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Basic notions

hyperplane arrangement:
finite set of hyperplanes in R"

arrangement < central,

if Npgey H # 0

rk(sf): dimension spanned by
normal vectors

chamber in & : max. connected
component of R"® — | ., H

%R (A ): set of all chambers in o
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Chambers as sweep orders

Example: sweep arrangement «f 4, where A = {—1,1}3




Motivation

Chambers as preference orders



Motivation

Chambers as preference orders

products A C R"



Motivation

Chambers as preference orders

products A C R"

consumer's ideal product x € R"



Motivation

Chambers as preference orders

products A C R"

®
consumer's ideal product x € R"
® 4y consumer prefers a; over a; iff
o la; — zll2 < laj — ]|



Motivation

Chambers as preference orders

products A C R"

®
consumer's ideal product x € R"
® 4y consumer prefers a; over a; iff
0 la; — zf]2 < [la; — z|2
® L e
as as

consumer 's pereference order:
Ty = [CL4, az, ag, CLl]



Motivation

Chambers as preference orders

products A C R"

consumer's ideal product x € R"

consumer prefers a; over a; iff
la; — zll2 < laj — ]|

consumer 's pereference order:
Ty — [CL4, az, ag, afl]

arrangement % 4:
H;; = perp. bisector of a; and a;



Motivation

Chambers as preference orders

products A C R"

consumer's ideal product x € R"

consumer prefers a; over a; iff
la; — zll2 < laj — ]|

consumer 's pereference order:
Ty = [CL4, az, ag, afl]

arrangement % 4:
H;; = perp. bisector of a; and a;

Correspondence: R (% 4) «— preference orders of A
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Motivation
Chambers as acyclic orientations

o Graph G = (V, E), V = |n]

e Graphical arrangement 9d consisting of hyperplanes
Hij = {$ c R" :x; = Clﬁj} f.a. (Z,j) c b

e Correspondence:
R(Aqg) <— acyclic orientations of G

r € R" — Total order m on V = [n] s.t.
Tr1) <00 S Trp)

induces acyclic orientation of G.
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Motivation

Chambers as interval orders

o Def.: Partial order P on |n] is called interval order
of prescribed lengths (l1,--- ,l,), if there exist
intervals I; C R, len(/;) = [;, with

1 <j <= L; lies entirely to the left of L
e Arrangement o p consisting of hyperplanes:
Hz’j :{CUERRZCEZ’—ZI}]' :l@}

e Correspondence:
R(Ap) <— interval orders of presc. lengths (I1,--- I,

r € R” —— order induced by intervals I; = [x;, x; + [;]

(because then L; < L; & x; —x; > 1)
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Motivation

Chambers as facet visibilities

@)

X
% e Polytope P C R"

e Subsets of facets visible
from ,lamp” x € R"

e Visibility arrangement:
vis(P) := {aff(F) : F facet of P}

e Correspondence:
%R (vis(P)) «<— possible visibilities of facets of P
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o Def.: Intersection poset of arrangement o :

L(sd):=< (| I#0:1Csd
\Hel y
o ordered by reverse inclusion: r<y<—yCcx

o graded by codim(x) :=n — dim(x)
o has minimum element 0 := R"

o If o central, then

o L(s4) has maximum element 1 := Ny H.
o L(4) is a lattice.
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Characteristic polynomial
e Def.: Characteristic polynomial of arrangement o

Z M tdlm(m)

rxeL(A)

where 1 : {(x,y) : x <y} — Z Mobbius function:

(

1 if x =y

u(z,y) =4 -
\_Zx<z<y /L(CC,y) if v < Y

Theorem (Whitney)

Yot (t) _ Z (_1)#% tn—rank(%)
9B CoA central
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Characteristic polynomial

Arrangement of
Yo (t) = t2 — 4t + 6

Arrangement o \ H)
Xet\H, (t) =t* — 3t +3

Arrangement o /H
Xsﬂ/H()(t) =t—3
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Lemma: “Deletion & Restriction”

Xt (£) = Xog\Ho (t) — Xt / 1, (T)

Proof:
By Whitney's Theorem:
Yot (t) _ Z (_1)#% tn—rank(%)
9B CoA central
_ Z ( 1)#% = rank (98 ) 4+ Z
B CA B CoA
98 central B central
Hog% Hye%

#% $n— rank (%)

~

= Xu\H () Claim:
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Characteristic polynomial

B — B =98 /H
#HPB =H#HPB — 1
rank(%’) = rank(%) — 1

Z (_1)#%tn—rank(%) _ Z (_1)#9}3’4—1 tn—l—rank(%/)
PBCA B'C(A/Hp)
%Hc(:)eg%al \%’ central P
= — Xut/Hy (1)
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Arrangement o

Arrangement o \ H Arrangement o / H

Oberservation: #%R (1) = #R (A \ Hy) + #%R(s4/Hy)
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Theorem (Zaslavsky, 1975)
#R(A) = (=1)" Xt (1)

Proof: By induction using:
® Xat () = Xot\Ho (1) — Xst/H,(t)
o HR(A) = HR(A\ Ho) + #R(sA/Hy)

o Let G = (V, E) graph, xg chromatic polynomial
o For any edge e € E, xg also satisfies recurrence

xa(t) = xa\e(t) + xaye(t)

o By induction one also shows: xu. = Xa
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Finite field method

e Assume: All hyperplanes of ¢/ have integral coefficients
o Let ¢ = p" prime power
e Take coefficients modulo p

— Yields arrangement &, of hyperplanes in F}

Example: H; :21=0; Hy:29=0; H3:x1 =29

Hs OH3
@)
A A~ 5
TTRRTRTRIRT] -
g2 2 .
O

® o o o o o ofH,
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Lemma:
For all but finitely many primes p, L(sd) = L(4,,).

Theorem (Althanasiadis, 1996): “Finite field method”

Let & be an arrangement with integral hyperplanes and
let ¢ = p" be some prime power s.t. L(#f) = L(4,).

Then:

XMQ)—#(IFZ'— ] H)—q”—#(U H)

Hed Hed
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Xot (q)

g

F—

q

Hed
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Finite field method

Xgi(Q):#(FZ— | H)zq"—#<U H)

Hed Hed

Example:
o Let G = (V, FE) graph, #ds graphical arrangement,
q = p" prime power s.t. L(dqg) = L((Ha)q).

e Apply finite field method:
Xste(q) = q" — #{z € F} : x € H; ; for some (i,j) € E'}
= q" —#{x € F : x; = x; for some (i,j) € E}
= #{(r1, -+ ,wn) € Fy 2 2y # xj forall (4,j) € B}
= xc(q)
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Proof:
Define:  f,g: L(A,) = Z

fla) = #ta = g"mra

g(x) == # (w | y)

y>x
Observe: fl@)=>) gly) = g@)=>» py)fy)
y2a ‘Mébius y>a
Inversion
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Then: 9(6) = Q(FZ) — 4 (FZ — U H)



Finite field method

Proof:
Define:  f,g: L(A,) = Z

fla) = #ta = g"mra

g(x) == # (w | y)

y>x
Observe: f(z) = Zg(y) —  g(z)
y>x Mobius
Inversion
Then: 9(0)=g(F})=#|Fr— | H
Hed,

g(0) =Y w0,y f(y)

yEL(dq)

=) plz,y)f(y)

Yy>x
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Proof:
Define:  f,g: L(A,) = Z

fla) = #ta = g"mra

g(x) == # (sv | y)

y>x

Observe: fl@)y=> gly) = gl@)=> ux,y)f(y)

yz Mobius yza
Inversion
Then: 9(0)=gFH)=#|F, - | H
Hed,
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Finite field method

Proof:
Define:  f,g: L(A,) = Z

fla) = #ta = g"mra

g(x) == # (sv | y)

y>x
Observe: fl@)y=> gly) = gl@)=> ux,y)f(y)
y2a ‘Mébius y>a
Inversion
Then: ¢(0) = g(Fy) = # (IF"; - | H) bec. L(sd) = L(sdq)
Hed,

g0)= > w0y = > w0y =xyu(q)

yeL(dA,) yeL(dy) []



Questions?




