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Basic notions

• hyperplane arrangement:
finite set of hyperplanes in Rn

• arrangement A central,
if
⋂
H∈A H 6= ∅

• rk(A): dimension spanned by
normal vectors

• chamber in A: max. connected
component of Rn −

⋃
H∈A H

• R(A): set of all chambers in A

#R(A) = 9
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Chambers as sweep orders

Example: sweep arrangement AA, where A = {−1, 1}3
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Chambers as acyclic orientations

• Graph G = (V,E), V = [n]

• Graphical arrangement AG consisting of hyperplanes

Hij = {x ∈ Rn : xi = xj} f.a. (i, j) ∈ E

• Correspondence:

R(AG)←→ acyclic orientations of G

x ∈ Rn 7−→ Total order π on V = [n] s.t.

xπ(1) ≤ · · · ≤ xπ(n)
induces acyclic orientation of G.
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Chambers as interval orders

• Def.: Partial order P on [n] is called interval order
of prescribed lengths (l1, · · · , ln), if there exist
intervals Ii ⊂ R, len(Ii) = li, with

i < j ⇐⇒ Li lies entirely to the left of Lj

• Arrangement AP consisting of hyperplanes:

Hij = {x ∈ Rn : xi − xj = li}

• Correspondence:

R(AP )←→ interval orders of presc. lengths (l1, · · · , ln)

x ∈ Rn 7−→ order induced by intervals Ii = [xi, xi + li]

(because then Li < Lj ⇔ xi − xj > lj)
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Chambers as facet visibilities

P

• Polytope P ⊂ Rn

• Subsets of facets visible
from

”
lamp“ x ∈ Rn

x

• Visibility arrangement:

vis(P ) := {aff(F ) : F facet of P}

• Correspondence:

R (vis(P ))←→ possible visibilities of facets of P
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• Def.: Intersection poset of arrangement A:

L(A) :=

{⋂
H∈I

I 6= ∅ : I ⊆ A

}

◦ ordered by reverse inclusion: x ≤ y ⇐⇒ y ⊆ x
◦ graded by codim(x) := n− dim(x)
◦ has minimum element 0̂ := Rn

• If A central, then
◦ L(A) has maximum element 1̂ := ∩H∈AH.
◦ L(A) is a lattice.



Characteristic polynomial

• Def.: Characteristic polynomial of arrangement A:

χA(t) :=
∑

x∈L(A)

µ(0̂, x) tdim(x)

where µ : {(x, y) : x ≤ y} → Z Möbius function:
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• Def.: Characteristic polynomial of arrangement A:

χA(t) :=
∑

x∈L(A)

µ(0̂, x) tdim(x)

where µ : {(x, y) : x ≤ y} → Z Möbius function:

µ(x, y) :=

{
1 if x = y

−
∑
x<z<y µ(x, y) if x < y

Theorem (Whitney)

χA(t) =
∑

B⊆A central

(−1)#Btn−rank(B)
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Characteristic polynomial

H0

Arrangement A

χA(t) = t2 − 4t+ 6

Arrangement A \H0

χA\H0
(t) = t2 − 3t+ 3

Arrangement A/H0

χA/H0
(t) = t− 3

H0 H0
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Characteristic polynomial

Lemma: “Deletion & Restriction”

χA(t) = χA\H0
(t)− χA/H0

(t)

Proof:

By Whitney’s Theorem:

χA(t) =
∑

B⊆A central

(−1)#Btn−rank(B)

=
∑

B⊆A
B central
H0 /∈B

(−1)#Btn−rank(B)

︸ ︷︷ ︸
= χA\H0

(t)

+
∑

B⊆A
B central
H0∈B

(−1)#Btn−rank(B)

︸ ︷︷ ︸
Claim: = −χA/H0

(t)
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Characteristic polynomial

B 7−→ B′ := B/H0

#B′ = #B− 1

rank(B′) = rank(B)− 1

∑
B⊆A

B central
H0∈B

(−1)#Btn−rank(B) =
∑

B′⊆(A/H0)
B′ central

(−1)#B′+1 tn−1−rank(B
′)

︸ ︷︷ ︸
= − χA/H0

(t)
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H0

Arrangement A

Arrangement A \H0 Arrangement A/H0

H0 H0

Oberservation: #R(A) = #R(A \H0) + #R(A/H0)
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Theorem (Zaslavsky, 1975)

#R(A) = (−1)nχA(−1)

Proof: By induction using:

• χA(t) = χA\H0
(t) − χA/H0

(t)

• #R(A) = #R(A \H0) + #R(A/H0)

• Let G = (V,E) graph, χG chromatic polynomial
◦ For any edge e ∈ E, χG also satisfies recurrence

χG(t) = χG\e(t) + χG/e(t)

◦ By induction one also shows: χAG
= χG
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Finite field method

• Assume: All hyperplanes of A have integral coefficients

• Let q = pr prime power

• Take coefficients modulo p
=⇒ Yields arrangement Aq of hyperplanes in Fnq

Example: H1 : x1 = 0 ; H2 : x2 = 0 ; H3 : x1 = x2

H1 H1

H2

H2

H3 H3

A A7

R2 F2
7
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Theorem (Althanasiadis, 1996): “Finite field method”

Let A be an arrangement with integral hyperplanes and
let q = pr be some prime power s.t. L(A) ∼= L(Aq).

Then:
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Example:

• Let G = (V,E) graph, AG graphical arrangement,
q = pr prime power s.t. L(AG) ∼= L((AG)q).

• Apply finite field method:

χAG
(q) = qn −#{x ∈ Fnq : x ∈ Hi,j for some (i, j) ∈ E}

= qn −#{x ∈ Fnq : xi = xj for some (i, j) ∈ E}
= #{(x1, · · · , xn) ∈ Fnq : xi 6= xj for all (i, j) ∈ E}
= χG(q)

χA(q) = #

(
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( ⋃
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Finite field method

Proof:
Define: f, g : L(Aq)→ Z

f(x) := #x = qdimFq (x)

g(x) := #

(
x−

⋃
y>x

y

)

Observe: f(x) =
∑
y≥x

g(y) g(x) =
∑
y≥x

µ(x, y)f(y)

Möbius
inversion

=⇒

Then: g(0̂) = g(Fnq ) = #

Fnq −
⋃

H∈Aq

H


g(0̂) =

∑
y∈L(Aq)

µ(0̂, y)f(y) =
∑

y∈L(Aq)

µ(0̂, y)qdimFq (y) = χA(q)

bec. L(A) ∼= L(Aq)



Questions?


