

Mittagsseminar 14.07.2023

A LOWER BOUND ON THE MIXING TIME OF GLAUBER DYNAMICS

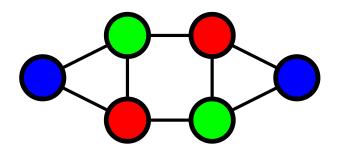
Largely based on (Hayes & Sinclair, 2007)

Talk by Sandro Roch

- In a *spin system* we have:
 - \circ G = (V, E) graph, V sites
 - $Q = \{1, \cdots, q\}$ possible spins
 - \circ configuration: assignemnt $\sigma:V\to Q$
 - \circ feasible configurations: $\Omega \subseteq Q^V$
 - \circ hard constraints iff $\Omega \neq Q^V$

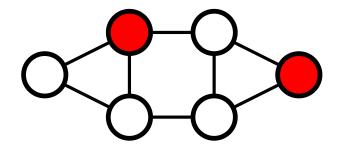
- In a *spin system* we have:
 - \circ G = (V, E) graph, V sites
 - $Q = \{1, \cdots, q\}$ possible spins
 - \circ configuration: assignemnt $\sigma: V \to Q$
 - \circ feasible configurations: $\Omega \subseteq Q^V$
 - \circ hard constraints iff $\Omega \neq Q^V$
- Example: Proper colorings

$$\Omega = \left\{ \sigma \in [q]^V : \forall \{v, w\} \in E : \sigma(v) \neq \sigma(w) \right\}$$



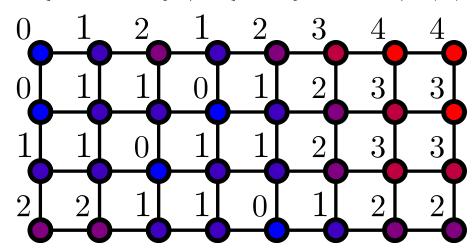
- In a *spin system* we have:
 - \circ G = (V, E) graph, V sites
 - $Q = \{1, \cdots, q\}$ possible spins
 - \circ configuration: assignemnt $\sigma: V \to Q$
 - \circ feasible configurations: $\Omega \subseteq Q^V$
 - \circ hard constraints iff $\Omega \neq Q^V$
- **Example:** Independent sets

$$\Omega = \left\{\sigma \in \{\mathsf{True}, \mathsf{False}\}^V : \forall \{v,w\} \in E : \neg (\sigma(v) \land \sigma(w))\right\}$$



- In a *spin system* we have:
 - \circ G = (V, E) graph, V sites
 - $Q = \{1, \cdots, q\}$ possible *spins*
 - \circ configuration: assignemnt $\sigma:V\to Q$
 - \circ feasible configurations: $\Omega \subseteq Q^V$
 - hard constraints iff $\Omega \neq Q^V$
- **Example:** *k*-heights

$$\Omega = \{ \sigma : V \to \{0, \cdots, k\} \mid \forall \{v, w\} \in E : |\sigma(v) - \sigma(w)| \le 1 \}$$



- In a *spin system* we have:
 - \circ G = (V, E) graph, V sites
 - $Q = \{1, \cdots, q\}$ possible *spins*
 - \circ configuration: assignemnt $\sigma:V\to Q$
 - \circ feasible configurations: $\Omega \subseteq Q^V$
 - hard constraints iff $\Omega \neq Q^V$
- **Problem:** Given prob. distribution π on Q^V with

$$\pi(\sigma) > 0 \Leftrightarrow \sigma \in \Omega,$$

how can we sample from π ?

• Fast sampling from π often yields FPRAS for $|\Omega|$.

- Glauber dynamics: Markov chain $(\sigma_t) \subset \Omega$
- Transition rule $\sigma \to \sigma'$:
 - 1) Pick $v \in V$ u.a.r.
 - 2) Update $\sigma'(v) \sim \kappa_{\sigma,v}$
- Update distribution $\kappa_{\sigma,v}:Q\times Q\to [0,1]$ satisfies:
 - \circ $\kappa_{\sigma,v}$ is *local*, i.e. depends only on σ on $\mathcal{N}(v) \cup \{v\}$
 - \circ $\kappa_{\sigma,v}$ is *reversible* w.r.t. distribution π on Ω , i.e.

$$\pi(\sigma) \cdot \kappa_{\sigma,v}(s,s') = \pi(\sigma') \cdot \kappa_{\sigma',v}(s',s)$$

- Assume (σ_t) is *irreducible* and *aperiodic*, hence *ergodic*.
- Implies $\sigma_t \to \pi$ as $t \to \infty$.

Update rules

Examples of reversible update rules:

Usual choice: heatbath update rule:

$$\kappa_{\sigma,v}(s,s') := \mathbb{P}_{\pi}[\sigma'(v) = s' \mid \sigma'(w) = \sigma(w), w \neq v]$$

metropolis update rule:

$$\kappa_{\sigma,v}(s,s') := \begin{cases} \frac{1}{|Q|} \cdot \min\left\{\frac{\mathbb{P}_{\pi}[\sigma'(v)=s' \mid \sigma'(w)=\sigma(w), w \neq v]}{\mathbb{P}_{\pi}[\sigma'(v)=s \mid \sigma'(w)=\sigma(w), w \neq v]}, 1\right\} & : s' \neq s \\ 1 - \sum_{s' \neq s} \kappa_{\sigma,v}(s,s') & : s' = s \end{cases}$$

- up/down update rule, if $\pi = \mathrm{Unif}(\Omega)$:
 - with prob. $\frac{1}{2}$, $\sigma'(v) := \sigma(v) + 1$ (if $\sigma'(v) \in Q$ and $\sigma' \in \Omega$)
 - otherwise, $\sigma'(v) := \sigma(v) 1$ (if $\sigma'(v) \in Q$ and $\sigma' \in \Omega$)

These rules are local in Markov random fields

Excursion: Ising model

- Typically G = (V, E) sublattice of \mathbb{Z}^d
- Spins $Q = \{-1, 1\}$, configurations $\Omega = Q^V$
- Hamiltonian $H:Q^V \to \mathbb{R}$:

$$H(\sigma) := \sum_{\{u,v\} \in E} \sigma(u)\sigma(v) + h \sum_{v \in V} \sigma(v)$$

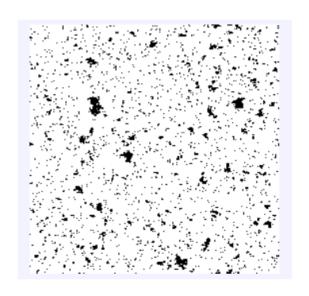
• Boltzmann distribution / Gibbs measure π on Ω :

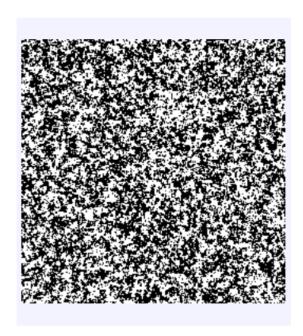
$$\pi(\sigma) = rac{e^{eta H(\sigma)}}{Z_{eta}(\sigma)} \qquad ext{where } Z_{eta} = \sum_{\sigma \in \Omega} e^{eta H(\sigma)}$$

at inverse temperature $\beta \geq 0$, $\beta \propto T^{-1}$

Excursion: Ising model

• Explains phase transition of ferromagnetism at critical temperature T_c .





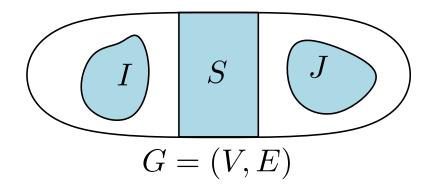
Ising model on 250×250 torus at low, critical, and high temperature, respectively. Figure taken from (Levin, Peres & Wilmer, 2017).

Excursion: Markov random fields

• Markov random field: graph G = (V, E) with random variables $(X_v)_{v \in V}$ satisfying global Markov property:

$$X_I \perp \!\!\!\perp X_J \mid X_S$$

for all $I, J \subset V$ separated by $S \subset V$.



• In discrete case this means:

$$\mathbb{P}[X_i = x_i, i \in I \mid X_S, X_J] = \mathbb{P}[X_i = x_i, i \in I \mid X_S]$$

Excursion: Markov random fields

Heatbath update rule becomes local:

$$\kappa_{\sigma,v}(s,s') := \mathbb{P}_{\pi}[\sigma'(v) = s' \mid \sigma'(w) = \sigma(w), w \neq v]$$
$$= \mathbb{P}_{\pi}[\sigma'(v) = s' \mid \sigma'(w) = \sigma(w), w \in \mathcal{N}(v)]$$

• Examples:

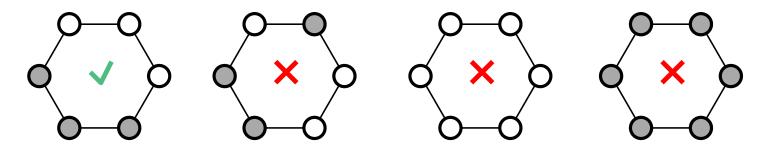
- Ising model with Gibbs measure
- Unif. distrib. on colorings; indp. sets; k-heights; etc.

Theorem: (Hammersley & Clifford, 1971)

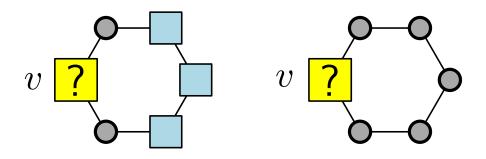
Let p(x) be the joint density function of a family of random variables $(X_v)_{v \in V}$ with p(x) > 0. Then, (X_v) is a Markov random field if and only if p(x) is a Gibbs distribution.

Non-markovian example

• $G=C_n$, $Q=\{0,1\}$, $\Omega=\left\{\sigma\in Q^V\mid \text{1's form block of length }1\leq l\leq n-1\right\}$



- Local update rule at v_i : flip, iff $\sigma(v_{i-1}) \neq \sigma(v_{i+1})$
- Dynamics reversible w.r.t. $\pi = \mathrm{Unif}(\Omega)$



$$\mathbb{P}_{\pi}[\sigma(v) = 1 \mid \mathcal{N}(v)] \neq \mathbb{P}_{\pi}[\sigma(v) = 1 \mid V \setminus \{v\}]$$

Mixing time

• Total variation distance between prob. dist. μ, μ' on Ω :

$$\begin{split} \|\mu - \mu'\|_{TV} &:= \max_{A \subset \Omega} |\mu(A) - \mu(A')| \\ &= \frac{1}{2} \sum_{\sigma \in \Omega} |\mu(\sigma) - \mu(\sigma')| \\ &= \inf \{ \mathbb{P}[X \neq Y] \mid \mathsf{cpl.} \ X \sim \mu, Y \sim \mu' \} \end{split}$$

• Mixing time of ergodic Markov chain $X_t \to \pi$:

$$\tau := \max_{X_0 \in \Omega} \min \left\{ t : \|X_t - \pi\|_{TV} < \frac{1}{2e} \right\}$$

Main result

Theorem A (Hayes & Sinclair, 2007)

Let $\Delta \geq 2$ fixed, and let G be any graph on n vertices with maximum degree at most Δ . Any nonredundant Glauber dyamics on G has mixing time $\Omega(n \log n)$, where the constant in the $\Omega(\cdot)$ depends only on Δ .

• nonredundant means:

For all v, there exist $\sigma, \sigma' \in \Omega$ with $\sigma(v) \neq \sigma(v')$

• **Problem:** How many coupons do you have to sample u.a.r. in order to observe all?

- Problem: How many coupons do you have to sample u.a.r. in order to observe all?
- Answer:

$$\mathbb{P}\left[|T - nH_n| \ge cn\right] \le \frac{\pi^2}{6c^2}$$

where
$$nH_n = n\log n + \gamma n + O(n^{-1})$$

- In less than $\Omega(n \log n)$ steps, some sites have never been updated (with high prob.)
- This does **not** imply $\|\sigma_t \pi\|_{TV} > \frac{1}{2e}$!

Complementary result

Bounding $\Delta(G)$ is necessary for a lower bound of $\tau \in \Omega(n \log n)$ on the mixing time.

Theorem B (Hayes & Sinclair, 2007)

For each n, let $\Delta(n)$ be any natural number satisfying $2 \leq \Delta(n) < n$. Then there exists a family of graphs G_n with n vertices and maximum degree $\Delta(n)$, and an associated Glauber dynamics on G_n with mixing time $O\left(\frac{n\log n}{\log \Delta(n)}\right)$.

Reduction to continuous time

- $(X_t^{\mathfrak{D}})_{t\in\mathbb{N}}$ discrete-time Glauber dynamics as before
- $(X_t^{\mathscr{C}})_{t\geq 0}$ continuous-time Glauber dynamics:
 - \circ Each vertex v has independent rate-1 $Poisson\ clock$
 - \circ When clock at v rings: update v
 - Number of updates till time t is Poi(nt)-distributed.
- Express $X_t^{\mathscr{C}}$ in terms of $X_t^{\mathscr{D}}$:

$$\mathbb{P}[X_t^{\mathscr{C}} = \sigma] = \sum_{s=0}^{\infty} e^{-nt} \frac{(nt)^s}{s!} \cdot \mathbb{P}[X_s^{\mathscr{D}} = \sigma]$$

- One verifies: $\tau^{\mathcal{D}} \geq \frac{n}{6} \cdot \tau^{\mathcal{C}}$
- Remains to show: $\tau^{\mathscr{C}} \in \Omega(\log n)$

Greedy coupling

- Two copies (X_t) , (Y_t) of same dynamics
- (X_t) and (Y_t) use identical clocks on vertices.
- When clock on v rings, coupling $(X,Y) \to (X',Y')$:
 - Choose (X'(v),Y'(v)) by greedy coupling of $\mu:=\kappa_{(X,v)}(X(v),\cdot)$ and $\mu':=\kappa_{(Y,v)}(Y(v),\cdot)$.
 - greedy couling means

$$\mathbb{P}[X'(v) \neq Y'(v)] = \|\mu - \mu'\|_{TV} .$$

 \circ If X=Y on $\mathcal{N}\cup\{v\}$, then

$$\mathbb{P}[X'(v) = Y'(v)] = 1$$

Lemma: (Percolation-Lemma)

Let (X_t) and (Y_t) be continuous-time Glauber dynamics on G with max. deg. at most Δ . Suppose $X_0 = Y_0$ on all sites in $V \setminus A$. Let $A' \subset V$ with $d := \operatorname{dist}(A', A) > 0$. Then, the greedy coupling of (X_t) and (Y_t) satisfies

$$\mathbb{P}[X_t = Y_t \text{ on } A'] \ge 1 - \min\{|\delta A|, |\delta A'|\} \left(\frac{et \, \Delta}{d}\right)^a$$

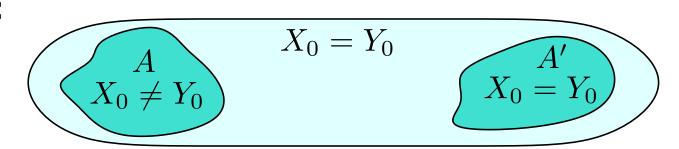
The same holds even if the update probabilities of (X_t) and (Y_t) differ at sites in A.

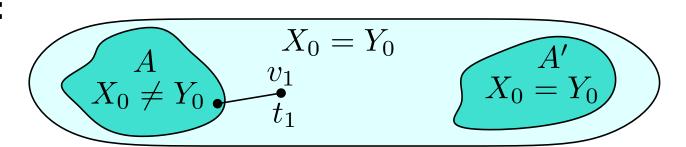
$$G = (V, E)$$

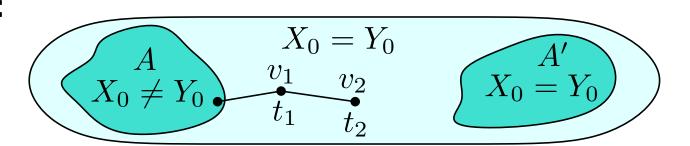
$$X_0 = Y_0$$

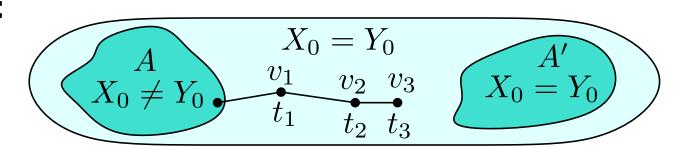
$$X_0 = Y_0$$

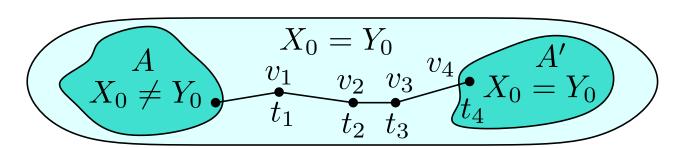
$$X_0 = Y_0$$



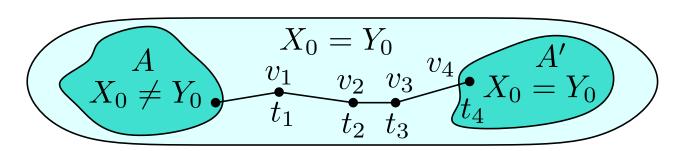








Proof:



- For affecting A' from A, need updates at times $t_1 < \cdots < t_r$ along some connecting path v_1, \cdots, v_r .
- Waiting time for t_{i+1} after t_i is Exp(1) distributed.
- Prob. p of observing update sequence $t_1 < \cdots < t_d < t$ equals prob. of $\geq d$ rings within time t of rate-1 clock.

$$p = \sum_{i=d}^{\infty} \frac{t^i}{i!} e^{-t} < \left(\frac{et}{d}\right)^d$$

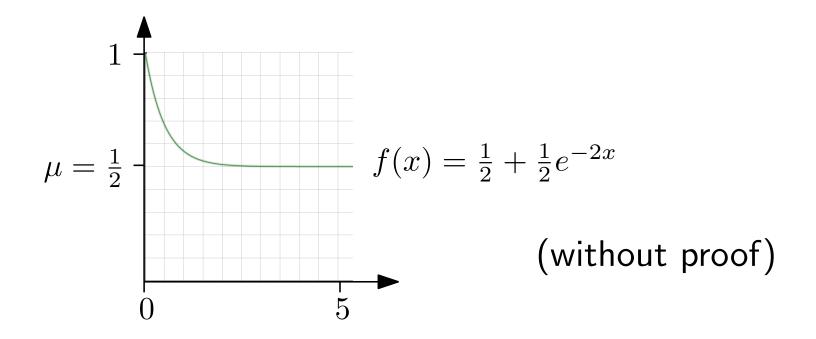
• Union bound on at most $\min\{|\delta A|, |\delta A'|\}\Delta^d$ paths.

Monotonicity property

Lemma: (Monotonicity property)

Fix $v \in V$. Let $Q_v \subset Q$, set $\mu := \mathbb{P}_{\pi}[\sigma(v) \in Q_v]$, and suppose $0 < \mu < 1$. Sample $X_0 \sim (\pi \,|\, X_0(v) \in Q_v)$. Then, for every $t \geq 0$,

$$\mathbb{P}[X_t(v) \in Q_v] \ge \mu + (1 - \mu) \cdot \exp\left(\frac{-t}{1 - \mu}\right) .$$



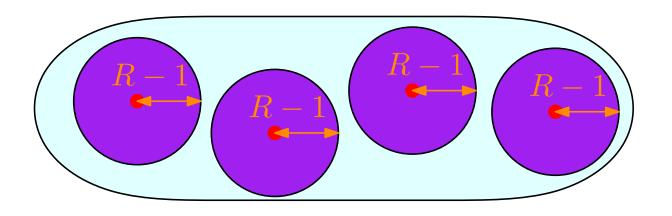
Proof sketch of main result

Theorem (Hayes & Sinclair, 2007)

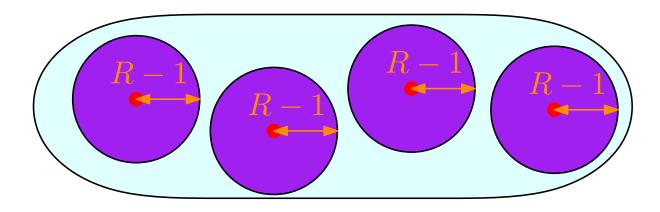
Let $\Delta \geq 2$ fixed, and let G be any graph on n vertices with maximum degree at most Δ . Any continuous-time Glauber dyamics on G has mixing time $\Omega(\log n)$, where the constant in the $\Omega(\cdot)$ depends only on Δ .

Proof: Only for case $\Omega = Q^V$ (no hard-constraints)

Set $R:=\lceil \frac{\log n}{4\log \Delta} \rceil$. Choose $\lceil \frac{n}{\Delta^{2R}} \rceil$ pw. disjoint and non-adjacent balls of radius R-1 and with centers $C\subset V$.

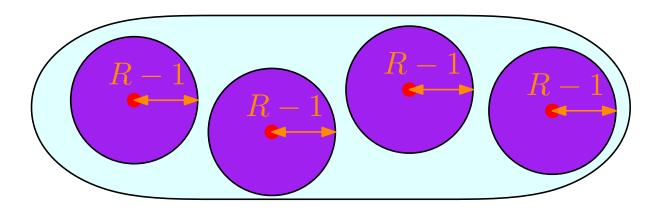


Set $R:=\lceil \frac{\log n}{4\log \Delta} \rceil$. Choose $\lceil \frac{n}{\Delta^{2R}} \rceil$ pw. disjoint and non-adjacent balls of radius R-1 and with centers $C\subset V$.



For each $v \in C$, choose arbitrary $\emptyset \neq Q_v \subsetneq Q$ set of "good spins".

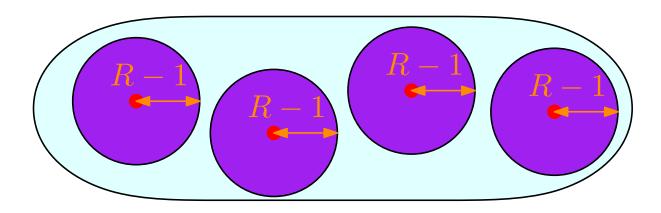
Set $R:=\lceil \frac{\log n}{4\log \Delta} \rceil$. Choose $\lceil \frac{n}{\Delta^{2R}} \rceil$ pw. disjoint and non-adjacent balls of radius R-1 and with centers $C\subset V$.



For each $v \in C$, choose arbitrary $\emptyset \neq Q_v \subsetneq Q$ set of "good spins".

$$f(X) := \frac{\#\{v \in C : X(v) \in Q_v\}}{|C|} \quad \text{for } X \in \Omega$$

Set $R:=\lceil \frac{\log n}{4\log \Delta} \rceil$. Choose $\lceil \frac{n}{\Delta^{2R}} \rceil$ pw. disjoint and non-adjacent balls of radius R-1 and with centers $C\subset V$.



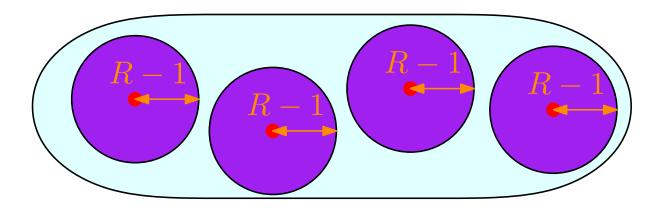
For each $v \in C$, choose arbitrary $\emptyset \neq Q_v \subsetneq Q$ set of "good spins".

$$f(X) := \frac{\#\{v \in C : X(v) \in Q_v\}}{|C|} \quad \text{for } X \in \Omega$$

Goal: Specify distribution on X_0 and threshold $\hat{\mu} > 0$ s.t. with $T := \frac{\log n}{8e\Delta \log \Delta}$ we have

$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e}$$

Set $R:=\lceil \frac{\log n}{4\log \Delta} \rceil$. Choose $\lceil \frac{n}{\Delta^{2R}} \rceil$ pw. disjoint and non-adjacent balls of radius R-1 and with centers $C\subset V$.

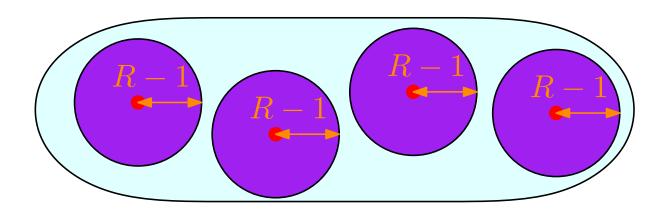


For each $v \in C$, choose arbitrary $\emptyset \neq Q_v \subsetneq Q$ set of "good spins".

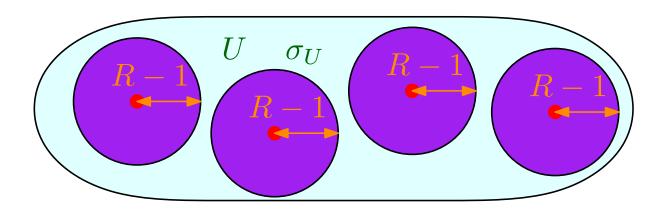
$$f(X) := \frac{\#\{v \in C : X(v) \in Q_v\}}{|C|} \quad \text{for } X \in \Omega$$

Goal: Specify distribution on X_0 and threshold $\hat{\mu} > 0$ s.t. with $T := \frac{\log n}{8e\Delta \log \Delta}$ we have

$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(\log n)$$

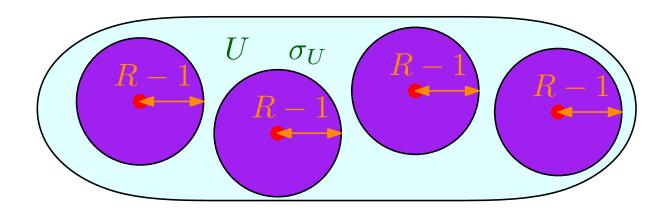


$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(n \log n)$$



$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(n \log n)$$

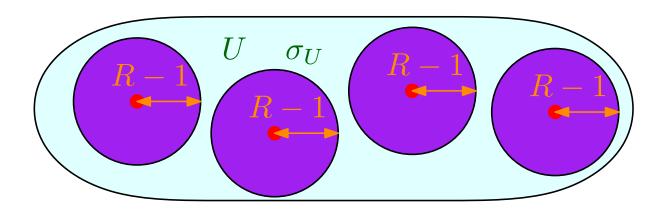
Let $U := V \setminus (\cup_{v \in C} B_{R-1}(v))$, choose $\sigma_u : U \to Q$ arbitrary.



$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(n \log n)$$

Let $U := V \setminus (\cup_{v \in C} B_{R-1}(v))$, choose $\sigma_u : U \to Q$ arbitrary.

$$\mu := \mathbb{E}_{(\pi \mid \sigma_u)}[f(X)] \qquad \varepsilon := \frac{1}{4e^{2T}} \qquad \hat{\mu} := \begin{cases} \mu - \varepsilon & : \mu > \frac{1}{2} \\ \frac{1}{2} & : \mu = \frac{1}{2} \\ \mu + \varepsilon & : \mu < \frac{1}{2} \end{cases}$$

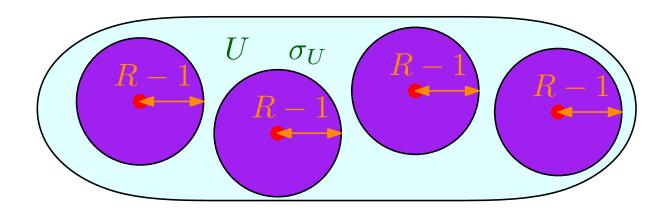


$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(n \log n)$$

Let $U := V \setminus (\cup_{v \in C} B_{R-1}(v))$, choose $\sigma_u : U \to Q$ arbitrary.

$$\mu := \mathbb{E}_{(\pi \mid \sigma_u)}[f(X)] \qquad \varepsilon := \frac{1}{4e^{2T}} \qquad \hat{\mu} := \begin{cases} \mu - \varepsilon & : \mu > \frac{1}{2} \\ \frac{1}{2} & : \mu = \frac{1}{2} \\ \mu + \varepsilon & : \mu < \frac{1}{2} \end{cases}$$

W.I.o.g. $\mathbb{P}_{\pi}[f(X) \geq \hat{\mu}] \leq \frac{1}{2}$ (otw. replace all Q_v by $V \setminus Q_v$)

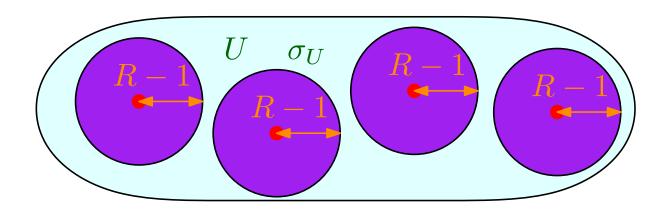


$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(n \log n)$$

Let $U := V \setminus (\cup_{v \in C} B_{R-1}(v))$, choose $\sigma_u : U \to Q$ arbitrary.

$$\mu := \mathbb{E}_{(\pi \mid \sigma_u)}[f(X)] \qquad \varepsilon := \frac{1}{4e^{2T}} \qquad \hat{\mu} := \begin{cases} \mu - \varepsilon & : \mu > \frac{1}{2} \\ \frac{1}{2} & : \mu = \frac{1}{2} \\ \mu + \varepsilon & : \mu < \frac{1}{2} \end{cases}$$

W.l.o.g. $\mathbb{P}_{\pi}[f(X) \geq \hat{\mu}] \leq \frac{1}{2}$ (otw. replace all Q_v by $V \setminus Q_v$) Initial distribution $X_0 \sim (\pi \mid \sigma_U, X_0(v) \in Q_v$ f.a. $v \in C$)



$$\left| \mathbb{P}[f(X_T) \ge \hat{\mu}] - \mathbb{P}_{\pi}[f(X) \ge \hat{\mu}] \right| > \frac{1}{2e} \implies \tau \in \Omega(n \log n)$$

Let $U := V \setminus (\cup_{v \in C} B_{R-1}(v))$, choose $\sigma_u : U \to Q$ arbitrary.

$$\mu := \mathbb{E}_{(\pi \mid \sigma_u)}[f(X)] \qquad \varepsilon := \frac{1}{4e^{2T}} \qquad \hat{\mu} := \begin{cases} \mu - \varepsilon & : \mu > \frac{1}{2} \\ \frac{1}{2} & : \mu = \frac{1}{2} \\ \mu + \varepsilon & : \mu < \frac{1}{2} \end{cases}$$

W.I.o.g. $\mathbb{P}_{\pi}[f(X) \geq \hat{\mu}] \leq \frac{1}{2}$ (otw. replace all Q_v by $V \setminus Q_v$)

Initial distribution $X_0 \sim (\pi \mid \sigma_U, X_0(v) \in Q_v \text{ f.a. } v \in C)$

Claim: $\mathbb{P}[f(X_T) \ge \hat{\mu}] > \frac{1}{2} + \frac{1}{2e}$ (blackboard)