[

Mittagsseminar 05.05.2023

B1LOCK COUPLING ON K-HEIGHTS

Largely based on the thesis by Daniel Heldt

Talk by Sandro Roch



k-heights

e Undirected graph G = (V, F)
o k-height of G: Assignment f:V — {0,--- ,k} s.t.

flv) = flw)] <1

fa. (v,w) e E
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o Set ()¢ of k-heights is distributive lattice.

e Distance on pairs X <Y:d(X,Y) =)

(Y

(Y(v) = X(v))



Motivation: a-orientations

e «-orientation of plane graph G = (V, E):
orientation of E with prescribed outdegrees a: V — N
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Motivation: a-orientations

e «-orientation of plane graph G = (V, E):
orientation of E with prescribed outdegrees a: V — N

k-height on dual graph!



Markov chain on k-heights

Chain J( on k-heights:

Transition Xy — Xiy1:
o with probability 1: X; 41 + X
e otherwise:
o choose v € V' uniformly at random

o choose A € {—1,+41} uniformly at random
o define

(X, () + A ifu=7
X¢(v) sonst

Fv) =<

O iffEQgi Xt_|_1 %f
o otherwise: Xt—l—l < Xt



Markov chain on k-heights

e Problem: Bound mixing time

7(e) ;== min{t > 0: || X}y — Uql|lrv < e}

e Typical approach: Coupling (X, Y;) € Q x Q)
o Two copies starting with Xg =0,Yy, =k
o In transitions X; — X;,1 and Y; — Y;1 use the
same (v, /\) chosen at random.
o Invariant: X; <Y; for all ¢ (monotone coupling)

o Theorem (Dyer & Greenhill): If there is 8 < 1 s.t.
Eld(X¢41,Yeq1)| < B-d(Xe, Y7)

] (dmax'%
then 7(g) < Ogl_ﬁ .




Block Markov chain

e Boosted chain /{5 on k-heights:
o Assign vertices to blocks 28 C 2 (V)
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e Boosted chain /{5 on k-heights:
o Assign vertices to blocks 28 C 2 (V)
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Block Markov chain

e Boosted chain /(5 on k-heights:
o Assign vertices to blocks 5
o In each transition, choose block B € 5 at random
and sample among admissible k-heights on B

009000 o
‘00900900 I I I I
900909000
‘o—0—0—0—0—0—_0—0 SI 4I




Block Markov chain

e Boosted chain /(5 on k-heights:
o Assign vertices to blocks 5
o In each transition, choose block B € ‘5 at random
and sample among admissible k-heights on B
e Problem: Monotone coupling X; <Y; 777
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‘e—0—0_ 00020 I
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Coupling on cover relations

e Def: Tuple (X,Y) e Q xQ, X <Y is cover relation, if

g

Y(v):<X(v)+1 Z

N
-y

e Example:

e bore

e Goal: Find coupling of block-MC on cover relations!




Coupling on cover relations

e Choose same block B € B for X; and Y;
e Case I: X; and Y; are equal on 0B

Xt Yy
OI lT 1 1 OI 1T 2 1
0 1’ 1: :I 0 1. 1: :I
Sample admissible B-filling for X; and Y; identically!
e Case ll: X; and Y; differ on v € 0B

Xy Yi
OI 1I 1T 1I OI 1I QT 1I
‘o o lo ° ‘e o lo O




Coupling on cover relations
e Case Il: X, and Y; differ on v € 0B

Xy Yi
OI 1I lT 1I ()I 1I QT 1I
o o lo O ‘o o lo O

Two different probability distributions:

o d?;t: Unif. distrib. among adm. fillings on B wrt. X; [sB

o d%: Unif. distrib. among adm. fillings on B wrt. Y; [sB

Claim: d)%;-t s stochastically dominated by d?/i,
i.e. 2 (U) < dy (U) for all upsets U.



Coupling on cover relations
e Case Il: X, and Y; differ on v € 0B

Theorem (Discrete version of Strassen’s theorem)
Let di,dy be distributions on finite poset €. If d; is stoch.
dom. by ds, then there is a distribution g on €2 x ) with

° > ecadl®,y)=di(z) forall z € Q

o > qq(z,y) =da(y) forall y € Q
o q(x,y) >0 implies z < y

e Apply theorem on d%?t and d%
o Transition (X¢,Y:) — (X¢a1, Yer1) from distribution ¢

= Have monotone coupling on cover relations.

Aim for:  E[d(X¢y1, Yir1)] <1 =d(Xs, Ys)



Path coupling

Idea: Extend coupling on cover relations to all X; <'Y;.

Theorem (Dyer & Greenbhill, 1997)
Given:
e Markov chain A on )
o Integral distance d : 2 x Q — {0,--- , D}
e Subset S C ) x Q and for all X,Y € Q) shortest path
YX,Y - X = Xp, -, X, =Y with (X,,;,XH_l) cS

® Coupling S — () X Q, (Xtyi/t) —> (Xt_|_1,Yt_|_1) of M
fulfilling E[d(X",Y")] < B-d(X,Y)
Then: Applying this coupling along the paths vx y yields
a coupling of A on Q x Q fulfilling
E[d(X',Y")] < 8- d(X,Y)




Monotone coupling on Mg

Transition (X; < Y;) = (Xiq1 < Yie1):

e with probability %: Xig1 — Xy, Y1 < Y,
e otherwise:
o choose B € 98 uniformly at random
o Case I: X; and Y; are equal on 0B:
- sample adm. B-filling for X;.1 and Y;1 identically
- outside B, set Xy 1 := X; and Y11 =Y,
o Case ll: X; <Y, differ on 0B by one:
- sample B adm. B-filling for X; 1 and Y;11
according to Strassen’s Theorem.
- outside B, set X;11 := X and Y11 =Y,
o Case Illl: X; and Y; differ on 0B by more than one:
- (X441, Y1 1) determined by path coupling technique



Monotone coupling on Mg
e Recall: Need E[d(X',Y')] <1 =4d(X,Y)
on all cover relations (X,Y) € Q2 x €.

e Supp. X <Y cover relation, differing only in v € V,
coupling choses block B € %8 at random



Monotone coupling on Mg
e Recall: Need E[d(X',Y')] <1 =4d(X,Y)
on all cover relations (X,Y) € Q2 x €.

e Supp. X <Y cover relation, differing only in v € V,
coupling choses block B € %8 at random

Case A: Boring case

o M pauses for aperodicity - ~
*p=3 o
o d(X)Y') =1



Monotone coupling on Mg

e Recall: Need E[d(X',Y')] <1 =4d(X,Y)
on all cover relations (X,Y) € Q2 x €.

e Supp. X <Y cover relation, differing only in v € V,
coupling choses block B € %8 at random

Case B: Good case

e vERB

U
o

o p:ﬁ-#{BE%‘UEB}
o d(X',Y") =0



Monotone coupling on Mg

e Recall: Need E[d(X',Y')] <1 =4d(X,Y)
on all cover relations (X,Y) € Q2 x €.

e Supp. X <Y cover relation, differing only in v € V,
coupling choses block B € %8 at random

Case C: Neutral case

e v¢ (BUJOB)

U
o

o d(X'Y') =1



Monotone coupling on Mg

e Recall: Need E[d(X',Y')] <1 =4d(X,Y)
on all cover relations (X,Y) € Q2 x €.

e Supp. X <Y cover relation, differing only in v € V,
coupling choses block B € %8 at random

Case D: Bad and complicated case

e vVEOB

o p= ﬁ for each block B € 9 with v € §B
o Define worst case E[d(X',Y")]| as Ep ,.



Main result

Theorem (Felsner, Heldt & Winkler, 2016)

Given:

e Finite graph G = (V, F)

e Family of blocks 8 C 2 (V)

e Number f <1 s.t. for all v € V:

1

Then Mqp is rapidly mixing and so is .



Main result

Corollary (Felsner, Heldt & Winkler, 2016)

Given:
Finite graph G = (V, F)
Family of blocks %8 C % (V)
Each v € V is contained in at least m blocks.
Each v € V is contained in at most [ borders of blocks.
Value E := maxpes ve58 EB o satisfies

1
1+ —({-F—m)<1
8|

Then Mg is rapidly mixing and so is AL .




Applications: Toroidal triangle grid graphs
Toroidal triangle grid graphs:

. ZN Glue opposite sites!

N\ J/

AN

o
S 0’0’0
Family of blocks: 3 = {B,|v € V}

Theorem (Heldt, Felsner & Winkler, 2016)
The Markov chain . is rapidly mixing on 2-heights of toroidal

triangle grid graphs: 74 (¢) € @(|V|310g V1)



Applications: Toroidal rectangular grid graphs

Toroidal rectangular grid graphs:

*—0—0—0—0—0—0—0—0—0—0p9 ] ]
Glue opposite sides!

[ —0 @ @ @ *—0
PITTYT 2T YY) @ blocks of size 6 x 6
o—0 000 0 0 0 0 0 0 ¢
o—0 00 0 0 0 0 0 0 0 ¢
o—0 0 00 0 0 0 0 0 ©

O —0 0000 0 0 0 °
i *—0—0—0—0—0—0—0—90 »i

Theorem (Heldt, Felsner & Winkler, 2016)
The Markov chain  is rapidly mixing on 2-heights of toroidal

rectangular grid graphs: 74 (¢) € @(\V!Slog V)




Applications: Cylindrical rectangular grid graphs

Cylindrical rectangular grid graphs:
U

0 <4ges—6—90—90 0900
o—0 00 0 0 0 °
o—0 00 0 0 0 °
o—0 00 0 0 0 °
o—0 00 0 0 0 °
o—0 00 0 0 0 °
o—0 000 0 0 0
0<¢e—0—0—0—0—0—90

Use U blocks of shape [ x h as 98!

Glue left & right side!



Applications: Cylindrical rectangular grids

Main theorem applicaple?

Required block length [ for different heights h:
h
R 2 3 | 4 5 6 7
2 | 2 2 2 3 3 3
3| 3 | 4 5 5 5 ?
41 5 7T 19 10| 7 ?
51| 7 11| 14| 16| 7 ?

Conjecture: J rapidly mixing for al

values of k£ and h.



Questions?



