

Mittagsseminar 05.05.2023

BLOCK COUPLING ON K-HEIGHTS

Largely based on the thesis by Daniel Heldt

Talk by Sandro Roch

k-heights

- Undirected graph G = (V, E)
- **k-height** of G: Assignment $f: V \to \{0, \dots, k\}$ s.t.

$$|f(v) - f(w)| \le 1$$
 f.a. $(v, w) \in E$

- Set Ω_G of k-heights is distributive lattice.
- Distance on pairs $X \leq Y$: $d(X,Y) := \sum_{v} (Y(v) X(v))$

• α -orientation of plane graph G = (V, E): orientation of E with prescribed outdegrees $\alpha: V \to \mathbb{N}$

k-height on dual graph!

Markov chain on k-heights

Chain \mathcal{M} on k-heights:

Transition $X_t \to X_{t+1}$:

- with probability $\frac{1}{2}$: $X_{t+1} \leftarrow X_t$
- otherwise:
 - \circ choose $\tilde{v} \in V$ uniformly at random
 - choose $\triangle \in \{-1, +1\}$ uniformly at random
 - define

$$f(v) := \begin{cases} X_t(v) + \triangle & \text{if } v = \tilde{v} \\ X_t(v) & \text{sonst} \end{cases}$$

- \circ if $f \in \Omega_G$: $X_{t+1} \leftarrow f$
- \circ otherwise: $X_{t+1} \leftarrow X_t$

Markov chain on k-heights

Problem: Bound mixing time

$$\tau(\varepsilon) := \min\{t > 0 : \|X_t - U_\Omega\|_{TV} < \varepsilon\}$$

- Typical approach: Coupling $(X_t, Y_t) \in \Omega \times \Omega$
 - Two copies starting with $X_0 \equiv 0, Y_0 \equiv k$
 - In transitions $X_t \to X_{t+1}$ and $Y_t \to Y_{t+1}$ use the same (\tilde{v}, \triangle) chosen at random.
 - Invariant: $X_t \leq Y_t$ for all t (monotone coupling)
- **Theorem** (Dyer & Greenhill): If there is $\beta < 1$ s.t.

$$\mathbb{E}[d(X_{t+1}, Y_{t+1})] \leq \beta \cdot d(X_t, Y_t) ,$$

then
$$\tau(\varepsilon) \leq \frac{\log(d_{\max} \cdot \frac{1}{\varepsilon})}{1-\beta}$$
.

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
 - \circ Assign vertices to blocks $\mathfrak{B}\subset \mathscr{P}(V)$

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
 - \circ Assign vertices to blocks $\mathfrak{B}\subset \mathscr{P}(V)$

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
 - \circ Assign vertices to blocks $\mathfrak{B}\subset \mathscr{P}(V)$

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
 - Assign vertices to blocks B
 - In each transition, choose block $B \in \mathfrak{B}$ at random and sample among admissible k-heights on B

- Boosted chain $\mathcal{M}_{\mathscr{B}}$ on k-heights:
 - Assign vertices to blocks B
 - In each transition, choose block $B \in \mathfrak{B}$ at random and sample among admissible k-heights on B
- **Problem:** Monotone coupling $X_t \leq Y_t$???

• **Def:** Tuple $(X,Y) \in \Omega \times \Omega$, $X \leq Y$ is cover relation, if

$$Y(v) = \begin{cases} X(v) + 1 & v = \tilde{v} \\ X(v) & v \neq \tilde{v} \end{cases}$$

• Example:

Goal: Find coupling of block-MC on cover relations!

- Choose same block $B \in \mathfrak{B}$ for X_t and Y_t
- Case I: X_t and Y_t are equal on δB

Sample admissible B-filling for X_t and Y_t identically!

• Case II: X_t and Y_t differ on $v \in \delta B$

• Case II: X_t and Y_t differ on $v \in \delta B$

Two different probability distributions:

- $d_{X_t}^{\mathscr{B}}$: Unif. distrib. among adm. fillings on B wrt. $X_t \upharpoonright_{\delta B}$
- $d_{Y_t}^{\mathcal{B}}$: Unif. distrib. among adm. fillings on B wrt. $Y_t \upharpoonright_{\delta B}$

Claim: $d_{X_t}^{\mathscr{B}}$ is stochastically dominated by $d_{Y_t}^{\mathscr{B}}$, i.e. $d_{X_t}^{\mathscr{B}}(U) \leq d_{Y_t}^{\mathscr{B}}(U)$ for all upsets U.

• Case II: X_t and Y_t differ on $v \in \delta B$

Theorem (Discrete version of Strassen's theorem)

Let d_1, d_2 be distributions on finite poset Ω . If d_1 is stoch. dom. by d_2 , then there is a distribution q on $\Omega \times \Omega$ with

- $\sum_{y \in \Omega} q(x,y) = d_1(x)$ for all $x \in \Omega$ $\sum_{x \in \Omega} q(x,y) = d_2(y)$ for all $y \in \Omega$ q(x,y) > 0 implies $x \le y$

 - ullet Apply theorem on $d_{X_t}^{\mathscr{P}}$ and $d_{Y_t}^{\mathscr{P}}$
 - Transition $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$ from distribution q
- \Rightarrow Have monotone coupling on cover relations.

Aim for:
$$\mathbb{E}[d(X_{t+1}, Y_{t+1})] < 1 = d(X_t, Y_t)$$

Path coupling

Idea: Extend coupling on cover relations to all $X_t \leq Y_t$.

Theorem (Dyer & Greenhill, 1997)

Given:

- Markov chain ${\mathcal M}$ on Ω
- Integral distance $d: \Omega \times \Omega \to \{0, \cdots, D\}$
- Subset $S \subset \Omega \times \Omega$ and for all $X,Y \in \Omega$ shortest path $\gamma_{X,Y}: X = X_0, \cdots, X_r = Y$ with $(X_i, X_{i+1}) \in S$
- Coupling $S \to \Omega \times \Omega$, $(X_t, Y_t) \mapsto (X_{t+1}, Y_{t+1})$ of \mathcal{M} fulfilling $\mathbb{E}[d(X', Y')] \leq \beta \cdot d(X, Y)$

Then: Applying this coupling along the paths $\gamma_{X,Y}$ yields a coupling of $\mathcal M$ on $\Omega \times \Omega$ fulfilling

$$\mathbb{E}[d(X',Y')] \le \beta \cdot d(X,Y)$$

Transition $(X_t \leq Y_t) \rightarrow (X_{t+1} \leq Y_{t+1})$:

- with probability $\frac{1}{2}$: $X_{t+1} \leftarrow X_t$, $Y_{t+1} \leftarrow Y_t$
- otherwise:
 - choose $B \in \mathcal{B}$ uniformly at random
 - Case I: X_t and Y_t are equal on δB :
 - sample adm. B-filling for X_{t+1} and Y_{t+1} identically
 - outside B, set $X_{t+1} := X_t$ and $Y_{t+1} := Y_t$
 - Case II: $X_t \leq Y_t$ differ on δB by one:
 - sample B adm. B-filling for X_{t+1} and Y_{t+1} according to Strassen's Theorem.
 - outside B, set $X_{t+1} := X_t$ and $Y_{t+1} := Y_t$
 - Case III: X_t and Y_t differ on δB by more than one:
 - (X_{t+1}, Y_{t+1}) determined by path coupling technique

- Recall: Need $\mathbb{E}[d(X',Y')] < 1 = d(X,Y)$ on all cover relations $(X,Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathcal{B}$ at random

- Recall: Need $\mathbb{E}[d(X',Y')] < 1 = d(X,Y)$ on all cover relations $(X,Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathcal{B}$ at random

Case A: Boring case

- $\mathcal{M}_{\mathscr{B}}$ pauses for aperodicity
- $p = \frac{1}{2}$
- d(X', Y') = 1

- Recall: Need $\mathbb{E}[d(X',Y')] < 1 = d(X,Y)$ on all cover relations $(X,Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathcal{B}$ at random

Case B: Good case

 $v \in B$

- $p = \frac{1}{2|\mathcal{B}|} \cdot \#\{B \in \mathcal{B} | v \in B\}$
- $\bullet \ d(X', Y') = 0$

- Recall: Need $\mathbb{E}[d(X',Y')] < 1 = d(X,Y)$ on all cover relations $(X,Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathcal{B}$ at random

Case C: Neutral case

• $v \notin (B \cup \delta B)$

B

•
$$d(X', Y') = 1$$

- Recall: Need $\mathbb{E}[d(X',Y')] < 1 = d(X,Y)$ on all cover relations $(X,Y) \in \Omega \times \Omega$.
- Supp. $X \leq Y$ cover relation, differing only in $v \in V$, coupling choses block $B \in \mathcal{B}$ at random

Case D: Bad and complicated case

• $v \in \delta B$

- $p=\frac{1}{2|\mathcal{B}|}$ for each block $B\in\mathcal{B}$ with $v\in\delta B$
- Define worst case $\mathbb{E}[d(X',Y')]$ as $E_{B,v}$.

Main result

Theorem (Felsner, Heldt & Winkler, 2016)

Given:

- Finite graph G = (V, E)
- Family of blocks $\mathscr{B} \subset \mathscr{P}(V)$
- Number $\beta < 1$ s.t. for all $v \in V$:

$$1 - \frac{1}{2|\mathcal{B}|} \left(\#\{B \in \mathcal{B} \mid v \in B\} - \sum_{B \in \mathcal{B} \mid v \in B} E_{B,v} \right) \le \beta$$

Then $\mathcal{M}_{\mathscr{B}}$ is rapidly mixing and so is \mathcal{M} .

Main result

Corollary (Felsner, Heldt & Winkler, 2016)

Given:

- Finite graph G = (V, E)
- Family of blocks $\mathscr{B} \subset \mathscr{P}(V)$
- Each $v \in V$ is contained in at least m blocks.
- Each $v \in V$ is contained in at most l borders of blocks.
- Value $E := \max_{B \in \mathcal{B}, v \in \delta B} E_{B,v}$ satisfies

$$1 + \frac{1}{|\mathcal{B}|}(l \cdot E - m) < 1$$

Then $\mathcal{M}_{\mathscr{P}}$ is rapidly mixing and so is \mathcal{M} .

Applications: Toroidal triangle grid graphs

Toroidal triangle grid graphs:

Family of blocks: $\mathscr{B} = \{B_v | v \in V\}$

Theorem (Heldt, Felsner & Winkler, 2016)

The Markov chain \mathcal{M} is rapidly mixing on 2-heights of toroidal triangle grid graphs: $\tau_{\mathcal{M}}(\varepsilon) \in \mathcal{O}(|V|^3 \log |V|)$

Applications: Toroidal rectangular grid graphs

Toroidal rectangular grid graphs:

Glue opposite sides!

 \mathcal{B} : blocks of size 6×6

Theorem (Heldt, Felsner & Winkler, 2016)

The Markov chain \mathcal{M} is rapidly mixing on 2-heights of toroidal rectangular grid graphs: $\tau_{\mathcal{M}}(\varepsilon) \in \mathcal{O}(|V|^3 \log |V|)$

Applications: Cylindrical rectangular grid graphs

Cylindrical rectangular grid graphs:

Use U blocks of shape $l \times h$ as \mathcal{B} !

Applications: Cylindrical rectangular grids

Main theorem applicable? Required block length l for different heights h:

k	2	3	4	5	6	7
2	2	2	2	3	3	3
3	3	4	5	5	5	?
4	5	7	9	10	?	?
5	7	11	14	16	?	?

Conjecture: \mathcal{M} rapidly mixing for all values of k and h.

Questions?

