Mittagsseminar 3.11.2023

CoLORING PROBLEMS ON ARRANGEMENTS OF PSEUDOLINES

Sandro Roch

(Joint work with Rimma Hämäläinen)

Pseudoline arrangements

Pseudoline arrangement: Finite family of continuous curves $f_{1}, \cdots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with

$$
\lim _{t \rightarrow \infty}\left\|f_{i}(t)\right\|=\lim _{t \rightarrow-\infty}\left\|f_{i}(t)\right\|=\infty,
$$

each two of which intersect in exactly one point.

Ex: nonsimple arrangement:

Ex: simple arrangement:

Crossing colorings

Def: Crossing coloring of arrangement \mathscr{A} :

- Coloring of the crossings of \mathscr{A}
- Avoiding twice the same color along any pseudoline

Example:

Question: How many colors are required, depending on n ?

Crossing colorings

Proposition: For every arrangement \mathscr{A} there is a crossing coloring using n colors.

If \mathscr{A} is simple: Equivalent to edge coloring of K_{n} :

- For $n \in 2 \mathbb{Z}$:

Need exactly $n-1$ colors.

- For $n \in 2 \mathbb{Z}+1$: Need exactly n colors.

Excursion: hypergraph coloring

Convention:

- vertex coloring: coloring of the vertices, avoiding monochromatic hyperedges
- edge coloring: coloring of the hyperedges, avoiding twice the same color at any vertex

Terminology for hypergraph $\mathscr{H}=(V, \mathscr{E})$:

- simple: For all $E_{1}, E_{2} \in \mathscr{E}:\left|E_{1} \cap E_{2}\right| \leq 1$ and $|E| \geq 2$ f.a. $E \in \mathscr{E}$.
- codegree: $\max _{u, v \in V} \#\{E \in E:\{u, v\} \subset E\}$
- k-uniform: For all $E \in \mathscr{E}:|E|=k$.
- k-bounded: For all $E \in \mathscr{E}:|E| \leq k$.

Erdős-Faber-Lovász conjecture

Problem:

Let $\left|A_{i}\right|=n$ for $1 \leq i \leq n,\left|A_{i} \cap A_{j}\right| \leq 1$ for all $i<j$.
Can one color the elements $\bigcup_{i} A_{i}$ using n colors such that each A_{i} contains all colors?

Equivalent: Every simple hypergraph on n vertices can be edge-colored using n colors.

Example:

$$
\begin{aligned}
& A_{1}=\{1,2, \mathrm{X}, \mathrm{x}\} \\
& A_{2}=\left\{1,5, x_{6}, \mathbb{X}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{4}=\{2,5,8, \text { 戈 }\}
\end{aligned}
$$

Erdős-Faber-Lovász conjecture

Problem:

Let $\left|A_{i}\right|=n$ for $1 \leq i \not n, \mid A /\left\lceil A_{j} \mid \leq 1\right.$ for all $i<j$.
Can one color the elen each A_{i} contan ψ

Equivalent: Every edge-colored Proven in 2021! By D. Y. Kang, T. Kelly, D. Kühn, A. Methuku

Example:

$$
\begin{aligned}
& A_{3}=\{1,8, \not,, \geq \times \chi\} \\
& A_{4}=\{2,5,8, \text {, 込 }\}
\end{aligned}
$$

Crossing colorings

Proposition: For every arrangement \mathscr{A} there is a crossing coloring using n colors.

Proof: Define simple hypergraph $\mathscr{H}(\mathscr{A})$:

- vertices $\sim n$ pseudolines
- hyperedges \sim crossings

Then: edge coloring of $\mathscr{H}(\mathscr{A}) \Leftrightarrow$ crossing coloring of \mathscr{A}
Open problem:
Find a deterministic algorithm for crossing colorings using n colors.

Algorithm by Chang \& Lawler (1987) uses $1.5 n-2$ colors.

Crossing colorings

- Let

$$
\operatorname{mx}(\mathscr{A}):=\max _{l \in \mathscr{A}} \# \text { crossings on } l
$$

- Observe: \mathscr{A} simple $\Rightarrow \operatorname{mx}(\mathscr{A})=n-1$

Conjecture:

For every arrangement \mathscr{A} there is a crossing coloring using $\operatorname{mx}(\mathscr{A})+c$ colors, for some constant c.

Example:

$$
\operatorname{mx}(\mathscr{A})=4
$$

Need $\operatorname{mx}(\mathscr{A})+3=7$ colors.

Crossing colorings

Theorem: (Pippenger \& Spencer, 1989)
For every $k, \varepsilon>0$, there exists $\delta>0$ such that the following holds:
If \mathscr{H} is a k-uniform D-regular hypergraph of codegree at most δD, then \mathscr{H} can be edge colored using $(1+\varepsilon) \cdot D$ colors.

Theorem: (Kahn, 1996)
For every $k, \varepsilon>0$, there exists $\delta>0$ such that the following holds:
If \mathscr{H} is a k-bounded hypergraph of max-degree at most D and codegree at most δD, then \mathscr{H} can be list edge colored using $(1+\varepsilon) \cdot D$ colors.

Crossing colorings

Consequence: For every $k, \varepsilon>0$ there is a mx_{0} so that for every arrangement \mathscr{A} with $\mathrm{mx}(\mathscr{A}) \geq \mathrm{mx}_{0}$ and only having crossings of degree at most k there exists a valid crossing coloring using

$$
\chi(\mathscr{A}) \leq(1+\varepsilon) \cdot \operatorname{mx}(\mathscr{A})
$$

colors.

Face respecting colorings

Def: Face respecting coloring of arrangement \mathscr{A} :

- Coloring of the crossings of \mathscr{A}
- Avoiding twice the same color on any face

Example:

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Proof:

Two facts:

- This oriented graph is acyclic
- A pseudoline touches a face at most once

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Color greedily in order of top. sort.
Potential conflict ancestors of a crossing c :

Claim: Every crossing has at most $n-1$ conflict ancestors.

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Pseudolines crossing in $c: p_{1}, \cdots, p_{k}$
Let $\mathscr{A}^{\prime}:=\mathscr{A}-\left\{p_{1}, \cdots, p_{k}\right\}$
Case I: c lies in unbounded face F of \mathscr{A}^{\prime}.

- At most $n-k-1$ crossings on boundary of F
- p_{1}, \cdots, p_{k} add at most k conflict ancestors

Face respecting colorings

Proposition: For every arrangement \mathscr{A} there is a face respecting coloring using n colors.

Pseudolines crossing in $c: p_{1}, \cdots, p_{k}$
Let $\mathscr{A}^{\prime}:=\mathscr{A}-\left\{p_{1}, \cdots, p_{k}\right\}$
Case II: c lies in bounded face F of \mathscr{A}^{\prime}.

- At most $n-k$ crossings on boundary of F
- Crossing s cannot be conflict ancestor
- p_{1}, \cdots, p_{k} add at most k conflict ancestors

Pseudoline colorings

Def: Pseudoline coloring of arrangement \mathscr{A} :

- Coloring of the pseudolines of \mathscr{A}
- Avoiding monochromatic crossings
$\chi_{p l}(\mathscr{A})$: minimal number of colors in pseudoline coloring

Example:

$$
\chi_{p l}(\mathscr{A})=3
$$

First observations:

- $2 \leq \chi_{p l}(\mathscr{A}) \leq n \quad($ unless $n<2)$
- \mathscr{A} simple $\Leftrightarrow \chi_{p l}(\mathscr{A})=n$

Pseudoline colorings

- Ordinary point: Crossing of degree 2.
- Set $\sigma_{k}(n):=\max \left\{\#\right.$ ord. points of $\left.\mathscr{A}: \chi_{p l}(\mathscr{A})=k\right\}$

Proposition: We have $\sigma_{k}(n) \in \Theta\left(n^{2}\right)$. Precisely,

$$
t_{k}(n)-n \leq \sigma_{k}(n) \leq t_{k}(n),
$$

where $t_{k}(n)$ is the Turan number.

Proof upper bound:

- „,ordinary graph" $G_{o}(\mathscr{A})$: vertices \sim pseudolines; edges \sim ordinary points
- If more then $t_{k}(n)$ ord. points in \mathscr{A}, then $G_{o}(\mathscr{A})$ has $(k+1)$-clique (Turán theorem).
- Then these pseudolines need pw. different colors, $\chi_{p l}(\mathscr{A})>k$.

Pseudoline colorings

- Ordinary point: Crossing of degree 2.
- Set $\sigma_{k}(n):=\max \left\{\#\right.$ ord. points of $\left.\mathscr{A}: \chi_{p l}(\mathscr{A})=k\right\}$

Proposition: We have $\sigma_{k}(n) \in \Theta\left(n^{2}\right)$. Precisely,

$$
t_{k}(n)-n \leq \sigma_{k}(n) \leq t_{k}(n),
$$

where $t_{k}(n)$ is the Turan number.
Proof lower bound: Construction for $n=14$ and $k=4$:

Pseudoline colorings

Obs.: There are arbitrary large arrangements \mathscr{A} with $\chi_{p l}(\mathscr{A})=2 \cdot \chi\left(G_{o}(\mathscr{A})\right)$.

Pseudoline colorings

Computing $\chi_{p l}(\mathscr{A})$ is hard:

- $G=(V, E)$: arbitrary simple graph, $V=[n]$
- Start with arbitrary wiring diagram of pseudolines p_{1}, \cdots, p_{n}.
- $\forall\{i, j\} \notin E$: „vertical antenna" through crossing of p_{i} and p_{j}, all antennas meet in common crossing
- Then: $G \leq G_{o}(\mathscr{A})$ and $\chi(G) \leq \chi_{p l}(\mathscr{A}) \leq \chi(G)+2$

Pseudoline colorings

Observation: Crossings of low degree, especially ordinary points (degree 2) play a crucial role!

Proposition:

Using $\mathscr{O}\left(n^{\frac{1}{l-1}}\right)$ one can color the pseudolines avoiding monochromatic crossings of degree in $\{l, l+1, \cdots, l+r\}$, for any constant r.

Proposition:

Using $\mathbb{O}(\sqrt{n})$ colors one can color the pseudolines avoiding monochromatic crossings of degree at least 4 .

Proof: Case $l=2$ is trivial, assume $l>2$.

- Assign each pseudoline uniform random color out of $\{1, \cdots, k\}$.
- For each crossing c with $l \leq \operatorname{deg}(c) \leq l+r$ have "bad event"

$$
\mathscr{E}_{c}: c \text { is monochromatic }
$$

- We have

$$
\mathbb{P}\left[\mathscr{E}_{c}\right]=\frac{1}{k^{\operatorname{deg}(c)-1}} \leq \frac{1}{k^{l-1}}=: p
$$

- \mathscr{E}_{c} is mut. indep. to all $\mathscr{E}_{C^{\prime}}$ without pseudoline through c and c^{\prime}.
- These are all $\mathscr{E}_{c^{\prime}}$ but at most

$$
\operatorname{deg}(c) \frac{n}{l-1} \leq \frac{l+r}{l-1} \cdot n=: d
$$

many.

- By Lovász Local Lemma, if $4 p d \leq 1$, i.e.

$$
k \geq\left(\frac{4(l+r) n}{l-1}\right)^{\frac{1}{l-1}}
$$

then with positive porbability none of the \mathscr{E}_{c} happens.

Pseudoline colorings

Theorem: (Frieze \& Mubay, 2013)
Fix $k \geq 3$. Every simple k-uniform hypergraph with maximum degree Δ can be vertex colored using

$$
c \cdot\left(\frac{\Delta}{\log \Delta}\right)^{\frac{1}{k-1}}
$$

colors, where c depends only on k.

Pseudoline colorings

Idea: Encode arrangement \mathscr{A} as hypergraph \mathscr{H} :

- vertices ~ pseudolines
- hyperedges \sim crossings

Consequence: Fix $l \geq 3$. Using

$$
c \cdot\left(\frac{n}{\log n}\right)^{\frac{1}{l-1}}
$$

colors, one can find a pseudoline coloring avoiding monochromatic crossings of degree l.

Coloring lines of line arrangements

Theorem: (Ackermann, Pach, Pinchasi, Radoičić, Toth, 2014) The lines of every arrangement of lines can be colored using $\mathcal{O}(\sqrt{n / \log n})$ colors avoiding monochromatic faces.

Theorem: (Bose, Cardinal, Collette, Hurtado, Korman, Langerman, Taslaskian, 2013)

For every $n_{0} \in \mathbb{N}$ there is an arrangement of $n \geq n_{0}$ lines that needs at least $\Omega(\log n / \log \log n)$ colors for coloring the lines avoiding monochromatic faces.

Questions.... ?

