

Mittagsseminar 3.11.2023

COLORING PROBLEMS ON ARRANGEMENTS OF PSEUDOLINES

Sandro Roch

(Joint work with Rimma Hämäläinen)

Pseudoline arrangements

Pseudoline arrangement: Finite family of continuous curves $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R}^2$ with

$$\lim_{t \to \infty} \|f_i(t)\| = \lim_{t \to -\infty} \|f_i(t)\| = \infty,$$

each two of which intersect in exactly one point.

Ex: *nonsimple* arrangement:

Ex: *simple* arrangement:

Def: *Crossing coloring* of arrangement *A*:

- Coloring of the crossings of ${\mathscr A}$
- Avoiding twice the same color along any pseudoline

Question: How many colors are required, depending on n?

Proposition: For every arrangement \mathscr{A} there is a crossing coloring using n colors.

If \mathscr{A} is simple: Equivalent to edge coloring of K_n :

- For $n \in 2\mathbb{Z}$: Need exactly n-1 colors.
- For $n \in 2\mathbb{Z} + 1$: Need exactly n colors.

Excursion: hypergraph coloring

Convention:

- vertex coloring: coloring of the vertices, avoiding monochromatic hyperedges
- edge coloring: coloring of the hyperedges, avoiding twice the same color at any vertex

Terminology for hypergraph $\mathcal{H} = (V, \mathcal{E})$:

- simple: For all $E_1, E_2 \in \mathscr{E} : |E_1 \cap E_2| \leq 1$ and $|E| \geq 2$ f.a. $E \in \mathscr{E}$.
- codegree: $\max_{u,v \in V} \# \{ E \in E : \{u,v\} \subset E \}$
- k-uniform: For all $E \in \mathcal{E}$: |E| = k.
- k-bounded: For all $E \in \mathscr{E}$: $|E| \leq k$.

Erdős-Faber-Lovász conjecture

Problem:

Let
$$|A_i| = n$$
 for $1 \le i \le n$, $|A_i \cap A_j| \le 1$ for all $i < j$.

Can one color the elements $\bigcup_i A_i$ using n colors such that each A_i contains all colors?

Equivalent: Every simple hypergraph on n vertices can be edge-colored using n colors.

Example:

 $A_{1} = \{1, 2, \cancel{X}, \cancel{X}\}$ $A_{2} = \{1, 5, \cancel{K}, \cancel{X}\}$ $A_{3} = \{1, 8, \cancel{X}, \cancel{N}\}$ $A_{4} = \{2, 5, 8, \cancel{N}\}$

Erdős-Faber-Lovász conjecture

Proposition: For every arrangement \mathscr{A} there is a crossing coloring using n colors.

Proof: Define simple hypergraph $\mathcal{H}(\mathcal{A})$:

- vertices $\sim n$ pseudolines
- hyperedges \sim crossings

Then: edge coloring of $\mathscr{H}(\mathscr{A}) \Leftrightarrow$ crossing coloring of \mathscr{A}

Open problem:

Find a deterministic algorithm for crossing colorings using n colors.

Algorithm by Chang & Lawler (1987) uses 1.5n - 2 colors.

• Let

$$\max(\mathscr{A}) := \max_{l \in \mathscr{A}} \ \# \text{crossings on } l$$

• Observe:
$$\mathscr{A}$$
 simple $\Rightarrow mx(\mathscr{A}) = n - 1$

Conjecture:

For every arrangement \mathscr{A} there is a crossing coloring using $mx(\mathscr{A}) + c$ colors, for some constant c.

Example:

 $mx(\mathscr{A}) = 4$

Need $mx(\mathscr{A}) + 3 = 7$ colors.

Theorem: (Pippenger & Spencer, 1989) For every $k, \varepsilon > 0$, there exists $\delta > 0$ such that the following holds: If \mathcal{H} is a k-uniform D-regular hypergraph of codegree at most δD , then \mathcal{H} can be edge colored using $(1 + \varepsilon) \cdot D$ colors.

Theorem: (Kahn, 1996) For every $k, \varepsilon > 0$, there exists $\delta > 0$ such that the following holds: If \mathscr{H} is a k-bounded hypergraph of max-degree at most D and codegree at most δD , then \mathscr{H} can be list edge colored using $(1 + \varepsilon) \cdot D$ colors.

Consequence: For every $k, \varepsilon > 0$ there is a mx₀ so that for every arrangement \mathscr{A} with $mx(\mathscr{A}) \ge mx_0$ and only having crossings of degree at most k there exists a valid crossing coloring using

 $\chi(\mathscr{A}) \le (1 + \varepsilon) \cdot \max(\mathscr{A})$

colors.

Def: Face respecting coloring of arrangement \mathscr{A} :

- \bullet Coloring of the crossings of \mathscr{A}
- Avoiding twice the same color on any face

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Two facts:

- This oriented graph is acyclic
- A pseudoline touches a face at most once

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Color greedily in order of top. sort.

Potential conflict ancestors of a crossing c:

Claim: Every crossing has at most n-1 conflict ancestors.

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Pseudolines crossing in $c: p_1, \cdots, p_k$ Let $\mathscr{A}' := \mathscr{A} - \{p_1, \cdots, p_k\}$

Case I: c lies in *unbounded* face F of \mathscr{A}' .

- At most n k 1 crossings on boundary of F
- p_1, \cdots, p_k add at most k conflict ancestors

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Pseudolines crossing in $c: p_1, \cdots, p_k$ Let $\mathscr{A}' := \mathscr{A} - \{p_1, \cdots, p_k\}$

Case II: c lies in *bounded* face F of \mathscr{A}' .

- At most n k crossings on boundary of F
- Crossing s cannot be conflict ancestor
- p_1, \cdots, p_k add at most k conflict ancestors

Def: *Pseudoline coloring* of arrangement \mathscr{A} :

- Coloring of the pseudolines of \mathscr{A}
- Avoiding monochromatic crossings

 $\chi_{pl}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

 $\chi_{pl}(\mathscr{A}) = 3$

First observations:

• $2 \le \chi_{pl}(\mathscr{A}) \le n$ (unless n < 2)

•
$$\mathscr{A}$$
 simple $\Leftrightarrow \chi_{pl}(\mathscr{A}) = n$

- Ordinary point: Crossing of degree 2.
- Set $\sigma_k(n) := \max\{\# \text{ord. points of } \mathscr{A} : \chi_{pl}(\mathscr{A}) = k\}$

Proposition: We have $\sigma_k(n) \in \Theta(n^2)$. Precisely, $t_k(n) - n \leq \sigma_k(n) \leq t_k(n)$,

where $t_k(n)$ is the Turan number.

Proof upper bound:

• "ordinary graph" $G_o(\mathscr{A})$:

vertices \sim pseudolines; edges \sim ordinary points

- If more then $t_k(n)$ ord. points in \mathcal{A} , then $G_o(\mathcal{A})$ has (k+1)-clique (Turán theorem).
- Then these pseudolines need pw. different colors, $\chi_{pl}(\mathcal{A}) > k$.

- Ordinary point: Crossing of degree 2.
- Set $\sigma_k(n) := \max\{\# \text{ord. points of } \mathscr{A} : \chi_{pl}(\mathscr{A}) = k\}$

Proposition: We have
$$\sigma_k(n) \in \Theta(n^2)$$
. Precisely,
 $t_k(n) - n \le \sigma_k(n) \le t_k(n)$,

where $t_k(n)$ is the Turan number.

Proof lower bound: Construction for n = 14 and k = 4:

Obs.: There are arbitrary large arrangements \mathscr{A} with $\chi_{pl}(\mathscr{A}) = 2 \cdot \chi(G_o(\mathscr{A})).$

Computing $\chi_{pl}(\mathscr{A})$ is hard:

- G = (V, E): arbitrary simple graph, V = [n]
- Start with arbitrary wiring diagram of pseudolines p_1, \cdots, p_n .
- $\forall \{i, j\} \notin E$: *"vertical antenna"* through crossing of p_i and p_j , all antennas meet in common crossing
- Then: $G \leq G_o(\mathscr{A})$ and $\chi(G) \leq \chi_{pl}(\mathscr{A}) \leq \chi(G) + 2$

Observation: Crossings of low degree, especially *ordinary points* (degree 2) play a crucial role!

Proposition: Using $\mathcal{O}(n^{\frac{1}{l-1}})$ one can color the pseudolines avoiding monochromatic crossings of degree in $\{l, l+1, \cdots, l+r\}$, for any constant r.

Proposition:

Using $\mathcal{O}(\sqrt{n})$ colors one can color the pseudolines avoiding monochromatic crossings of degree at least 4.

Proof: Case l = 2 is trivial, assume l > 2.

- Assign each pseudoline uniform random color out of $\{1, \dots, k\}$.
- For each crossing c with $l \leq \deg(c) \leq l + r$ have *"bad event"*

 \mathscr{E}_c : c is monochromatic .

• We have

$$\mathbb{P}[\mathcal{E}_{c}] = \frac{1}{k^{\deg(c)-1}} \le \frac{1}{k^{l-1}} =: p$$

- \mathscr{E}_c is mut. indep. to all $\mathscr{E}_{c'}$ without pseudoline through c and c'.
- These are all $\mathscr{E}_{c'}$ but at most

$$\deg(c)\frac{n}{l-1} \le \frac{l+r}{l-1} \cdot n =: d$$

many.

• By Lovász Local Lemma, if $4pd \leq 1$, i.e.

$$k \ge \left(\frac{4(l+r)n}{l-1}\right)^{\frac{1}{l-1}}$$

then with positive porbability none of the \mathcal{E}_c happens.

Theorem: (Frieze & Mubay, 2013) Fix $k \ge 3$. Every simple k-uniform hypergraph with maximum degree Δ can be vertex colored using

$$c \cdot \left(\frac{\Delta}{\log \Delta}\right)^{\frac{1}{k-1}}$$

colors, where c depends only on k.

Idea: Encode arrangement \mathscr{A} as hypergraph \mathscr{H} :

- vertices \sim pseudolines
- hyperedges \sim crossings

Consequence: Fix $l \ge 3$. Using

$$e \cdot \left(\frac{n}{\log n}\right)^{\frac{1}{l-1}}$$

colors, one can find a pseudoline coloring avoiding monochromatic crossings of degree l.

Coloring lines of line arrangements

Theorem: (Ackermann, Pach, Pinchasi, Radoičić, Toth, 2014) The lines of every arrangement of lines can be colored using $\mathscr{O}\left(\sqrt{n/\log n}\right)$ colors avoiding monochromatic faces.

Theorem: (Bose, Cardinal, Collette, Hurtado, Korman, Langerman, Taslaskian, 2013)

For every $n_0 \in \mathbb{N}$ there is an arrangement of $n \ge n_0$ lines that needs at least $\Omega(\log n / \log \log n)$ colors for coloring the lines avoiding monochromatic faces.

Questions....?