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Glauber dynamics

e In a spin system we have:
o G = (V,FE) graph, V sites
o Q={1,---,q} possible spins
o configuration: assignemnt o : V. — ()
o feasible configurations: ) C QV
o hard constraints iff Q #£ QY
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e In a spin system we have:
o G = (V,FE) graph, V sites
o Q={1,---,q} possible spins
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Glauber dynamics

e In a spin system we have:
o G = (V,F) graph, V sites
o Q={1,---,q} possible spins
o configuration: assignemnt o : V — ()
O

feasible configurations: QQ C QY
o hard constraints iff Q # QY

o Example: £-heights
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Glauber dynamics

e In a spin system we have:
o G = (V,FE) graph, V sites
o Q={1,---,q} possible spins
o configuration: assignemnt o : V. — ()
o feasible configurations: ) C QV
o hard constraints iff Q # QY

o Problem: Given prob. distribution 7 on Q" with
(o) >0 0 €,

how can we sample from 77?7

e Fast sampling from 7 often yields FPRAS for [€}].



Glauber dynamics

o Glauber dynamics: Markov chain (o;) C 2
e Transition rule o — o’

1) Pick v eV ua.r.
2) Update 0'(v) ~ Koy

o Update distribution x4, : @ X Q — |0, 1] satisfies:
O Kg IS local, i.e. depends only on o on N (v) U{v}
O Kg IS reversible w.r.t. distribution 7 on (2, i.e.

(o) - kow(8,8) =m(0") - kor 1 (8, 8)

e Assume (o) is irreducible and aperiodic, hence ergodic.
e Implies o0y — m as t — oo.



Update rules

Examples of reversible update rules:

e Usual choice: heatbath update rule:
Kow(s,8) :=Prlo'(v) =5"| o' (w) =o(w),w # v]

e metropolis update rule:

1 s Pr[o(v)=5" | o' (w)=0(w) w#v] .,
Ro U(S, 5/) = ¢ 1@ mln{ Prlo’(v)=s | o/(w)=0c(w),w#v]’ 1} 1S F£ s
| 1 — ZS’;&S /430-711(8, S,) : S/ — g

e up/down update rule, if 7 = Unif(€2):
o with prob. 1, o/(v):=0c(v)+1 (ifo’(v) € Q and ¢’ € Q)
e otherwise, o' (v):=c(w)—1 (ifo’'(v) €Q and o’ € Q)

These rules are local in Markov random fields



Excursion: Ising model

Typically G = (V, E) sublattice of Z4
Spins Q = {—1, 1}, configurations Q = Q"
Hamiltonian H : QY — R:

H(o):= » o(uo) +h) o)

{u,v}eFrE veV

Boltzmann distribution / Gibbs measure 7 on €

e?H where Z Z eBH(o)
ZB(O-) . o)

(o) =

at inverse temperature 8 >0, B oc T 1



Excursion: Ising model

e Explains phase transition of ferromagnetism at critical
temperature T..

Ising model on 250 x 250 torus at low, critical, and high temperature,
respectively. Figure taken from (Levin, Peres & Wilmer, 2017).



Excursion: Markov random fields

e Markov random field: graph G = (V, E/) with random
variables (X, ),cv satisfying global Markov property:

X; U X, Xg

for all I,J C V separated by S C V.

e In discrete case this means:
PIX;, =uz;,i €1 | Xg,X;] =P[X; =a2i,i €] Xg]



Excursion: Markov random fields

e Heatbath update rule becomes local:
Kow($,8) :=Prlo’(v) =5 | o' (w) = o(w),w # v]
=P.lc'(v) =5 | o' (w) = o(w), w € N(v)]
e Examples:

o Ising model with Gibbs measure
o Unif. distrib. on colorings; indp. sets; k-heights; etc.

Theorem: (Hammersley & Clifford, 1971)

Let p(xz) be the joint density function of a family of random
variables (X, ),cy with p(z) > 0. Then, (X,) is a Markov random
field if and only if p(x) is a Gibbs distribution.




Non-markovian example

o G =0C), Q:{Oal}'
Q= {ce€ Q" |1's form block of length 1 <[ <n—1}

ORORORC,

o Local update rule at v;: flip, iff o(v;_1) # o(vii1)

e Dynamics reversible w.r.t. m = Umf(Q)

AL,
v |7 v |7
\O—/

Prlo(v) = 1[N (v)] # Prlo(v) =1 [V \ {v}]




Mixing time
e Total variation distance between prob. dist. p, p/ on €Q:

! o B /
[ = wllrv = max [u(A) — u(A)]

= 2 Y lu(o) — (o)

o€l
=inf{P[X #Y]|cpl. X ~pu, Y ~ p'}

e Mixing time of ergodic Markov chain X; — :

ndt s |1X, = 7lry < =
T — INax 1min . — 70 —_—
XQEQ t v 26



Main result

Theorem A (Hayes & Sinclair, 2007)

Let A > 2 fixed, and let G be any graph on n vertices with
maximum degree at most A. Any nonredundant Glauber dyamics
on G has mixing time 2(nlogn), where the constant in the Q(-)
depends only on A.

e nonredundant means:
For all v, there exist 0,0’ € Q) with o(v) # o(v’)




Intuition: Coupon collector’s problem
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u.a.r. in order to observe all?




Intuition: Coupon collector’s problem

{

Nord-Bhf.

Siid-Bhf.

Siid-Bhf.

West-Bhf.

{

Nord-Bhf.

o

Siid-Bhf.

o

Ost-Bhf.

Problem: How many coupons do you have to sample
u.a.r. in order to observe all?

Answer: 2

where nH, =nlogn +yn+ O(n™!)

In less than (nlogn) steps, some sites have never
been updated (with high prob.)

This does not imply |lo; — 7|7y > 5= |



Complementary result

Bounding A(G) is necessary for a lower bound
of 7 € Q(nlogn) on the mixing time.

Theorem B (Hayes & Sinclair, 2007)

For each n, let A(n) be any natural number satisfying
2 < A(n) < n. Then there exists a family of graphs G,, with n
vertices and maximum degree A(n), and an associated Glauber

dynamics on (G,, with mixing time O (%).




Reduction to continuous time

(X7 )¢en discrete-time Glauber dynamics as before

(X,®)¢>0 continuous-time Glauber dynamics:

o Each vertex v has independent rate-1 Poisson clock
o When clock at v rings: update v

o Number of updates till time t is Poi(nt)-distributed.

Express X,® in terms of X/”:

P[ X6 t)S

— U] = E " (n P[X? =
[ t 0] : Oe N [ ; 0]
One verifies: 72 > _‘76L .16

Remains to show: 7¢ € Q(logn)



Greedy coupling

e Two copies (X;), (Y;) of same dynamics
e (X%) and (Y;) use identical clocks on vertices.
e When clock on v rings, coupling (X,Y) — (X', Y"):
o Choose (X'(v),Y’(v)) by greedy coupling of
pi= K(x,0) (X (0),-) and p' == K(y,) (Y (0), ).
o greedy couling means
PIX'(v) # Y'(v)] = [[n— #llv -

o If X =Y on N U{wv}, then
PX'(v) =Y (v)] =1



Disagreement percolation

Lemma: (Percolation-Lemma)

Let (X;) and (Y;) be continuous-time Glauber dynamics on G
with max. deg. at most A. Suppose Xy = Y on all sites in V' \ A.
Let A’ C V with d := dist(A’, A) > 0. Then, the greedy coupling
of (X%) and (Y;) satisfies

et A\ ¢
P[X; =Y; on A'] > 1 —min{|dA|,|6A"|} <7>

The same holds even if the update probabilities of (X;) and (Y3)
differ at sites in A.

G:(VaE) XOYO
C Ty




Disagreement percolation

Proof:
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Disagreement percolation

Xo = Yo
b g,

Proof:




Disagreement percolation

Proof:




Disagreement percolation

Proof:




Disagreement percolation

Xo =Y ,
Y vy U3
byt

o For affecting A’ from A, need updates at times
t1 < --- < t, along some connecting path vy,:-- ,v,.
o Waiting time for ¢;, 1 after t; is Exp(1) distributed.

e Prob. p of observing update sequence t; < --- < tg <t
equals prob. of > d rings within time ¢ of rate-1 clock.

(et ¢
p— —E€ —_—
R d
 Union bound on at most min{|0A[, |[§ A'|}A¢ paths.

Proof:




Monotonicity property

Lemma: (Monotonicity property)

Fix v e V. Let Q, C Q, set y:=P,|lo(v) € Q,], and
suppose 0 < pu < 1. Sample Xy ~ (7| Xo(v) € Q).
Then, for every t > 0,

PIXy(0) € Qu] > ji+ (1— 1) - exp (%) .

1&
flz) =3+ 3¢

(without proof)




Proof sketch of main result

Theorem (Hayes & Sinclair, 2007)

Let A > 2 fixed, and let G be any graph on n vertices with
maximum degree at most A. Any continuous-time Glauber
dyamics on G has mixing time €2(logn), where the constant in
the €(-) depends only on A.

Proof: Only for case = Q" (no hard-constraints)
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Proof: Only for case = Q" (no hard-constraints)

Set R := 4lfoggz]. Choose | x5z | pw. disjoint and non-adjacent balls

of radius /7 — 1 and with centers C C V.
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For each v € C, choose arbitrary () # @, C @ set of ,,good spins".

F(x) = U EC :é(”) Sl o xeq




Proof: Only for case = Q" (no hard-constraints)
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f(X): for X € Q)
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Proof: Only for case = Q" (no hard-constraints)

Set R := 4lfogng]. Choose | x5z | pw. disjoint and non-adjacent balls

of radius /7 — 1 and with centers C C V.

©e®0

For each v € C, choose arbitrary () # @, C @ set of ,,good spins".
 #vel:X(v) € Qu}

f(X): for X € Q)
C|
Goal: Specify distribution on Xy and threshold i > 0
s.t. with 1" := 862)%0”;A we have

1
>3, = TE Q(logn)

P[f(Xr) > i) —Pr[f(X) > [
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Goal: Specify distribution on X and threshold & > 0

. L logn
s.t. with 1" := ScAlog A We have

Pf(Xr) > i) —Pr[f(X) > [

1
> \
5, — TE Q(nlogn)
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Goal: Specify distribution on X and threshold & > 0

. L logn
s.t. with 1" := ScAlog A We have

Pf(X7) 2 i) = Px[f(X) >
Let U :=V \ (Upec Br—1(v)), choose o, : U — @ arbitrary.
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Goal: Specify distribution on X and threshold & > 0

. L logn
s.t. with 1" := ScAlog A We have

Pf(X7) 2 i) = Px[f(X) >
Let U := V' \ (Upec Br—1(v)), choose o, : U — Q arbitrary.

1
> \
5, — TE Q(nlogn)

. (p—e p>1

pi=Bae) [[(X) - e=gmr =g p=a
1

2

wr+e pu<

\
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Goal: Specify distribution on X and threshold & > 0

. L logn
s.t. with 1" := ScAlog A We have

Pf(X7) 2 i) = Px[f(X) >
Let U := V' \ (Upec Br—1(v)), choose o, : U — Q arbitrary.

1
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5, — TE Q(nlogn)
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pi=Bae) [[(X) - e=gmr =g p=a
(U T € :,u<%

W.lo.g. Pr[f(X)>j]<2i (otw. replace all Q, by V' \ Q,)
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Goal: Specify distribution on X and threshold i > 0

. L logn
s.t. with 1" := ScAlog A We have

Pf(X7) 2 i) = Px[f(X) >
Let U := V' \ (Upec Br—1(v)), choose o, : U — Q arbitrary.

>1 ‘ Q(nl
e — T € (nlogn)

. (p—e p>1
pi=Bae) [[(X) - e=gmr =g p=a
(U T € :,u<%

W.lo.g. Pr[f(X)>j]<2i (otw. replace all Q, by V' \ Q,)
| o, Xo(v) € Q, fa. v e )

Initial distribution Xg ~ (7
Claim:  P[f(Xr)>a] > 3+ & (blackboard)



