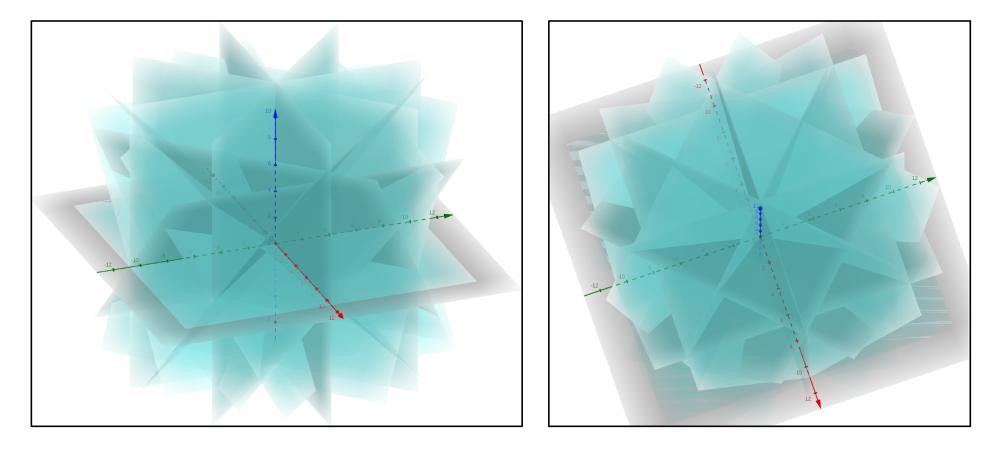
point set $A \subset \mathbb{R}^n$ sweep direction $x \in \mathbb{R}^n$ defines sweep order: $\pi_x = [a_1, a_3, a_2, a_4]$ $\mathscr{A}_A : H_{i,j} = \{(a_i - a_j) \cdot x = 0\}$

Correspondence:

 $\mathscr{R}(\mathscr{A}_A) \longleftrightarrow$ sweep orders of A

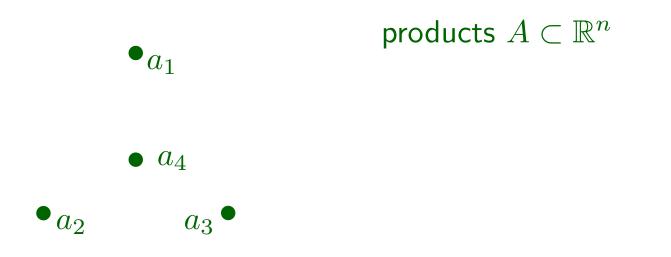
Chambers as sweep orders

Example: sweep arrangement \mathscr{A}_A , where $A = \{-1, 1\}^3$

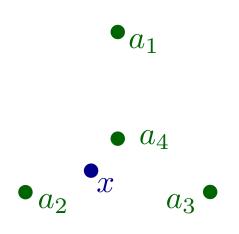


Chambers as preference orders

Chambers as preference orders

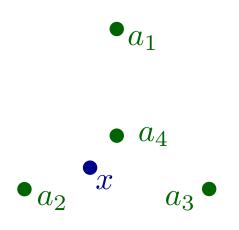


Chambers as preference orders



products $A \subset \mathbb{R}^n$ consumer's ideal product $x \in \mathbb{R}^n$

Chambers as preference orders

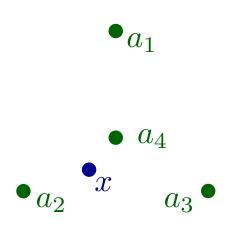


products $A \subset \mathbb{R}^n$

consumer's ideal product $x \in \mathbb{R}^n$

consumer prefers a_i over a_j iff $\|a_i - x\|_2 < \|a_j - x\|_2$

Chambers as preference orders



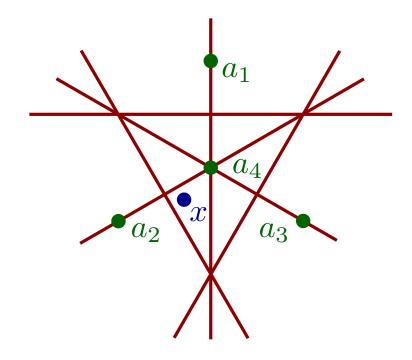
products $A \subset \mathbb{R}^n$

consumer's ideal product $x \in \mathbb{R}^n$

consumer prefers a_i over a_j iff $\|a_i - x\|_2 < \|a_j - x\|_2$

consumer 's pereference order: $\pi_x = [a_4, a_2, a_3, a_1]$

Chambers as preference orders



products $A \subset \mathbb{R}^n$

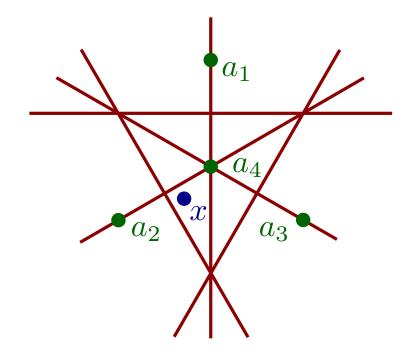
consumer's ideal product $x \in \mathbb{R}^n$

consumer prefers a_i over a_j iff $\|a_i - x\|_2 < \|a_j - x\|_2$

consumer 's pereference order: $\pi_x = [a_4, a_2, a_3, a_1]$

arrangement \mathcal{P}_A : $H_{ij} = \text{perp. bisector of } a_i \text{ and } a_j$

Chambers as preference orders



products $A \subset \mathbb{R}^n$

consumer's ideal product $x \in \mathbb{R}^n$

consumer prefers a_i over a_j iff $\|a_i - x\|_2 < \|a_j - x\|_2$

consumer 's pereference order: $\pi_x = [a_4, a_2, a_3, a_1]$

arrangement \mathcal{P}_A : $H_{ij} = \text{perp. bisector of } a_i \text{ and } a_j$

Correspondence:

 $\mathscr{R}(\mathscr{P}_A) \longleftrightarrow$ preference orders of A

Chambers as acyclic orientations

Chambers as acyclic orientations

• Graph G = (V, E), V = [n]

Chambers as acyclic orientations

- Graph G = (V, E), V = [n]
- Graphical arrangement \mathscr{A}_G consisting of hyperplanes $H_{ij} = \{x \in \mathbb{R}^n : x_i = x_j\}$ f.a. $(i, j) \in E$

Chambers as acyclic orientations

- Graph G = (V, E), V = [n]
- Graphical arrangement \mathscr{A}_G consisting of hyperplanes $H_{ij} = \{x \in \mathbb{R}^n : x_i = x_j\}$ f.a. $(i, j) \in E$
- Correspondence:

 $\mathscr{R}(\mathscr{A}_G) \longleftrightarrow$ acyclic orientations of G

Chambers as acyclic orientations

- Graph G = (V, E), V = [n]
- Graphical arrangement \mathscr{A}_G consisting of hyperplanes $H_{ij} = \{x \in \mathbb{R}^n : x_i = x_j\}$ f.a. $(i, j) \in E$
- Correspondence:

 $\mathscr{R}(\mathscr{A}_G) \longleftrightarrow$ acyclic orientations of G

 $x \in \mathbb{R}^n \longmapsto$ Total order π on V = [n] s.t. $x_{\pi(1)} \leq \cdots \leq x_{\pi(n)}$

induces acyclic orientation of G.

Chambers as interval orders

Chambers as interval orders

 Def.: Partial order P on [n] is called *interval order* of prescribed lengths (l₁, · · · , l_n), if there exist intervals I_i ⊂ ℝ, len(I_i) = l_i, with

 $i < j \iff L_i$ lies entirely to the left of L_j

Chambers as interval orders

 Def.: Partial order P on [n] is called *interval order* of prescribed lengths (l₁, · · · , l_n), if there exist intervals I_i ⊂ ℝ, len(I_i) = l_i, with

 $i < j \iff L_i$ lies entirely to the left of L_j

• Arrangement \mathscr{A}_P consisting of hyperplanes:

$$H_{ij} = \{x \in \mathbb{R}^n : x_i - x_j = l_i\}$$

Chambers as interval orders

 Def.: Partial order P on [n] is called *interval order* of prescribed lengths (l₁, · · · , l_n), if there exist intervals I_i ⊂ ℝ, len(I_i) = l_i, with

 $i < j \iff L_i$ lies entirely to the left of L_j

• Arrangement \mathscr{A}_P consisting of hyperplanes:

$$H_{ij} = \{x \in \mathbb{R}^n : x_i - x_j = l_i\}$$

• Correspondence:

 $\mathscr{R}(\mathscr{A}_P) \longleftrightarrow$ interval orders of presc. lengths (l_1, \cdots, l_r)

Chambers as interval orders

 Def.: Partial order P on [n] is called *interval order* of prescribed lengths (l₁, · · · , l_n), if there exist intervals I_i ⊂ ℝ, len(I_i) = l_i, with

 $i < j \iff L_i$ lies entirely to the left of L_j

• Arrangement \mathscr{A}_P consisting of hyperplanes:

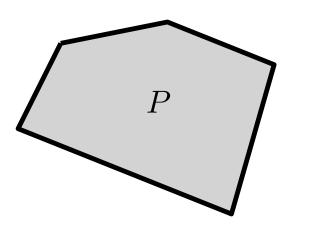
$$H_{ij} = \{x \in \mathbb{R}^n : x_i - x_j = l_i\}$$

• Correspondence:

 $\mathscr{R}(\mathscr{A}_P) \longleftrightarrow$ interval orders of presc. lengths (l_1, \cdots, l_n) $x \in \mathbb{R}^n \longmapsto$ order induced by intervals $I_i = [x_i, x_i + l_i]$ (because then $L_i < L_j \Leftrightarrow x_i - x_j > l_j$)

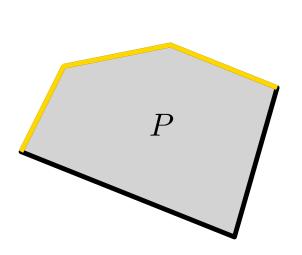
Chambers as facet visibilities

Chambers as facet visibilities



• Polytope $P \subset \mathbb{R}^n$

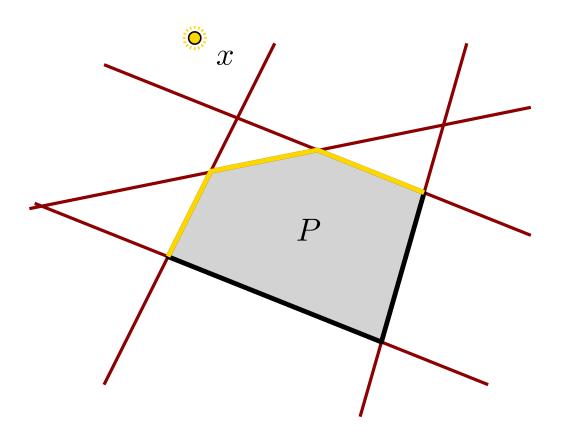
Chambers as facet visibilities



 $\overset{oldsymbol{\otimes}}{=} x$

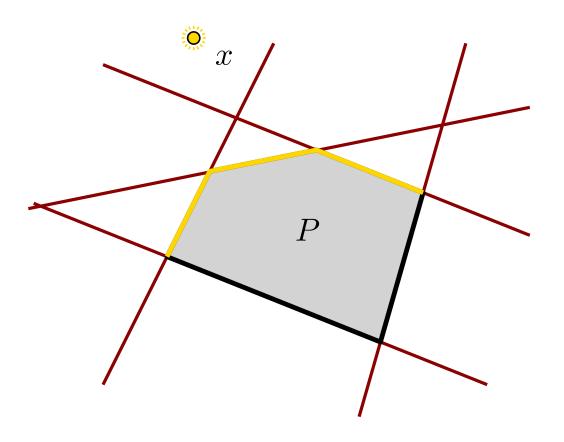
- Polytope $P \subset \mathbb{R}^n$
- Subsets of facets visible from "lamp" $x \in \mathbb{R}^n$

Chambers as facet visibilities



- Polytope $P \subset \mathbb{R}^n$
- Subsets of facets visible from "lamp" $x \in \mathbb{R}^n$
- Visibility arrangement:
 vis(P) := {aff(F) : F facet of P}

Chambers as facet visibilities



- Polytope $P \subset \mathbb{R}^n$
- Subsets of facets visible from "lamp" $x \in \mathbb{R}^n$
- Visibility arrangement:

 $vis(P) := \{aff(F) : F \text{ facet of } P\}$

• Correspondence:

 $\mathscr{R}(\operatorname{vis}(P)) \longleftrightarrow$ possible visibilities of facets of P

• **Def.:** *Intersection poset* of arrangement *A*:

$$L(\mathscr{A}) := \left\{ \bigcap_{H \in I} I \neq \emptyset : I \subseteq \mathscr{A} \right\}$$

- ordered by **reverse** inclusion: $x \leq y \iff y \subseteq x$
- graded by $\operatorname{codim}(x) := n \dim(x)$
- has minimum element $\hat{0} := \mathbb{R}^n$

• **Def.:** *Intersection poset* of arrangement \mathscr{A} :

$$L(\mathscr{A}) := \left\{ \bigcap_{H \in I} I \neq \emptyset : I \subseteq \mathscr{A} \right\}$$

- ordered by reverse inclusion: x ≤ y ⇔ y ⊆ x
 o graded by codim(x) := n dim(x)
- \circ has minimum element $\hat{0} := \mathbb{R}^n$
- If \mathscr{A} central, then
 - $L(\mathscr{A})$ has maximum element $\hat{1} := \cap_{H \in \mathscr{A}} H$.
 - $L(\mathscr{A})$ is a lattice.

• **Def.:** Characteristic polynomial of arrangement \mathscr{A} :

$$\chi_{\mathscr{A}}(t) := \sum_{x \in L(\mathscr{A})} \mu(\hat{0}, x) \ t^{\dim(x)}$$

where $\mu : \{(x, y) : x \leq y\} \rightarrow \mathbb{Z}$ Möbius function:

$$\mu(x,y) := \begin{cases} 1 & \text{if } x = y \\ -\sum_{x < z < y} \mu(x,y) & \text{if } x < y \end{cases}$$

• **Def.:** Characteristic polynomial of arrangement *A*:

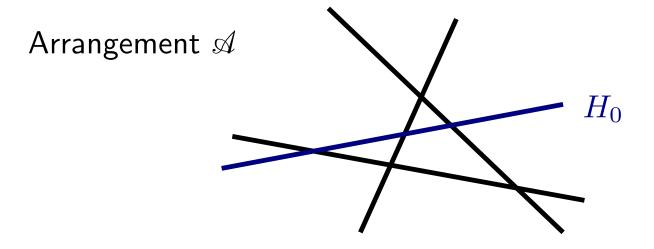
$$\chi_{\mathscr{A}}(t) := \sum_{x \in L(\mathscr{A})} \mu(\hat{0}, x) \ t^{\dim(x)}$$

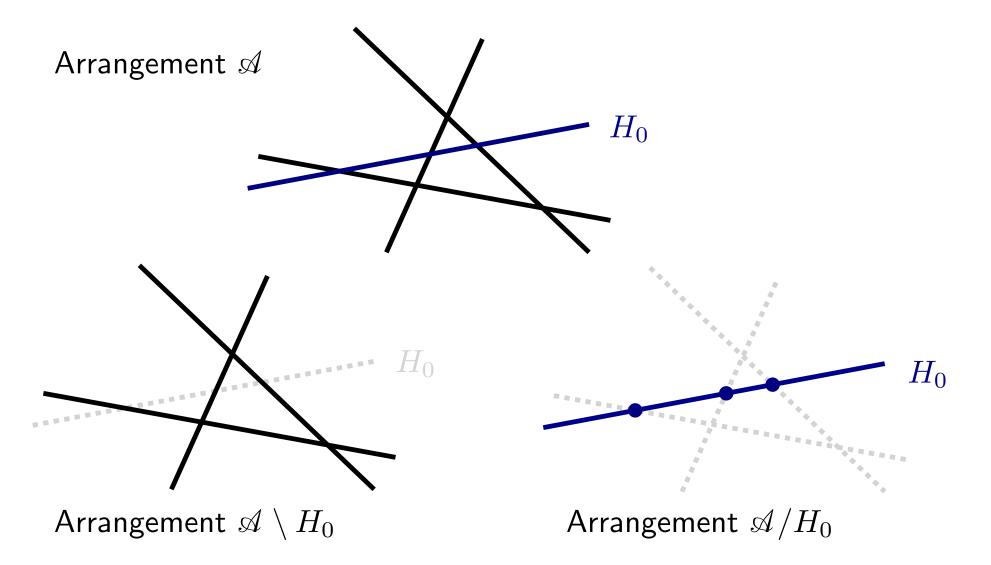
where $\mu : \{(x, y) : x \leq y\} \rightarrow \mathbb{Z}$ Möbius function:

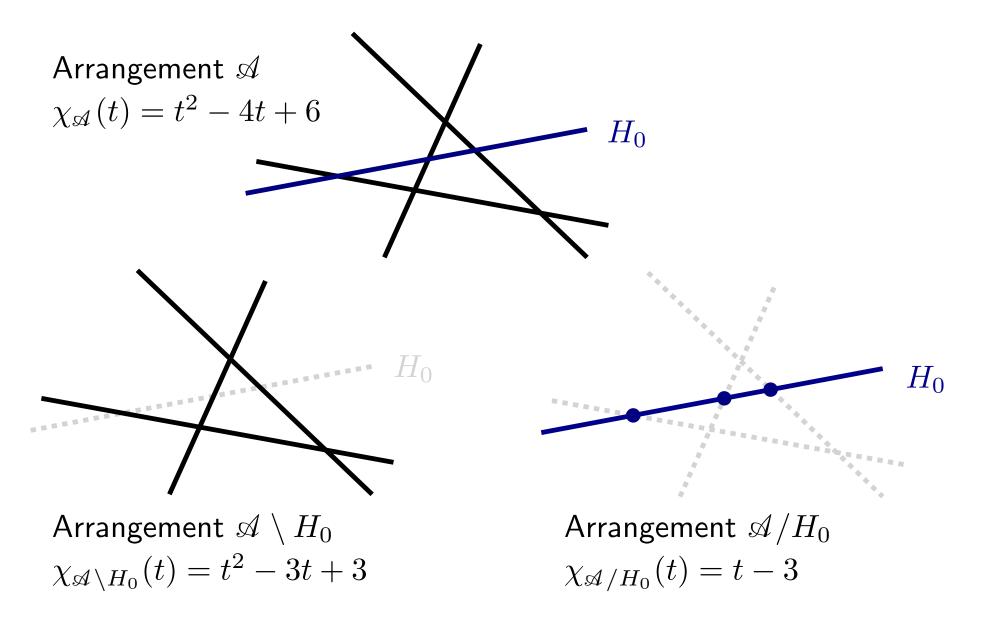
$$\mu(x,y) := \begin{cases} 1 & \text{if } x = y \\ -\sum_{x < z < y} \mu(x,y) & \text{if } x < y \end{cases}$$

Theorem (Whitney)

$$\chi_{\mathscr{A}}(t) = \sum_{\mathscr{B} \subseteq \mathscr{A} \text{ central}} (-1)^{\#\mathscr{B}} t^{n-\operatorname{rank}(\mathscr{B})}$$







Lemma: "Deletion & Restriction"

$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A} / H_0}(t)$$

Lemma: "Deletion & Restriction"

$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A} / H_0}(t)$$

Proof:

Lemma: "Deletion & Restriction"

$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A} / H_0}(t)$$

Proof:

By Whitney's Theorem:

$$\chi_{\mathscr{A}}(t) = \sum_{\substack{\mathscr{B} \subseteq \mathscr{A} \text{ central}}} (-1)^{\#\mathscr{B}} t^{n-\operatorname{rank}(\mathscr{B})}$$
$$= \sum_{\substack{\mathscr{B} \subseteq \mathscr{A} \\ \mathscr{B} \text{ central} \\ H_0 \notin \mathscr{B}}} (-1)^{\#\mathscr{B}} t^{n-\operatorname{rank}(\mathscr{B})} + \sum_{\substack{\mathscr{B} \subseteq \mathscr{A} \\ \mathscr{B} \text{ central} \\ H_0 \in \mathscr{B}}} (-1)^{\#\mathscr{B}} t^{n-\operatorname{rank}(\mathscr{B})}$$

Lemma: "Deletion & Restriction"

$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A} / H_0}(t)$$

Proof:

By Whitney's Theorem:

$$\sum_{\substack{\mathscr{B}\subseteq\mathscr{A}\\\mathscr{B} \text{ central}\\H_0\in\mathscr{B}}} (-1)^{\#\mathscr{B}} t^{n-\mathrm{rank}(\mathscr{B})}$$

$$\mathcal{B} \longmapsto \mathcal{B}' := \mathcal{B}/H_0$$
$$\#\mathcal{B}' = \#\mathcal{B} - 1$$
$$\operatorname{rank}(\mathcal{B}') = \operatorname{rank}(\mathcal{B}) - 1$$

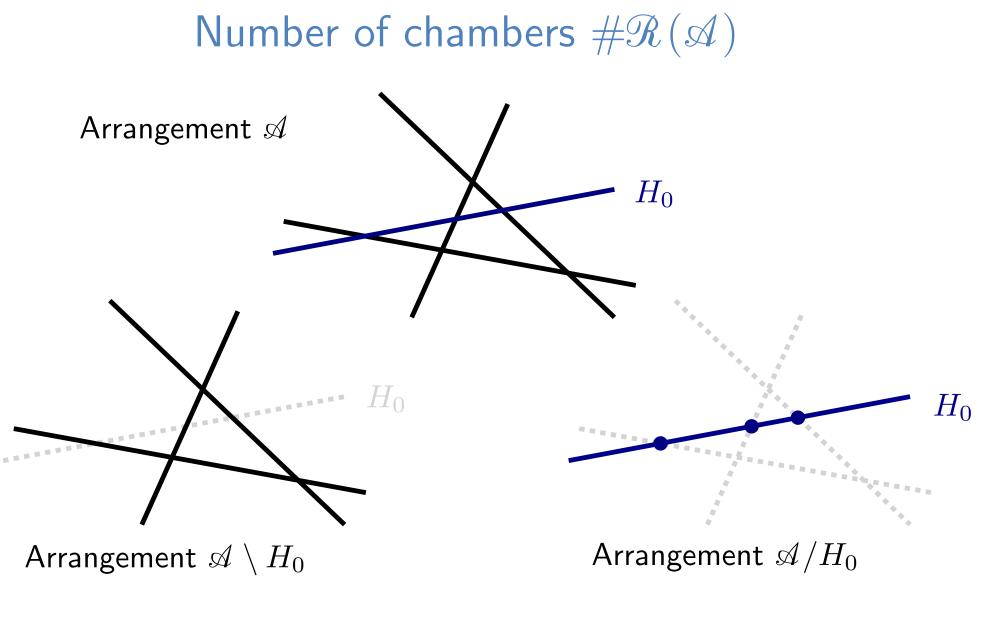
$$\sum_{\substack{\mathscr{B}\subseteq\mathscr{A}\\\mathscr{B} \text{ central}\\H_0\in\mathscr{B}}} (-1)^{\#\mathscr{B}} t^{n-\mathrm{rank}(\mathscr{B})}$$

$$\mathscr{B} \longmapsto \mathscr{B}' := \mathscr{B}/H_0$$
$$\#\mathscr{B}' = \#\mathscr{B} - 1$$
$$\operatorname{rank}(\mathscr{B}') = \operatorname{rank}(\mathscr{B}) - 1$$

$$\sum_{\substack{\mathscr{B} \subseteq \mathscr{A} \\ \mathscr{B} \text{ central} \\ H_0 \in \mathscr{B}}} (-1)^{\#\mathscr{B}} t^{n-\operatorname{rank}(\mathscr{B})} = \sum_{\substack{\mathscr{B}' \subseteq (\mathscr{A}/H_0) \\ \mathscr{B}' \text{ central}}} (-1)^{\#\mathscr{B}'+1} t^{n-1-\operatorname{rank}(\mathscr{B}')}$$

$$\mathcal{B} \longmapsto \mathcal{B}' := \mathcal{B}/H_0 \# \mathcal{B}' = \# \mathcal{B} - 1 \operatorname{rank}(\mathcal{B}') = \operatorname{rank}(\mathcal{B}) - 1$$

$$\sum_{\substack{\mathscr{B} \subseteq \mathscr{A} \\ \mathscr{B} \in \mathfrak{A} \\ H_0 \in \mathscr{B}}} (-1)^{\#\mathscr{B}} t^{n-\operatorname{rank}(\mathscr{B})} = \sum_{\substack{\mathscr{B}' \subseteq (\mathscr{A}/H_0) \\ \mathscr{B}' \text{ central}}} (-1)^{\#\mathscr{B}'+1} t^{n-1-\operatorname{rank}(\mathscr{B}')}$$



Oberservation: $#\mathscr{R}(\mathscr{A}) = #\mathscr{R}(\mathscr{A} \setminus H_0) + #\mathscr{R}(\mathscr{A}/H_0)$

Theorem (Zaslavsky, 1975)

$$#\mathscr{R}(\mathscr{A}) = (-1)^n \chi_{\mathscr{A}}(-1)$$

Theorem (Zaslavsky, 1975) $\# \Re(\mathscr{A}) = (-1)^n \chi_{\mathscr{A}}(-1)$

Proof: By induction using:

•
$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A}/H_0}(t)$$

• $\#\mathscr{R}(\mathscr{A}) = \#\mathscr{R}(\mathscr{A} \setminus H_0) + \#\mathscr{R}(\mathscr{A}/H_0)$

Theorem (Zaslavsky, 1975) $\# \mathscr{R}(\mathscr{A}) = (-1)^n \chi_{\mathscr{A}}(-1)$

Proof: By induction using:

•
$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A}/H_0}(t)$$

• $\#\mathscr{R}(\mathscr{A}) = \#\mathscr{R}(\mathscr{A} \setminus H_0) + \#\mathscr{R}(\mathscr{A}/H_0)$

• Let G = (V, E) graph, χ_G chromatic polynomial

Theorem (Zaslavsky, 1975) $\# \mathscr{R}(\mathscr{A}) = (-1)^n \chi_{\mathscr{A}}(-1)$

Proof: By induction using:

•
$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A}/H_0}(t)$$

• $\#\mathscr{R}(\mathscr{A}) = \#\mathscr{R}(\mathscr{A} \setminus H_0) + \#\mathscr{R}(\mathscr{A}/H_0)$

Let G = (V, E) graph, χ_G chromatic polynomial
 For any edge e ∈ E, χ_G also satisfies recurrence

$$\chi_G(t) = \chi_{G \setminus e}(t) - \chi_{G/e}(t)$$

Theorem (Zaslavsky, 1975) $\# \Re(\mathscr{A}) = (-1)^n \chi_{\mathscr{A}}(-1)$

Proof: By induction using:

•
$$\chi_{\mathscr{A}}(t) = \chi_{\mathscr{A} \setminus H_0}(t) - \chi_{\mathscr{A}/H_0}(t)$$

• $\#\mathscr{R}(\mathscr{A}) = \#\mathscr{R}(\mathscr{A} \setminus H_0) + \#\mathscr{R}(\mathscr{A}/H_0)$

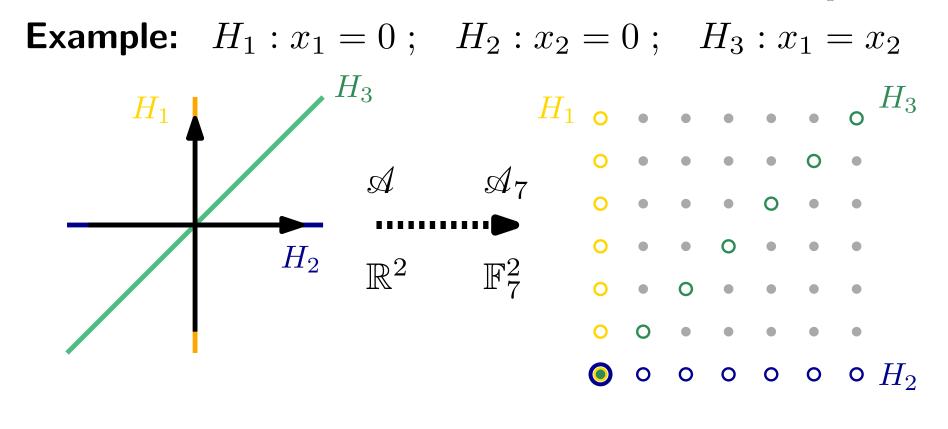
Let G = (V, E) graph, χ_G chromatic polynomial
 For any edge e ∈ E, χ_G also satisfies recurrence
 χ_G(t) = χ_{G\e}(t) + χ_{G/e}(t)

• By induction one also shows: $\chi_{\mathscr{A}_G} = \chi_G$

- Assume: All hyperplanes of \mathscr{A} have integral coefficients
- Let $q = p^r$ prime power
- Take coefficients modulo p

 \implies Yields arrangement \mathscr{A}_q of hyperplanes in \mathbb{F}_q^n

- Assume: All hyperplanes of \mathscr{A} have integral coefficients
- Let $q = p^r$ prime power
- Take coefficients modulo p \implies Yields arrangement \mathscr{A}_q of hyperplanes in \mathbb{F}_q^n



Lemma:

For all but finitely many primes p, $L(\mathscr{A}) \cong L(\mathscr{A}_p)$.

Lemma:

For all but finitely many primes p, $L(\mathscr{A}) \cong L(\mathscr{A}_p)$.

Theorem (Althanasiadis, 1996): "Finite field method"
Let
$$\mathscr{A}$$
 be an arrangement with integral hyperplanes and
let $q = p^r$ be some prime power s.t. $L(\mathscr{A}) \cong L(\mathscr{A}_q)$.
Then:
 $\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathscr{A}} H \right) = q^n - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$

$$\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathscr{A}} H \right) = q^{n} - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$$

$$\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathscr{A}} H \right) = q^{n} - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$$

Example:

• Let G = (V, E) graph, \mathscr{A}_G graphical arrangement, $q = p^r$ prime power s.t. $L(\mathscr{A}_G) \cong L((\mathscr{A}_G)_q)$.

$$\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathscr{A}} H \right) = q^{n} - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$$

Example:

- Let G = (V, E) graph, \mathscr{A}_G graphical arrangement, $q = p^r$ prime power s.t. $L(\mathscr{A}_G) \cong L((\mathscr{A}_G)_q)$.
- Apply finite field method:

 $\chi_{\mathscr{A}_G}(q) = q^n - \#\{x \in \mathbb{F}_q^n : x \in H_{i,j} \text{ for some } (i,j) \in E\}$

$$\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathscr{A}} H \right) = q^{n} - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$$

Example:

- Let G = (V, E) graph, \mathscr{A}_G graphical arrangement, $q = p^r$ prime power s.t. $L(\mathscr{A}_G) \cong L((\mathscr{A}_G)_q)$.
- Apply finite field method:

$$\chi_{\mathscr{A}_G}(q) = q^n - \#\{x \in \mathbb{F}_q^n : x \in H_{i,j} \text{ for some } (i,j) \in E\}$$
$$= q^n - \#\{x \in \mathbb{F}_q^n : x_i = x_j \text{ for some } (i,j) \in E\}$$

$$\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathscr{A}} H \right) = q^{n} - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$$

Example:

- Let G = (V, E) graph, \mathscr{A}_G graphical arrangement, $q = p^r$ prime power s.t. $L(\mathscr{A}_G) \cong L((\mathscr{A}_G)_q)$.
- Apply finite field method:

$$\chi_{\mathscr{A}_G}(q) = q^n - \#\{x \in \mathbb{F}_q^n : x \in H_{i,j} \text{ for some } (i,j) \in E\}$$
$$= q^n - \#\{x \in \mathbb{F}_q^n : x_i = x_j \text{ for some } (i,j) \in E\}$$
$$= \#\{(x_1, \cdots, x_n) \in \mathbb{F}_q^n : x_i \neq x_j \text{ for all } (i,j) \in E\}$$

$$\chi_{\mathscr{A}}(q) = \# \left(\mathbb{F}_{q}^{n} - \bigcup_{H \in \mathscr{A}} H \right) = q^{n} - \# \left(\bigcup_{H \in \mathscr{A}} H \right)$$

Example:

- Let G = (V, E) graph, \mathscr{A}_G graphical arrangement, $q = p^r$ prime power s.t. $L(\mathscr{A}_G) \cong L((\mathscr{A}_G)_q)$.
- Apply finite field method:

$$\chi_{\mathscr{A}_G}(q) = q^n - \#\{x \in \mathbb{F}_q^n : x \in H_{i,j} \text{ for some } (i,j) \in E\}$$
$$= q^n - \#\{x \in \mathbb{F}_q^n : x_i = x_j \text{ for some } (i,j) \in E\}$$
$$= \#\{(x_1, \cdots, x_n) \in \mathbb{F}_q^n : x_i \neq x_j \text{ for all } (i,j) \in E\}$$
$$= \chi_G(q)$$

Proof:

Proof:

Define: $f, g: L(\mathscr{A}_q) \to \mathbb{Z}$ $f(x) := \# x = q^{\dim_{\mathbb{F}_q}(x)}$

$$g(x) := \# \left(x - \bigcup_{y > x} y \right)$$

Proof:

Define: $f, g: L(\mathcal{A}_q) \to \mathbb{Z}$ $f(x) := \#x = q^{\dim_{\mathbb{F}_q}(x)}$ $g(x) := \#\left(x - \bigcup_{y > x} y\right)$ Observe: $f(x) = \sum_{y > x} g(y)$

Proof:

$\begin{array}{lll} \text{Define:} & f,g:L(\mathscr{A}_q)\to\mathbb{Z}\\ & f(x):=\#x=q^{\dim_{\mathbb{F}_q}(x)}\\ & g(x):=\#\left(x-\bigcup_{y>x}y\right)\\ \text{Observe:} & f(x)=\sum_{y\geq x}g(y) \underset{\substack{y>x}{\text{Möbius}}\\ & \text{inversion}} g(x)=\sum_{y\geq x}\mu(x,y)f(y) \end{array}$

Proof: Define: $f, g: L(\mathcal{A}_q) \to \mathbb{Z}$ $f(x) := \#x = q^{\dim_{\mathbb{F}_q}(x)}$ $g(x) := \#\left(x - \bigcup y\right)$ $f(x) = \sum_{y \geq x} g(y) \implies g(x) = \sum_{y \geq x} \mu(x, y) f(y)$ Möbius Observe: inversion Then: $g(\hat{0}) = g(\mathbb{F}_q^n) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathscr{A}_q} H \right)$

Proof: Define: $f, g: L(\mathscr{A}_q) \to \mathbb{Z}$ $f(x) := \#x = q^{\dim_{\mathbb{F}_q}(x)}$ $g(x) := \#\left(x - \bigcup y\right)$ $f(x) = \sum g(y) \implies g(x) = \sum \mu(x, y) f(y)$ Observe: $y \ge x$ $y \ge x$ Möbius inversion Then: $g(\hat{0}) = g(\mathbb{F}_q^n) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathscr{A}_q} H \right)$ $g(\hat{0}) = \sum \mu(\hat{0}, y) f(y)$ $y \in L(\mathcal{A}_a)$

Proof: Define: $f, g: L(\mathcal{A}_q) \to \mathbb{Z}$ $f(x) := \#x = q^{\dim_{\mathbb{F}_q}(x)}$ $g(x) := \#\left(x - \bigcup y\right)$ $f(x) = \sum_{y \geq x} g(y) \quad \Longrightarrow \quad g(x) = \sum_{y \geq x} \mu(x, y) f(y)$ Möbius Observe: inversion $\text{Then:} \quad g(\hat{0}) = g(\mathbb{F}_q^n) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathscr{A}_q} H \right)$ $g(\hat{0}) = \sum \mu(\hat{0}, y) f(y) = \sum \mu(\hat{0}, y) q^{\dim_{\mathbb{F}_q}(y)}$ $y \in L(\mathcal{A}_{a})$ $y \in L(\mathcal{A}_a)$

Proof: Define: $f, g: L(\mathcal{A}_q) \to \mathbb{Z}$ $f(x) := \#x = q^{\dim_{\mathbb{F}_q}(x)}$ $g(x) := \#\left(x - \bigcup y\right)$ $f(x) = \sum_{y \geq x} g(y) \quad \Longrightarrow \quad g(x) = \sum_{y \geq x} \mu(x, y) f(y)$ Möbius Observe: inversion Then: $g(\hat{0}) = g(\mathbb{F}_q^n) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}_q} H \right)$ bec. $L(\mathcal{A}) \cong L(\mathcal{A}_q)$ $g(\hat{0}) = \sum_{h \in \mathcal{A}_q} \mu(\hat{0}, y) f(y) = \sum_{h \in \mathcal{A}_q} \mu(\hat{0}, y) q^{\dim_{\mathbb{F}_q}(y)} \stackrel{\checkmark}{=} \chi_{\mathcal{A}}(q)$ $y \in L(\mathcal{A}_{a})$ $y \in L(\mathcal{A}_{a})$

Questions?

