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conjecture’,a Millennium Prize Problem’. Here we prov ide examples of new
fundamental resultsin pure mathematicsthat havebeen discoveredwiththe
assistance of mach'melearning—demonsuatinga method by which machine learning
canaid mathematiciansin discovering new conjectures and theorems. We proposed
process of using machine learningtodiscover potential patterns and relations
between mathematical objects, understanding them withateribution techniquesat
using theseob servations toguide intuitionand propose conjectures. We outlinett
machine-leaming»guided framework and demonstrate its successful application
current research questions indistinctareas of pure mathematics, in eachcase
showinghowitled® meaningful mathematical contributions onimportantop
problems:anew connection between the algebraic and geometricstructure of
andacandidate algorithm predictedby the combinatorial invariance conject
symmetric groups*. Our work may serveasa model for collaboration betwee
fields of mathematics andartificialintelligence (A1) that canachieve surpris

by leveragingthe respective strengthsof mathematicians and machinelea E
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Generating structures using reinforcement learning

e Encode instances by fixed length word w over fin. alphabet
Example: Graph on n vertices as w € {0, 1}(3)
e Start with empty word

e |n 7-th step:
predictor

(wy, -+ ,w;—1,0,...,0) =i probability dist.
=& | for next digit w;

Ci =iy
Sample w; randomly!
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Generating structures using reinforcement learning

Deep cross-entropy method:
e Generate N > 0 instances

e For each instance: Evaluate score function
Ex.: ,,How close is instance to conjectured bound?”

e For top y percentage of instances:

Training: Fit predictor on pairs
((wy,...,w;_1,0,...,0), €) — ey,

e Keep top x < y percentage of instances
for next iteration(s)
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Generating structures using reinforcement learning

Architecture of predictor

e Neuronal network with three hidden layers:
dense layers with 128 / 64 / 4 nodes
activation function: RelLU

e Output layer: sigmoid (binary case)
e Loss function: Cross entropy

e Optimizer: SGD



Example

M. Aouchiche and P. Hansen, A survey of automated
conjectures in spectral graph theory, 2010:

Conjecture: G connected graph, n > 3, largest
eigenvalue A1, matching number p. Then:
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Example

M. Aouchiche and P. Hansen, A survey of automated
conjectures in spectral graph theory, 2010:

Conjecture: G connected graph, n > 3, largest
eigenvalue A1, matching number p. Then:

)\1—|—,u2\/n—1—|—1

Apply cross-entropy method:
Fix n, minimize score function A\; +



Example

For n = 19, average score after many iterations:

average reward in top 10% sessions
14 oo Conjectured best (v19 —1 + 1)

12 +

£ 10 A
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&
B 1 conj. refuted!
E 1 l

! ! 1 1 !
0 1000 2000 3000 4000 5000
iterations



Example

Evolution of best scoring instance:

conterexample
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Definition: 0-1-matrix patterns

The 0-1-matrix A € {0,1}"*® contains 0-1-matrix
P ¢ {0,1}**! if there exists a submatrix D € {0, 1}**!

with P < D.
Otherwise, A avoids P.

Example:

contains
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Pattern avoiding 0-1-matrices

o Pr:=10; r(iyli,; € 10,1}"*"™ permutation matrix of m € .S,

e Def: 0-1-matrix M contains (resp. avoids) m € S,
if M avoids (resp. contains) P.

e Example: 312-avoiding 0-1-matrices:

e Obs.: P, avoids P, iff m avoids ¢ as permutation pattern.
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Pattern avoiding 0-1-matrices

Conjecture (Fiiredi & Hajnal, 1992):
Let m € Si.. The number of 1-entries in matrices
M € {0,1}™*™ avoiding 7 is bounded by O(n).

Theorem (Marcus & Tardos, 2004):
Fiiredi-Hajnal-conjecture is true.

Proof: Later
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Permanent in pattern avoiding 0-1-matrices

Motivation: If A € {0,1}"*™ avoids 7, then the permanent
per(A) := Z Hai,a(i)
cecS,, 1=1

counts (7-avoiding) permutations .S,, contained in A.

Question (Brualdi & Cao, 2020):
Given n € N and 7w € Si, what is the value of

fr(n) := max {per(A) : A € {0,1}"*", A avoids 7}

Here: Wagner finds bounds on f315.



Permanent in pattern avoiding 0-1-matrices

Using the cross-entropy method, find 312-avoiding matrices
with high permanent:

. = m 5 ﬁ

per(A4;) =1 per(Az) =2 per(Asz) =4 per(Ay) = 8 per (A5) = 16

N
per(Ag) = 225

o =

per(Ajg) = 424 per(Aq) = 795 per(Ajz) = 1484 per(Ai3) = 2809

1]



Permanent in pattern avoiding 0-1-matrices

Using the cross-entropy method, find 312-avoiding matrices
with high permanent:

. = m 5 ﬁ

per(A;) = per(Az) =2 per(Asz) =4 per(Ay) = 8 per(A;) = 16

T

per(Ag) = 225

| |
per(Ajg) = 424 per(Aq) = 795 per(Ajz) = 1484 per(Ai3) = 2809

Breaks conjectured value f312(5) = 12 by Brualdi and Cao!



Permanent in pattern avoiding 0-1-matrices

Theorem:

20.88% S f312(n) S 24%/4 ~ 21.15??,
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Proof of lower bound:

Ax B :=

Observation:
e per(A x B) > per(A) - per(B)
o f312(n+m) > f312(n) - f312(M)



Proof of lower bound:

Ax B :=

Observation:
e per(A x B) > per(A) - per(B)
o f312(n+m) > f312(n) - f312(M)

Idea: Use per(Ai3) = 2809 > 29-88'13 and Fekete's Lemma.
[]
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Proof of upper bound:

Theorem (Bregman & Minc, 1973):
For A € {0,1}"*™ with row sums 71, ..., 7:

per(A) < H(ri!)l/”
i=1

Proposition (Brualdi & Cao, 2020):
At most 4n — 4 one entries in 312-avoiding matrix
M e {0,1}m*"™,

Idea: rhs. expression maximized when all r; = 4.
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I-entries in pattern avoiding 0-1-matrices

Def.: Let f(n,7) be max. number of 1-entries
in matrix M € {0,1}"*" avoiding .

Theorem (Marcus & Tardos, 2004):
For all m € Sy, it holds f(n,m) = O(n).

Proof: Assume n is multiple of k.

91,1

Sl’Z e o o

92,1

e {0,1}"*™ avoids 7

Divide M into blocks S; ; of size k* x k!
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if at lest k columns (resp. rows) in S; ; contain a 1-entry.

e Def: Block \S; ; is zero, if all entries in §; ; are zero.
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e Def: Block S; ; is wide (resp. tall),
if at lest k columns (resp. rows) in S; ; contain a 1-entry.

e Def: Block \S; ; is zero, if all entries in §; ; are zero.

f(n,m) < k*-#{S; ; that are wide }
+ k* - #{S, ; that are tall}
+ (k — 1)2 - #{S; ; that are neither zero, wide, tall}

Idea: Bound these numbers and solve linear recursion.
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Claim: #{S; ; that are not zero } < f (%, )

Proof:
o Matrix B = [bi,j] with

b 0 Sf,;,j IS zero
"1 S, is not zero

avoids 7.

e = B has at most f (%,77) 1-entries.
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Claim: In each column of blocks 57 ;, 52 5,53 5,

there are less than k(k,:) wide blocks.

Proof:
e Suppose not, then by pigeonhole principle:

k blocks share k columns of M
where they all have at least one 1-entry.

e = M contains every pattern m € S é

A

Analogous: In each row of blocks S; 1,.5; 2, -
2
there are less than k’(kk) tall blocks.
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Conclusion:
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+ k* - #{S; ; that are tall}
+ (k—1)? - #{8; ; that are neither zero, wide, tall}

< k> (l‘f)n +(k—1)2f (%w)




Conclusion:

f(n,m) < k*-#{S; ; that are wide }
+ k* - #{S; ; that are tall}
+ (k—1)? - #{8; ; that are neither zero, wide, tall}

< k> (l‘f)n +(k—1)2f (%w)

Solve linear recursion...



Don't avoid questions!




