Mittagsseminar 05.05.2023

Block coupling on k-heights
 Largely based on the thesis by Daniel Heldt

Talk by Sandro Roch

k-heights

- Undirected graph $G=(V, E)$
- k-height of G : Assignment $f: V \rightarrow\{0, \cdots, k\}$ s.t.

$$
|f(v)-f(w)| \leq 1 \quad \text { f.a. }(v, w) \in E
$$

- Set Ω_{G} of k-heights is distributive lattice.
- Distance on pairs $X \leq Y: d(X, Y):=\sum_{v}(Y(v)-X(v))$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Motivation: α-orientations

- α-orientation of plane graph $G=(V, E)$: orientation of E with prescribed outdegrees $\alpha: V \rightarrow \mathbb{N}$

Markov chain on k-heights

Chain \mathcal{M} on k-heights:
Transition $X_{t} \rightarrow X_{t+1}$:

- with probability $\frac{1}{2}: X_{t+1} \leftarrow X_{t}$
- otherwise:
- choose $\tilde{v} \in V$ uniformly at random
- choose $\triangle \in\{-1,+1\}$ uniformly at random
- define

$$
f(v):= \begin{cases}X_{t}(v)+\triangle & \text { if } v=\tilde{v} \\ X_{t}(v) & \text { sonst }\end{cases}
$$

- if $f \in \Omega_{G}: X_{t+1} \leftarrow f$
- otherwise: $X_{t+1} \leftarrow X_{t}$

Markov chain on k-heights

- Problem: Bound mixing time

$$
\tau(\varepsilon):=\min \left\{t>0:\left\|X_{t}-U_{\Omega}\right\|_{T V}<\varepsilon\right\}
$$

- Typical approach: Coupling $\left(X_{t}, Y_{t}\right) \in \Omega \times \Omega$
- Two copies starting with $X_{0} \equiv 0, Y_{0} \equiv k$
- In transitions $X_{t} \rightarrow X_{t+1}$ and $Y_{t} \rightarrow Y_{t+1}$ use the same (\tilde{v}, \triangle) chosen at random.
- Invariant: $X_{t} \leq Y_{t}$ for all t (monotone coupling)
- Theorem (Dyer \& Greenhill): If there is $\beta<1$ s.t.

$$
\mathbb{E}\left[d\left(X_{t+1}, Y_{t+1}\right)\right] \leq \beta \cdot d\left(X_{t}, Y_{t}\right),
$$

then $\tau(\varepsilon) \leq \frac{\log \left(d_{\max } \cdot \frac{.1}{\varepsilon}\right)}{1-\beta}$.

Block Markov chain

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
- Assign vertices to blocks $\mathfrak{B} \subset \mathscr{P}(V)$

Block Markov chain

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
- Assign vertices to blocks $\mathfrak{B} \subset \mathscr{P}(V)$

Block Markov chain

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
- Assign vertices to blocks $\mathfrak{B} \subset \mathscr{P}(V)$

Block Markov chain

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
- Assign vertices to blocks \mathfrak{B}
- In each transition, choose block $B \in \mathfrak{B}$ at random and sample among admissible k-heights on B

Block Markov chain

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
- Assign vertices to blocks \mathfrak{B}
- In each transition, choose block $B \in \mathfrak{B}$ at random and sample among admissible k-heights on B
- Problem: Monotone coupling $X_{t} \leq Y_{t}$???

Coupling on cover relations

- Def: Tuple $(X, Y) \in \Omega \times \Omega, X \leq Y$ is cover relation, if

$$
Y(v)= \begin{cases}X(v)+1 & v=\tilde{v} \\ X(v) & v \neq \tilde{v}\end{cases}
$$

- Example:

Y

- Goal: Find coupling of block-MC on cover relations!

Coupling on cover relations

- Choose same block $B \in \mathfrak{B}$ for X_{t} and Y_{t}
- Case I: X_{t} and Y_{t} are equal on δB

$Y_{t} \quad \delta B$

Sample admissible B-filling for X_{t} and Y_{t} identically!

- Case II: X_{t} and Y_{t} differ on $v \in \delta B$

Coupling on cover relations

- Case II: X_{t} and Y_{t} differ on $v \in \delta B$

Two different probability distributions:

- $d_{X_{t}}^{\mathscr{B}}$: Unif. distrib. among adm. fillings on B wrt. $X_{t} \prod_{\delta B}$
- $d_{Y_{t}}^{\mathfrak{B}}$: Unif. distrib. among adm. fillings on B wrt. $Y_{t} \prod_{\delta B}$

Claim: $d_{X_{t}}^{\mathscr{B}}$ is stochastically dominated by $d_{Y_{t}}^{\mathscr{B}}$, i.e. $d_{X_{t}}^{9 \mathcal{B}}(U) \leq d_{Y_{t}}^{9}(U)$ for all upsets U.

Coupling on cover relations

- Case II: X_{t} and Y_{t} differ on $v \in \delta B$

Theorem (Discrete version of Strassen's theorem) Let d_{1}, d_{2} be distributions on finite poset Ω. If d_{1} is stoch. dom. by d_{2}, then there is a distribution q on $\Omega \times \Omega$ with

- $\sum_{y \in \Omega} q(x, y)=d_{1}(x)$ for all $x \in \Omega$
- $\sum_{x \in \Omega} q(x, y)=d_{2}(y)$ for all $y \in \Omega$
- $q(x, y)>0$ implies $x \leq y$
- Apply theorem on $d_{X_{t}}^{9 B}$ and $d_{Y_{t}}^{9 B}$
- Transition $\left(X_{t}, Y_{t}\right) \rightarrow\left(X_{t+1}, Y_{t+1}\right)$ from distribution q
\Rightarrow Have monotone coupling on cover relations.
Aim for: $\quad \mathbb{E}\left[d\left(X_{t+1}, Y_{t+1}\right)\right]<1=d\left(X_{t}, Y_{t}\right)$

Path coupling

Idea: Extend coupling on cover relations to all $X_{t} \leq Y_{t}$.
Theorem (Dyer \& Greenhill, 1997)
Given:

- Markov chain \mathscr{M} on Ω
- Integral distance $d: \Omega \times \Omega \rightarrow\{0, \cdots, D\}$
- Subset $S \subset \Omega \times \Omega$ and for all $X, Y \in \Omega$ shortest path $\gamma_{X, Y}: X=X_{0}, \cdots, X_{r}=Y$ with $\left(X_{i}, X_{i+1}\right) \in S$
- Coupling $S \rightarrow \Omega \times \Omega,\left(X_{t}, Y_{t}\right) \mapsto\left(X_{t+1}, Y_{t+1}\right)$ of \mathcal{M} fulfilling $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right] \leq \beta \cdot d(X, Y)$
Then: Applying this coupling along the paths $\gamma_{X, Y}$ yields a coupling of \mathcal{M} on $\Omega \times \Omega$ fulfilling

$$
\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right] \leq \beta \cdot d(X, Y)
$$

Monotone coupling on $\mathscr{M}_{\mathscr{B}}$

Transition $\left(X_{t} \leq Y_{t}\right) \rightarrow\left(X_{t+1} \leq Y_{t+1}\right)$:

- with probability $\frac{1}{2}: X_{t+1} \leftarrow X_{t}, Y_{t+1} \leftarrow Y_{t}$
- otherwise:
- choose $B \in \mathscr{B}$ uniformly at random
- Case I: X_{t} and Y_{t} are equal on δB :
- sample adm. B-filling for X_{t+1} and Y_{t+1} identically
- outside B, set $X_{t+1}:=X_{t}$ and $Y_{t+1}:=Y_{t}$
- Case II: $X_{t} \leq Y_{t}$ differ on δB by one:
- sample B adm. B-filling for X_{t+1} and Y_{t+1} according to Strassen's Theorem.
- outside B, set $X_{t+1}:=X_{t}$ and $Y_{t+1}:=Y_{t}$
- Case III: X_{t} and Y_{t} differ on δB by more than one:
- $\left(X_{t+1}, Y_{t+1}\right)$ determined by path coupling technique

Monotone coupling on $\mathcal{M}_{\mathscr{B}}$

- Recall: Need $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right]<1=d(X, Y)$ on all cover relations $(X, Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathscr{B}$ at random

Monotone coupling on $\mathcal{M}_{\mathscr{B}}$

- Recall: Need $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right]<1=d(X, Y)$ on all cover relations $(X, Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathscr{B}$ at random

Case A: Boring case

- $M_{\mathscr{B}}$ pauses for aperodicity
- $p=\frac{1}{2}$
- $d\left(X^{\prime}, Y^{\prime}\right)=1$

Monotone coupling on $\mathscr{M}_{\mathscr{B}}$

- Recall: Need $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right]<1=d(X, Y)$ on all cover relations $(X, Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathscr{B}$ at random

Case B: Good case

- $v \in B$

- $p=\frac{1}{2|\mathscr{B}|} \cdot \#\{B \in \mathscr{B} \mid v \in B\}$
- $d\left(X^{\prime}, Y^{\prime}\right)=0$

Monotone coupling on $\mathcal{M}_{\mathscr{B}}$

- Recall: Need $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right]<1=d(X, Y)$ on all cover relations $(X, Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathscr{B}$ at random

Case C: Neutral case

- $v \notin(B \cup \delta B)$

- $d\left(X^{\prime}, Y^{\prime}\right)=1$

Monotone coupling on $\mathcal{M}_{\mathscr{B}}$

- Recall: Need $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right]<1=d(X, Y)$ on all cover relations $(X, Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathscr{B}$ at random

Case D: Bad and complicated case

- $v \in \delta B$

- $p=\frac{1}{2|\mathscr{B}|}$ for each block $B \in \mathscr{B}$ with $v \in \delta B$
- Define worst case $\mathbb{E}\left[d\left(X^{\prime}, Y^{\prime}\right)\right]$ as $E_{B, v}$.

Main result

Theorem (Felsner, Heldt \& Winkler, 2016)

Given:

- Finite graph $G=(V, E)$
- Family of blocks $\mathscr{B} \subset \mathscr{P}(V)$
- Number $\beta<1$ s.t. for all $v \in V$:

$$
1-\frac{1}{2|\mathscr{B}|}\left(\#\{B \in \mathscr{B} \mid v \in B\}-\sum_{B \in \mathscr{B} \mid v \in B} E_{B, v}\right) \leq \beta
$$

Then $\mathscr{M}_{\mathscr{B}}$ is rapidly mixing and so is \mathscr{M}.

Main result

Corollary (Felsner, Heldt \& Winkler, 2016)

Given:

- Finite graph $G=(V, E)$
- Family of blocks $\mathscr{B} \subset \mathscr{P}(V)$
- Each $v \in V$ is contained in at least m blocks.
- Each $v \in V$ is contained in at most l borders of blocks.
- Value $E:=\max _{B \in \mathscr{B}, v \in \delta B} E_{B, v}$ satisfies

$$
1+\frac{1}{|\mathscr{B}|}(l \cdot E-m)<1
$$

Then $\mathscr{M}_{\mathscr{B}}$ is rapidly mixing and so is \mathscr{M}.

Applications: Toroidal triangle grid graphs

Toroidal triangle grid graphs:

Family of blocks: $\mathscr{B}=\left\{B_{v} \mid v \in V\right\}$
Theorem (Heldt, Felsner \& Winkler, 2016)
The Markov chain \mathcal{M} is rapidly mixing on 2 -heights of toroidal triangle grid graphs: $\tau_{\mathcal{M}}(\varepsilon) \in \mathscr{O}\left(|V|^{3} \log |V|\right)$

Applications: Toroidal rectangular grid graphs

Toroidal rectangular grid graphs:

Glue opposite sides!
\mathscr{B} : blocks of size 6×6

Theorem (Heldt, Felsner \& Winkler, 2016)
The Markov chain \mathscr{M} is rapidly mixing on 2 -heights of toroidal rectangular grid graphs: $\quad \tau_{\mathcal{M}}(\varepsilon) \in \mathscr{O}\left(|V|^{3} \log |V|\right)$

Applications: Cylindrical rectangular grid graphs

Cylindrical rectangular grid graphs:

Use U blocks of shape $l \times h$ as $\mathscr{B}!$

Applications: Cylindrical rectangular grids

Main theorem applicaple?
Required block length l for different heights h :

k	2	3	4	5	6	7
2	2	2	2	3	3	3
3	3	4	5	5	5	$?$
4	5	7	9	10	$?$	$?$
5	7	11	14	16	$?$	$?$

Conjecture: \mathcal{M} rapidly mixing for all values of k and h.

Questions?

