Seminar on Graphs, Algorithms and Optimization: A Fast Parametric Maximum Flow Algorithm and Applications

(Gallo, Grigoriadis, Tarjan, 1989)

Sandro M. Roch

02.07.2020

Parametric Maximum Flow Problem

```
Given: Directed Graph (V, E)
Source s \in V, Sink t \in V.
Capacities c_{\lambda}(v, w) \geq 0 for all (v, w) \in E,
c_{\lambda}(v, w) = 0 for all (v, w) \notin E, \lambda \in \mathbb{R}
```

Parametric Maximum Flow Problem

Given: Directed Graph
$$(V, E)$$

Source $s \in V$, Sink $t \in V$.
Capacities $c_{\lambda}(v, w) \geq 0$ for all $(v, w) \in E$,
 $c_{\lambda}(v, w) = 0$ for all $(v, w) \notin E$, $\lambda \in \mathbb{R}$

Problem for $\lambda \in \mathbb{R}$:

$$\kappa(\lambda) = \max \sum_{v \in V} f(v, t)$$
s.t. $f(v, w) = -f(w, v)$ for all $(v, w) \in V \times V$ (antisymmetry)
$$f(v, w) \le c_{\lambda}(v, w)$$
 for all $(v, w) \in V \times V$ (capacity)
$$\sum_{w \in V} f(w, v) = 0$$
 for all $v \in V \setminus \{s, t\}$ (conservation)

Parametric Maximum Flow Problem

Given: Directed Graph
$$(V, E)$$

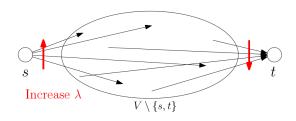
Source $s \in V$, Sink $t \in V$.
Capacities $c_{\lambda}(v, w) \geq 0$ for all $(v, w) \in E$,
 $c_{\lambda}(v, w) = 0$ for all $(v, w) \notin E$, $\lambda \in \mathbb{R}$

Problem for $\lambda \in \mathbb{R}$:

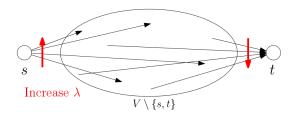
$$\kappa(\lambda) = \max \sum_{v \in V} f(v, t)$$
s.t. $f(v, w) = -f(w, v)$ for all $(v, w) \in V \times V$ (antisymmetry)
$$f(v, w) \le c_{\lambda}(v, w)$$
 for all $(v, w) \in V \times V$ (capacity)
$$\sum_{w \in V} f(w, v) = 0$$
 for all $v \in V \setminus \{s, t\}$ (conservation)

Problem class too general to expect interesting parametric algorithm ⇒ Will restrict to subclass

- $\lambda \mapsto c_{\lambda}(s, v)$ non-decreasing for all $v \in V$
- ullet $\lambda\mapsto c_\lambda(v,t)$ non-increasing for all $v\in V$
- ullet $c_{\lambda}(v,w)$ constant for all $v,w\in V\setminus \{s,t\}$

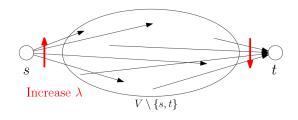


- $\lambda \mapsto c_{\lambda}(s, v)$ non-decreasing for all $v \in V$
- ullet $\lambda\mapsto c_\lambda(v,t)$ non-increasing for all $v\in V$
- ullet $c_{\lambda}(v,w)$ constant for all $v,w\in V\setminus\{s,t\}$



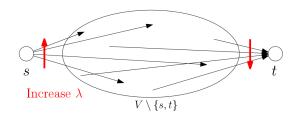
• Economic interpretation: Balance capacity budget between source incident arcs and sink incident arcs.

- $\lambda \mapsto c_{\lambda}(s, v)$ non-decreasing for all $v \in V$
- ullet $\lambda\mapsto c_\lambda(v,t)$ non-increasing for all $v\in V$
- $c_{\lambda}(v,w)$ constant for all $v,w\in V\setminus\{s,t\}$



- Economic interpretation: Balance capacity budget between source incident arcs and sink incident arcs.
- Many algorithms for MaxFlow with fixed λ : Simplex-Algorithm, Ford-Fulkerson, Goldberg-Tarjan, Orlin, ...

- ullet $\lambda\mapsto c_\lambda(s,v)$ non-decreasing for all $v\in V$
- $\lambda \mapsto c_{\lambda}(v,t)$ non-increasing for all $v \in V$
- $c_{\lambda}(v, w)$ constant for all $v, w \in V \setminus \{s, t\}$



- Economic interpretation: Balance capacity budget between source incident arcs and sink incident arcs.
- Many algorithms for MaxFlow with fixed λ : Simplex-Algorithm, Ford-Fulkerson, Goldberg-Tarjan, Orlin, ...
- Outline: Modify Goldberg-Tarjan to obtain parametric algorithm that calculates $\kappa(\lambda)$ for $\lambda_1 \leq ... \leq \lambda_I$ at once.

Definition

• A preflow $f: V \times V \to \mathbb{R}$ satisfies

$$f(v, w) = -f(w, v)$$
 for all $(v, w) \in V \times V$ (antisymmetry)
 $f(v, w) \le c_{\lambda}(v, w)$ for all $(v, w) \in V \times V$ (capacity)
 $\sum_{w \in V} f(w, v) \ge 0$ for all $v \in V \setminus \{s\}$ (leaky conservation)

Definition

• A preflow $f: V \times V \to \mathbb{R}$ satisfies

$$f(v, w) = -f(w, v)$$
 for all $(v, w) \in V \times V$ (antisymmetry)
 $f(v, w) \le c_{\lambda}(v, w)$ for all $(v, w) \in V \times V$ (capacity)
 $\sum_{w \in V} f(w, v) \ge 0$ for all $v \in V \setminus \{s\}$ (leaky conservation)

• Under f a node $v \in V \setminus \{s, t\}$ is active, if $\sum_{w \in V} f(w, v) > 0$.

Definition

• A preflow $f: V \times V \to \mathbb{R}$ satisfies

$$f(v, w) = -f(w, v)$$
 for all $(v, w) \in V \times V$ (antisymmetry)
 $f(v, w) \le c_{\lambda}(v, w)$ for all $(v, w) \in V \times V$ (capacity)
 $\sum_{w \in V} f(w, v) \ge 0$ for all $v \in V \setminus \{s\}$ (leaky conservation)

- Under f a node $v \in V \setminus \{s, t\}$ is active, if $\sum_{w \in V} f(w, v) > 0$.
- A *flow* is a preflow without active nodes.

Definition

• A preflow $f: V \times V \to \mathbb{R}$ satisfies

$$f(v, w) = -f(w, v)$$
 for all $(v, w) \in V \times V$ (antisymmetry)
 $f(v, w) \le c_{\lambda}(v, w)$ for all $(v, w) \in V \times V$ (capacity)
 $\sum_{w \in V} f(w, v) \ge 0$ for all $v \in V \setminus \{s\}$ (leaky conservation)

- Under f a node $v \in V \setminus \{s, t\}$ is active, if $\sum_{w \in V} f(w, v) > 0$.
- A *flow* is a preflow without active nodes.

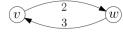
Remark: Flows are the feasible solutions of the LP (conservation instead of leaky conservation)

- Given preflow f. If $f(v, w) < c_{\lambda}(v, w)$, then (v, w) is called residual arc with residual capacity $c_{\lambda}(v, w) f(v, w)$.
- $d_f(v, w)$: Number of arcs of shortest residual path from v to w or ∞ .

Example:

$$\begin{array}{c}
c_{\lambda}(v,w) = 5 \\
f(v,w) = 3
\end{array}$$

Residual arcs and capacities:



- Given preflow f. If $f(v, w) < c_{\lambda}(v, w)$, then (v, w) is called residual arc with residual capacity $c_{\lambda}(v, w) f(v, w)$.
- $d_f(v, w)$: Number of arcs of shortest residual path from v to w or ∞ .

Example:

$$\begin{array}{c}
c_{\lambda}(v,w) = 5 \\
\hline
(v) & f(v,w) = 3
\end{array}$$

Residual arcs and capacities:

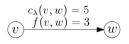
Definition

For preflow f, assignment $d: V \to \mathbb{N}$ is valid labeling if d(s) = n, d(t) = 0 and $d(v) \le d(w) + 1$ for all residual arcs (v, w).

• No sharp descents of valid labels d on residual arcs

- Given preflow f. If $f(v, w) < c_{\lambda}(v, w)$, then (v, w) is called residual arc with residual capacity $c_{\lambda}(v, w) f(v, w)$.
- $d_f(v, w)$: Number of arcs of shortest residual path from v to w or ∞ .

Example:



Residual arcs and capacities:

Definition

For preflow f, assignment $d: V \to \mathbb{N}$ is valid labeling if d(s) = n, d(t) = 0 and $d(v) \le d(w) + 1$ for all residual arcs (v, w).

- No sharp descents of valid labels d on residual arcs
- For all nodes $v: d(v) \leq \min\{d_f(v,t), d_f(v,s) + n\}$

- Given preflow f. If $f(v, w) < c_{\lambda}(v, w)$, then (v, w) is called residual arc with residual capacity $c_{\lambda}(v, w) f(v, w)$.
- $d_f(v, w)$: Number of arcs of shortest residual path from v to w or ∞ .

Example:

$$v \frac{c_{\lambda}(v, w) = 5}{f(v, w) = 3}$$

Residual arcs and capacities:

Definition

For preflow f, assignment $d: V \to \mathbb{N}$ is valid labeling if d(s) = n, d(t) = 0 and $d(v) \le d(w) + 1$ for all residual arcs (v, w).

- No sharp descents of valid labels d on residual arcs
- For all nodes $v: d(v) \le \min\{d_f(v, t), d_f(v, s) + n\}$
- For all active nodes $v: \min\{d_f(v,t), d_f(v,s) + n\} \leq 2n 1$

Claim: Flow f has valid labeling $d \Rightarrow f$ is maximal flow.

- If f not maximal: Exists residual path from s to t of length $\leq n-1$
- Then d is no valid labeling, since d(s) = n and d(t) = 0 cannot hold.

- **Claim:** Flow f has valid labeling $d \Rightarrow f$ is maximal flow.
 - ullet If f not maximal: Exists residual path from s to t of length $\leq n-1$
 - Then d is no valid labeling, since d(s) = n and d(t) = 0 cannot hold.

- Initialize preflow f and valid labeling d.
- As long as exist active nodes:
 Eliminate active node by push-relabel-operation (might create new active nodes).
- Finally: f is flow, d is still valid labeling.

- **Claim:** Flow f has valid labeling $d \Rightarrow f$ is maximal flow.
 - ullet If f not maximal: Exists residual path from s to t of length $\leq n-1$
 - Then d is no valid labeling, since d(s) = n and d(t) = 0 cannot hold.

- Initialize preflow f and valid labeling d.
- As long as exist active nodes:
 Eliminate active node by push-relabel-operation (might create new active nodes).
- Finally: f is flow, d is still valid labeling.

Remarks on Goldberg-Tarjan:

• Throughout execution: Labeling *d* remains valid and never decreases.

- **Claim:** Flow f has valid labeling $d \Rightarrow f$ is maximal flow.
 - ullet If f not maximal: Exists residual path from s to t of length $\leq n-1$
 - Then d is no valid labeling, since d(s) = n and d(t) = 0 cannot hold.

- Initialize preflow f and valid labeling d.
- As long as exist active nodes:
 Eliminate active node by push-relabel-operation (might create new active nodes).
- Finally: f is flow, d is still valid labeling.

Remarks on Goldberg-Tarjan:

- Throughout execution: Labeling d remains valid and never decreases.
- In some push-relabel-operations, d must increase.

- **Claim:** Flow f has valid labeling $d \Rightarrow f$ is maximal flow.
 - ullet If f not maximal: Exists residual path from s to t of length $\leq n-1$
 - Then d is no valid labeling, since d(s) = n and d(t) = 0 cannot hold.

- Initialize preflow f and valid labeling d.
- As long as exist active nodes:
 Eliminate active node by push-relabel-operation (might create new active nodes).
- Finally: f is flow, d is still valid labeling.

Remarks on Goldberg-Tarjan:

- Throughout execution: Labeling *d* remains valid and never decreases.
- In some push-relabel-operations, d must increase.
- Termination is due to $d(v) \le 2n 1$ for active nodes v.

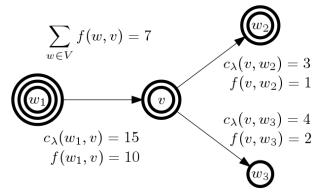
• Goal: Eliminate active node v by "pushing away flow" to neighbours.

- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).

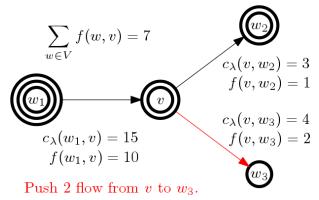
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).

- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling

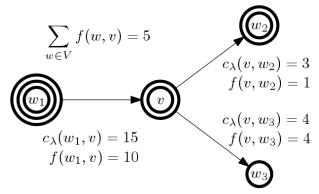
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



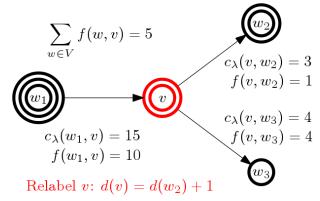
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



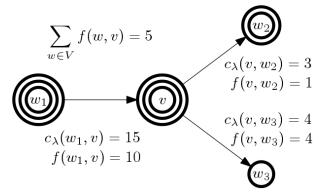
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



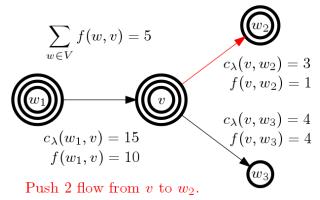
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



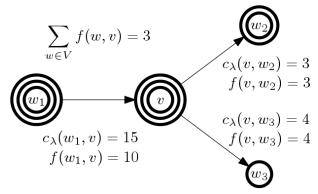
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



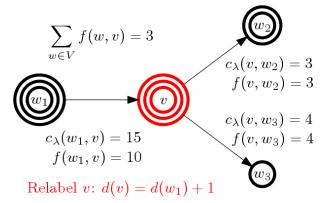
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



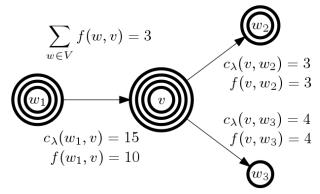
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



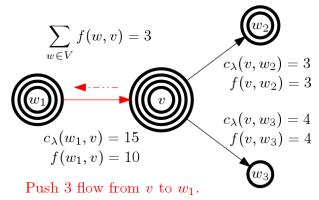
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



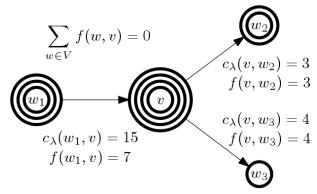
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



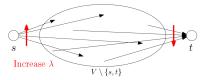
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



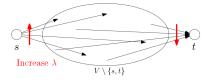
- Goal: Eliminate active node v by "pushing away flow" to neighbours.
- But push flow only to neighbours $w \in N(v)$ with d(w) < d(v).
- Therefore increase d(v) as much as neccessary (relabel).
- Finally: v not active anymore and d still valid labeling



 \bullet Want to calculate MaxFlow for $\lambda_1 \leq \lambda_2$

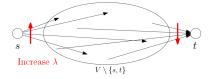


• Want to calculate MaxFlow for $\lambda_1 \leq \lambda_2$



- Idea of Parametric Goldberg Tarjan algorithm:
 - Run Goldberg Tarjan first for λ_1 : MaxFlow f, valid labeling d

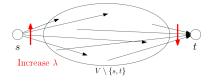
• Want to calculate MaxFlow for $\lambda_1 \leq \lambda_2$



- Idea of Parametric Goldberg Tarjan algorithm:
 - Run Goldberg Tarjan first for λ_1 : MaxFlow f, valid labeling d
 - Modify flow f for c_{λ_1} to obtain preflow f' for c_{λ_2} :

$$f'(v,w) := \begin{cases} \min\{c_{\lambda_2}(v,t), f(v,t)\} & \text{if } w = t \\ \max\{c_{\lambda_2}(s,w), f(s,w)\} & \text{if } v = s \text{ and } d(w) < n \\ f(v,w) & \text{otherwise} \end{cases}$$

• Want to calculate MaxFlow for $\lambda_1 \leq \lambda_2$

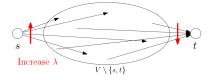


- Idea of Parametric Goldberg Tarjan algorithm:
 - Run Goldberg Tarjan first for λ_1 : MaxFlow f, valid labeling d
 - Modify flow f for c_{λ_1} to obtain preflow f' for c_{λ_2} :

$$f'(v,w) := \begin{cases} \min\{c_{\lambda_2}(v,t), f(v,t)\} & \text{if } w = t \\ \max\{c_{\lambda_2}(s,w), f(s,w)\} & \text{if } v = s \text{ and } d(w) < n \\ f(v,w) & \text{otherwise} \end{cases}$$

• Observe: f' is indeed preflow and d valid labeling for f'.

• Want to calculate MaxFlow for $\lambda_1 \leq \lambda_2$



- Idea of Parametric Goldberg Tarjan algorithm:
 - Run Goldberg Tarjan first for λ_1 : MaxFlow f, valid labeling d
 - Modify flow f for c_{λ_1} to obtain preflow f' for c_{λ_2} :

$$f'(v,w) := \begin{cases} \min\{c_{\lambda_2}(v,t), f(v,t)\} & \text{if } w = t \\ \max\{c_{\lambda_2}(s,w), f(s,w)\} & \text{if } v = s \text{ and } d(w) < n \\ f(v,w) & \text{otherwise} \end{cases}$$

- Observe: f' is indeed preflow and d valid labeling for f'.
- Run Goldberg Tarjan for λ_2 , but start with f' and d.

• MinCut: (X, X^{\complement}) with $s \in X \subsetneq V$ and $\delta_{c_{\lambda}}^{+}(X)$ minimal

- ullet MinCut: (X,X^{\complement}) with $s\in X\subsetneq V$ and $\delta_{c_{\lambda}}^{+}(X)$ minimal
- MaxFlow = MinCut (Ford & Fulkerson, 1962)

- ullet MinCut: (X,X^{\complement}) with $s\in X\subsetneq V$ and $\delta_{c_{\lambda}}^{+}(X)$ minimal
- MaxFlow = MinCut (Ford & Fulkerson, 1962)

Obtain MinCut (X, X^{\complement}) from MaxFlow f:

ullet Goldberg-Tarjan returns MaxFlow f and valid labeling d

- ullet MinCut: (X,X^{\complement}) with $s\in X\subsetneq V$ and $\delta_{c_{\lambda}}^{+}(X)$ minimal
- MaxFlow = MinCut (Ford & Fulkerson, 1962)

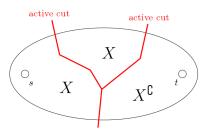
Obtain MinCut (X, X^{\complement}) from MaxFlow f:

- ullet Goldberg-Tarjan returns MaxFlow f and valid labeling d
- $X := \{ v \in V \mid \nexists \text{ residual path from } v \text{ to } t \}$ is MinCut:
 - For all $w \in X^{\complement}$ exists residual path from w to t
 - Any arc $e \in X \times X^{\complement}$ cannot be residual arc.
 - (X, X^{\complement}) is "active cut": $\forall e \in X \times X^{\complement} : f(e) = c_{\lambda}(e)$

- ullet MinCut: (X,X^{\complement}) with $s\in X\subsetneq V$ and $\delta_{c_{\lambda}}^{+}(X)$ minimal
- MaxFlow = MinCut (Ford & Fulkerson, 1962)

Obtain MinCut (X, X^{\complement}) from MaxFlow f:

- Goldberg-Tarjan returns MaxFlow f and valid labeling d
- $X := \{ v \in V \mid \nexists \text{ residual path from } v \text{ to } t \}$ is MinCut:
 - For all $w \in X^{\mathbb{C}}$ exists residual path from w to t
 - Any arc $e \in X \times X^{\complement}$ cannot be residual arc.
 - (X, X^{\complement}) is "active cut": $\forall e \in X \times X^{\complement} : f(e) = c_{\lambda}(e)$



Parametric Goldberg Tarjan Algorithm

Input: Directed graph (V, E); $s, t \in V$; capacities c_{λ} ; $\lambda_{1} \leq ... \leq \lambda_{I}$ **Output**: MaxFlow f_{i} and MinCut $(X_{i}, X_{i}^{\complement})$ for i = 1, ..., IInitialize f = 0; $d(s) \leftarrow n$; $d(v) \leftarrow 0$ f.a. $v \neq s$ **for** i = 1, ..., I **do**

Step 1: Update preflow

$$f(v, w) \leftarrow egin{cases} \min\{c_{\lambda_i}(v, t), f(v, t)\} & \text{if } w = t \\ \max\{c_{\lambda_i}(s, w), f(s, w)\} & \text{if } v = s \text{ and } d(w) < n \\ f(v, w) & \text{otherwise} \end{cases}$$

Step 2: Run Goldberg Tarjan

$$(f,d) \leftarrow \mathsf{GoldbergTarjan}(f,d)$$

Step 3: Find MinCut

$$d(v) \leftarrow \min\{d_f(v,s) + n, d_f(v,t)\} \text{ for } v \in V$$

 $X \leftarrow \{v \in V \mid d(v) \geq n\}$
Output $X_i = X$, $X_i = f''$

end

Theorem

1) The Parametric Goldberg Tarjan Algorithm works correctly with running time $\mathcal{O}(n^2(I+m))$.

Theorem.

- 1) The Parametric Goldberg Tarjan Algorithm works correctly with running time $\mathcal{O}(n^2(I+m))$.
- 2) The returned MinCuts (X_i, X_i^{\complement}) are nested, i.e. $X_1 \subseteq X_2 \subseteq ... \subseteq X_I$.

Theorem

- 1) The Parametric Goldberg Tarjan Algorithm works correctly with running time $O(n^2(l+m))$.
- 2) The returned MinCuts (X_i, X_i^{\complement}) are nested, i.e. $X_1 \subseteq X_2 \subseteq ... \subseteq X_I$.

Proof of 1):

- Correctness from discussion before
- Step 1 (Update preflow) requires $\mathcal{O}(m)$ per iteration
- Step 2 (Goldberg Tarjan) $\mathcal{O}(nm) + \#non\text{-}saturating pushs}$
- Step 3 (Find MinCut) requires $\mathcal{O}(m)$ per iteration
- Σ : $\mathcal{O}((n+l)m) + \#$ non-saturating pushs
- As in ADM I: # non-saturating pushs $\in \mathcal{O}(n^2(I+m))$
- In total: Running time $\mathcal{O}(n^2(l+m))$

Theorem

- 1) The Parametric Goldberg Tarjan Algorithm works correctly with running time $\mathcal{O}(n^2(I+m))$.
- 2) The returned MinCuts (X_i,X_i^\complement) are nested, i.e. $X_1\subseteq X_2\subseteq ...\subseteq X_I$.

Proof of 2):

- Throughout execution, *d* only increases.
- Cut is chosen as $X_i = \{v \in V \mid d(v) \ge n\}$

Corollary

If $l \in \mathcal{O}(n)$, the asymptotic running time of the Parametric Goldberg Tarjan algorithm is the same as for the normal Goldberg Tarjan algorithm.

Corollary

If $l \in \mathcal{O}(n)$, the asymptotic running time of the Parametric Goldberg Tarjan algorithm is the same as for the normal Goldberg Tarjan algorithm.

Proof:

- Parametric Goldberg Tarjan runs in $\mathcal{O}(n^2(I+m))$
- Since $l \in \mathcal{O}(n)$: Running time $\mathcal{O}(n^2m)$

Corollary

If $l \in \mathcal{O}(n)$, the asymptotic running time of the Parametric Goldberg Tarjan algorithm is the same as for the normal Goldberg Tarjan algorithm.

Proof:

- Parametric Goldberg Tarjan runs in $\mathcal{O}(n^2(I+m))$
- Since $l \in \mathcal{O}(n)$: Running time $\mathcal{O}(n^2m)$

Remark:

- Improve both to $O((n+l)m\log\frac{n^2}{m})$ by advanced strategies for push-relabel operations and advanced data structures.
- Parametric Goldberg Tarjan algorithm works on-line for sequence $\lambda_1 \leq ... \leq \lambda_I$.

Maximization of $\kappa(\lambda)$

- Goal: Determine $\lambda \in \mathbb{R}$ so that $\lambda \mapsto \kappa(\lambda)$ maximal
- ullet Assume $\lambda\mapsto c_\lambda(v,w)$ affine linear for all $(v,w)\in V imes V$

Maximization of $\kappa(\lambda)$

- Goal: Determine $\lambda \in \mathbb{R}$ so that $\lambda \mapsto \kappa(\lambda)$ maximal
- Assume $\lambda \mapsto c_{\lambda}(v, w)$ affine linear for all $(v, w) \in V \times V$

Corollary

For arbitrary many $\lambda_1 \leq ... \leq \lambda_l$ the Parametric Goldberg Tarjan algorithm outputs at most n-1 distinct MinCuts (X_i, X_i^\complement) .

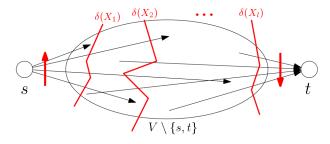
Maximization of $\kappa(\lambda)$

- Goal: Determine $\lambda \in \mathbb{R}$ so that $\lambda \mapsto \kappa(\lambda)$ maximal
- Assume $\lambda \mapsto c_{\lambda}(v, w)$ affine linear for all $(v, w) \in V \times V$

Corollary

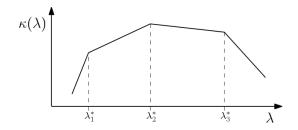
For arbitrary many $\lambda_1 \leq ... \leq \lambda_l$ the Parametric Goldberg Tarjan algorithm outputs at most n-1 distinct MinCuts (X_i, X_i^{\complement}) .

Proof: Follows directly from nested property $X_1 \subseteq X_2 \subseteq ... \subseteq X_l$.



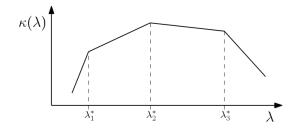
Recall from ADM II (Global Dependence on the Cost Vector):

- $\kappa(\lambda)$ is concave and piecewise linear.
- Breakpoints correspond to basis changes.



Recall from ADM II (Global Dependence on the Cost Vector):

- $\kappa(\lambda)$ is concave and piecewise linear.
- Breakpoints correspond to basis changes.



Consequence:

- Now basis change means change of MinCut (X, X^{\complement}) .
- Therefore at most n-1 breakpoints.

Calculate the line segments of $\kappa(\lambda)$:

• Assume parametric capacities are given for $v \in V \setminus \{s, t\}$ by

$$c_{\lambda}(s, v) = a_0(v) + \lambda \cdot a_1(v)$$

$$c_{\lambda}(v, t) = b_0(v) - \lambda \cdot b_1(v)$$

with $a_0(v), b_0(v) \in \mathbb{R}$ and $a_1(v), b_1(b) \ge 0$.

Calculate the line segments of $\kappa(\lambda)$:

• Assume parametric capacities are given for $v \in V \setminus \{s, t\}$ by

$$c_{\lambda}(s, v) = a_0(v) + \lambda \cdot a_1(v)$$

$$c_{\lambda}(v, t) = b_0(v) - \lambda \cdot b_1(v)$$

with $a_0(v), b_0(v) \in \mathbb{R}$ and $a_1(v), b_1(b) \ge 0$.

• Assume $\lambda_0 \in \mathbb{R}$ is not a breakpoint and (X, X^{\complement}) is MinCut for $\lambda = \lambda_0$.

Calculate the line segments of $\kappa(\lambda)$:

• Assume parametric capacities are given for $v \in V \setminus \{s,t\}$ by

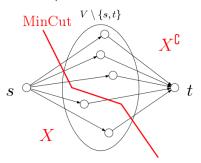
$$c_{\lambda}(s, v) = a_0(v) + \lambda \cdot a_1(v)$$

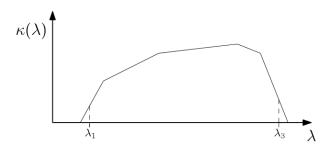
$$c_{\lambda}(v, t) = b_0(v) - \lambda \cdot b_1(v)$$

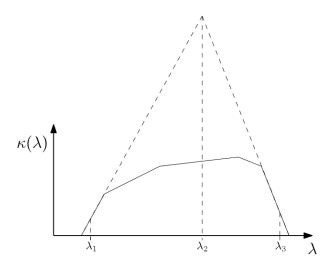
with $a_0(v), b_0(v) \in \mathbb{R}$ and $a_1(v), b_1(b) \ge 0$.

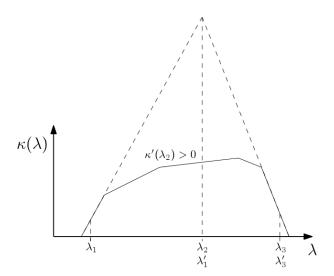
- Assume $\lambda_0 \in \mathbb{R}$ is not a breakpoint and (X, X^\complement) is MinCut for $\lambda = \lambda_0$.
- Line segment of $\kappa(\lambda)$ around λ_0 :

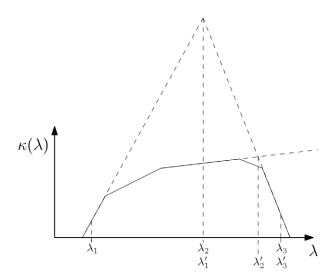
$$L(\lambda) = \kappa(\lambda_0) + (\lambda - \lambda_0) \cdot \left(\sum_{v \in X^{\complement} \setminus \{t\}} a_1(v) - \sum_{v \in X \setminus \{s\}} b_1(v) \right)$$

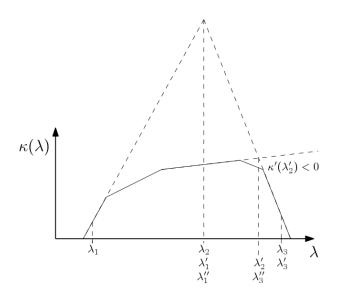


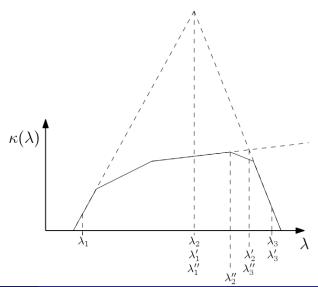


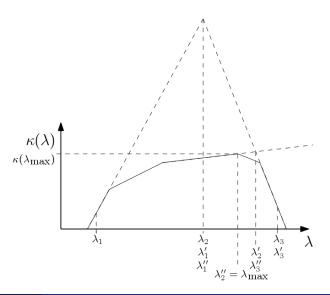


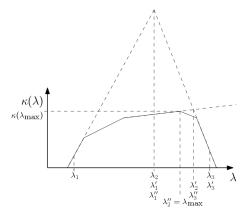






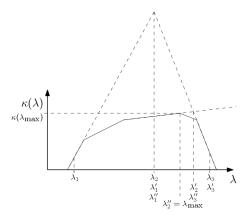






Basic idea:

• Shrink interval $[\lambda_1, \lambda_3]$ with $\lambda_{max} \in [\lambda_1, \lambda_3]$ as in example.

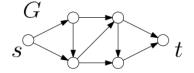


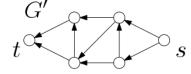
Basic idea:

- Shrink interval $[\lambda_1, \lambda_3]$ with $\lambda_{max} \in [\lambda_1, \lambda_3]$ as in example.
- For calculating $\kappa(\lambda)$ for $\lambda_1 \leq \lambda_1' \leq \lambda_1'' \leq \dots$ and $\lambda_3 \geq \lambda_3' \geq \lambda_3'' \geq \dots$ use two concurrent runs of Parametric Goldberg Tarjan.

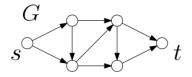
Adapt Parametric Goldberg Tarjan to decreasing values of λ

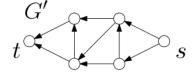
• Idea: From G obtain equivalent problem G' by reversing all arcs and interchanging source and sink.





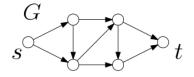
 Idea: From G obtain equivalent problem G' by reversing all arcs and interchanging source and sink.

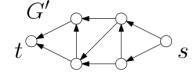




• In G', $\lambda \mapsto c_{\lambda}(s, v)$ non-increasing.

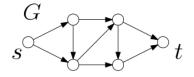
 Idea: From G obtain equivalent problem G' by reversing all arcs and interchanging source and sink.

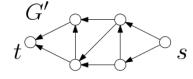




- In G', $\lambda \mapsto c_{\lambda}(s, v)$ non-increasing.
- In G', $c_{\lambda}(s, v)$ non-decreasing with decreasing λ .

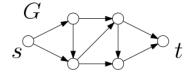
 Idea: From G obtain equivalent problem G' by reversing all arcs and interchanging source and sink.

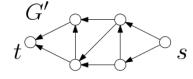




- In G', $\lambda \mapsto c_{\lambda}(s, v)$ non-increasing.
- In G', $c_{\lambda}(s, v)$ non-decreasing with decreasing λ .
- Analogously: In G', $c_{\lambda}(v,t)$ non-increasing with decreasing λ .

 Idea: From G obtain equivalent problem G' by reversing all arcs and interchanging source and sink.





- In G', $\lambda \mapsto c_{\lambda}(s, v)$ non-increasing.
- In G', $c_{\lambda}(s, v)$ non-decreasing with decreasing λ .
- Analogously: In G', $c_{\lambda}(v,t)$ non-increasing with decreasing λ .
- Apply Parametric Goldberg Tarjan on G'.

Application: Flow sharing

Given: Directed Graph (V, E) with capacities $c \in \mathbb{R}^E$ Multiple sources $s_1, ..., s_k \in V$, sink $t \in V$ Source weights $w_1, ..., w_k > 0$

Application: Flow sharing

Given: Directed Graph (V, E) with capacities $c \in \mathbb{R}^E$ Multiple sources $s_1, ..., s_k \in V$, sink $t \in V$ Source weights $w_1, ..., w_k > 0$

Amount of flow that originates in source s_i :

$$u_i := \sum_{v \in V} f(s_i, v)$$

Application: Flow sharing

Given: Directed Graph (V, E) with capacities $c \in \mathbb{R}^E$ Multiple sources $s_1, ..., s_k \in V$, sink $t \in V$ Source weights $w_1, ..., w_k > 0$

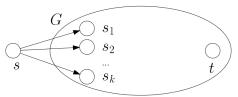
Amount of flow that originates in source s_i :

$$u_i := \sum_{v \in V} f(s_i, v)$$

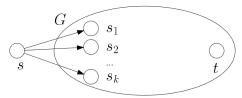
Perfect sharing:

- Restrict to flows with equal ratios $\frac{u_1}{w_1},...,\frac{u_k}{w_k}$.
- Find maximal flow under this restriction.

• Add supersource s, edge (s, s_i) with $c_{\lambda}(s, s_i) = \lambda \cdot w_i$ for i = 1, ..., k.

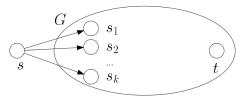


• Add supersource s, edge (s, s_i) with $c_{\lambda}(s, s_i) = \lambda \cdot w_i$ for i = 1, ..., k.



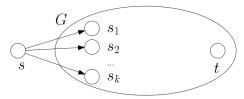
• Find smallest breakpoint λ_0 of $\kappa(\lambda)$ by similar algorithm.

• Add supersource s, edge (s, s_i) with $c_{\lambda}(s, s_i) = \lambda \cdot w_i$ for i = 1, ..., k.



- Find smallest breakpoint λ_0 of $\kappa(\lambda)$ by similar algorithm.
- MinCut = $(\{s\}, V)$ iff $\lambda \leq \lambda_0$.

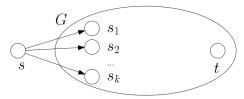
• Add supersource s, edge (s, s_i) with $c_{\lambda}(s, s_i) = \lambda \cdot w_i$ for i = 1, ..., k.



- Find smallest breakpoint λ_0 of $\kappa(\lambda)$ by similar algorithm.
- MinCut = $({s}, V)$ iff $\lambda \leq \lambda_0$.
- For $\lambda < \lambda_0$ have perfect sharing, since for all i:

$$\frac{u_i}{w_i} = \frac{f(s, s_i)}{w_i} = \frac{c_{\lambda}(s, s_i)}{w_i} = \lambda$$

• Add supersource s, edge (s, s_i) with $c_{\lambda}(s, s_i) = \lambda \cdot w_i$ for i = 1, ..., k.



- Find smallest breakpoint λ_0 of $\kappa(\lambda)$ by similar algorithm.
- MinCut = $({s}, V)$ iff $\lambda \leq \lambda_0$.
- For $\lambda \leq \lambda_0$ have perfect sharing, since for all *i*:

$$\frac{u_i}{w_i} = \frac{f(s, s_i)}{w_i} = \frac{c_{\lambda}(s, s_i)}{w_i} = \lambda$$

• λ_0 maximizes MaxFlow under perfect sharing.

• MaxMin sharing: Among maximum flows, maximize $\min_{i=1,\dots,k} \frac{u_i}{w_i}$.

- MaxMin sharing: Among maximum flows, maximize $\min_{i=1,...,k} \frac{u_i}{w_i}$.
- MinMax sharing: Among maximum flows, minimize $\max_{i=1,...,k} \frac{u_i}{w_i}$.

- MaxMin sharing: Among maximum flows, maximize $\min_{i=1,...,k} \frac{u_i}{w_i}$.
- MinMax sharing: Among maximum flows, minimize $\max_{i=1,...,k} \frac{u_i}{w_i}$
- Optimal sharing: Among maximum flows, maximize $\min_{i=1,...,k} \frac{u_i}{w_i}$ and minimize $\max_{i=1,...,k} \frac{u_i}{w_i}$ simultaneously.

- MaxMin sharing: Among maximum flows, maximize $\min_{i=1,...,k} \frac{u_i}{w_i}$.
- MinMax sharing: Among maximum flows, minimize $\max_{i=1,\dots,k} \frac{u_i}{w_i}$.
- Optimal sharing: Among maximum flows, maximize $\min_{i=1,\dots,k} \frac{u_i}{w_i}$ and minimize $\max_{i=1,\dots,k} \frac{u_i}{w_i}$ simultaneously.
- Lexicographic sharing: Among maximum flows, minimize

$$\frac{u_{i_1}}{w_{i_1}} < \dots < \frac{u_{i_1}}{w_{i_1}}$$

lexicograpically.

- MaxMin sharing: Among maximum flows, maximize $\min_{i=1,...,k} \frac{u_i}{w_i}$.
- MinMax sharing: Among maximum flows, minimize $\max_{i=1,...,k} \frac{u_i}{w_i}$.
- Optimal sharing: Among maximum flows, maximize $\min_{i=1,\dots,k} \frac{u_i}{w_i}$ and minimize $\max_{i=1,\dots,k} \frac{u_i}{w_i}$ simultaneously.
- Lexicographic sharing: Among maximum flows, minimize

$$\frac{u_{i_1}}{w_{i_1}} < \dots < \frac{u_{i_1}}{w_{i_1}}$$

lexicograpically.

Parametric Goldberg Tarjan can solve all of them!

References

• Gallo, Grigoriadis & Tarjan (1989). A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18 (1), pp. 30