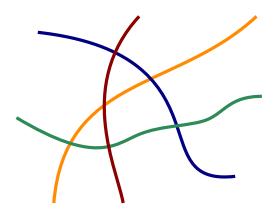


DMV-Studierendenkonferenz 2023

Erzeugung zufälliger Pseudogeradenarrangements



Sandro M. Roch

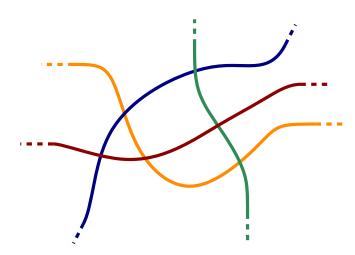
Pseudogeradenarrangements

Def: Pseudogeradenarrangement:

• Stetige Kurven $f_1,...,f_n:\mathbb{R} o\mathbb{R}^2$ mit

$$\lim_{t \to \infty} ||f_i(t)|| = \lim_{t \to -\infty} ||f_i(t)|| = \infty$$

Je zwei kreuzen sich in genau einem Punkt



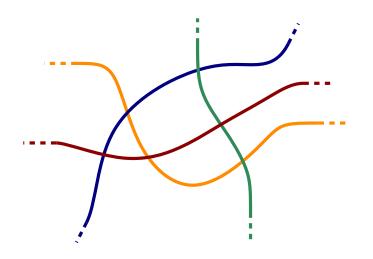
Pseudogeradenarrangements

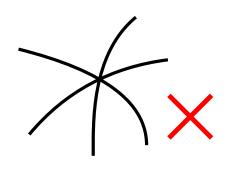
Def: Pseudogeradenarrangement:

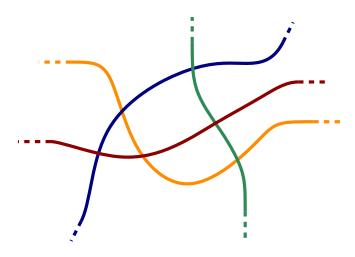
• Stetige Kurven $f_1,...,f_n:\mathbb{R} o\mathbb{R}^2$ mit

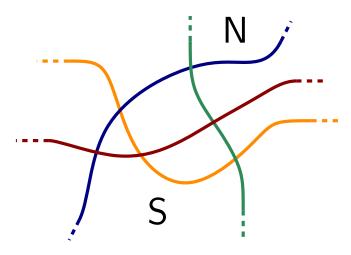
$$\lim_{t \to \infty} ||f_i(t)|| = \lim_{t \to -\infty} ||f_i(t)|| = \infty$$

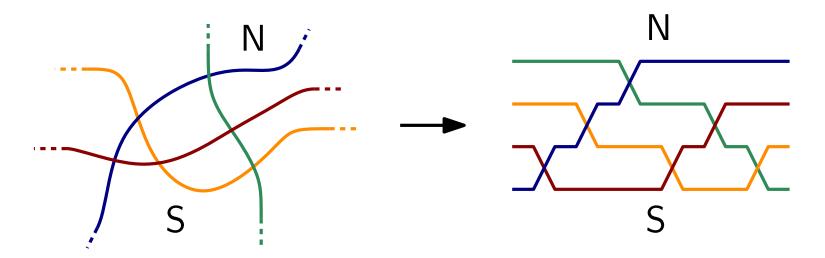
- Je zwei kreuzen sich in genau einem Punkt
- Keine 3 Pseudogeraden, die sich in einem Punkt kreuzen

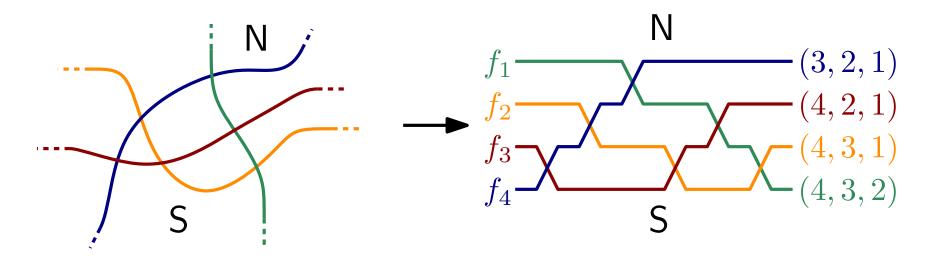






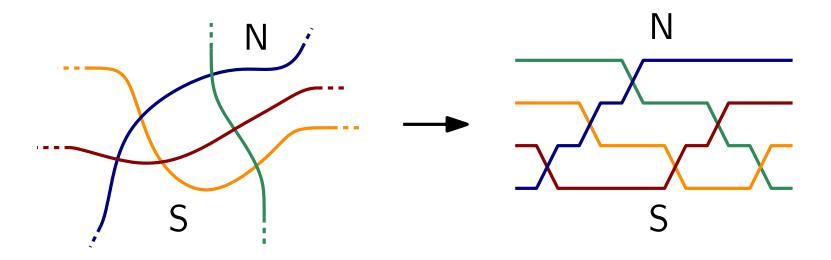




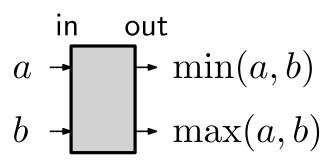


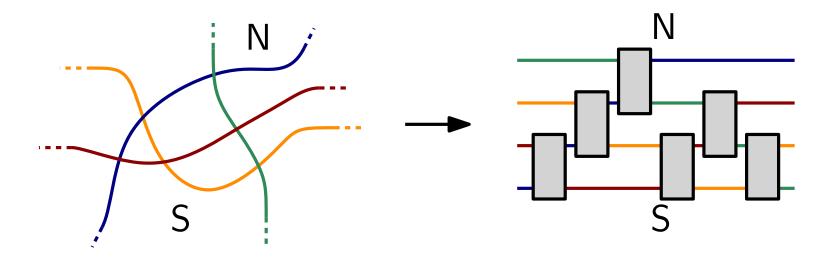
Kodierung durch Permutationen:

Permutation $\pi_i \in S_{n-1}$ kodiert Schnittreihenfolge von f_i .

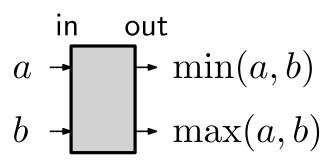


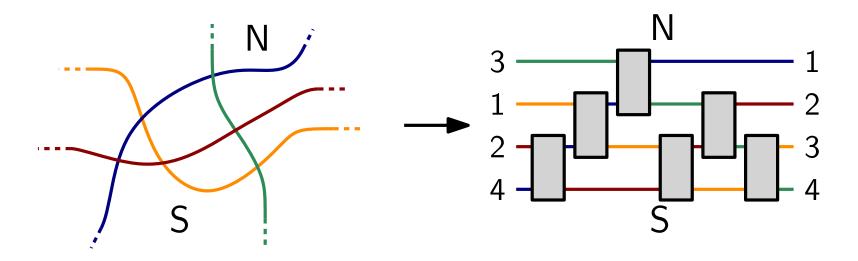
Drahtdiagramme als Sortiernetze:



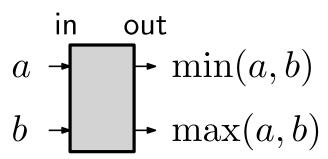


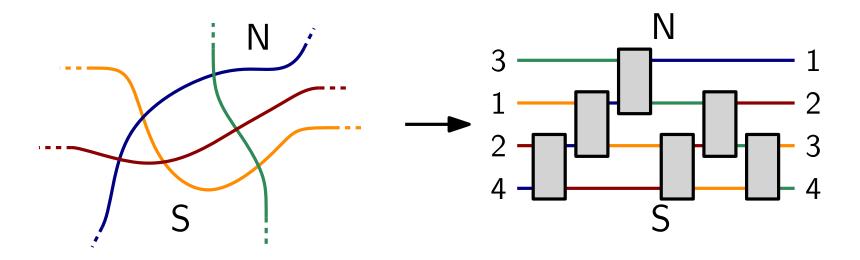
Drahtdiagramme als Sortiernetze:



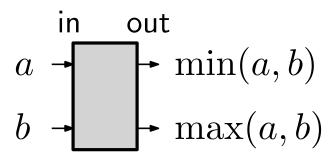


Drahtdiagramme als Sortiernetze:

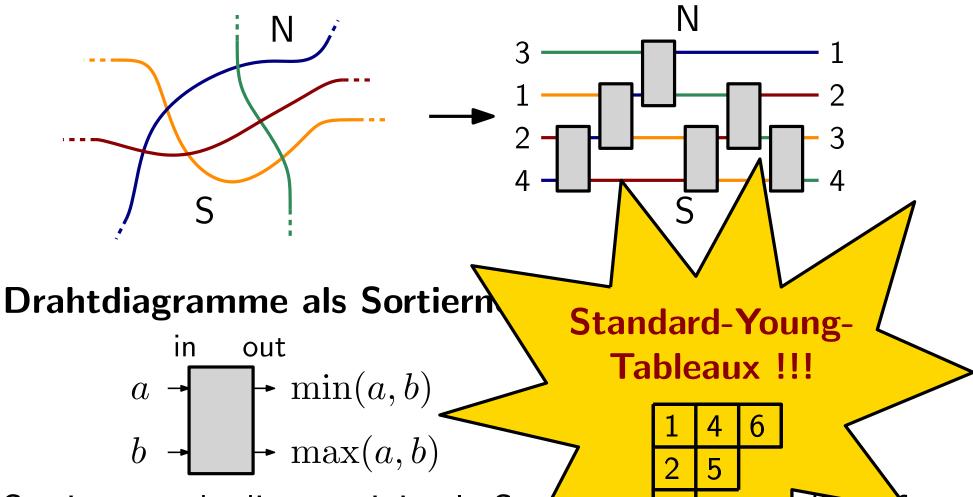




Drahtdiagramme als Sortiernetze:



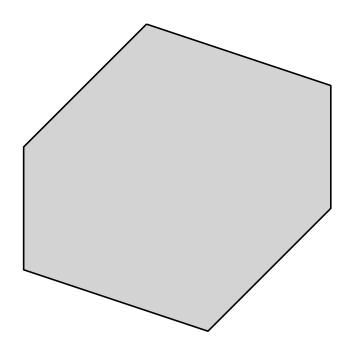
Sortiernetze kodieren minimale Sortieralgorithmen, die auf Vergleich & Tausch benachbarter Elemente basieren.

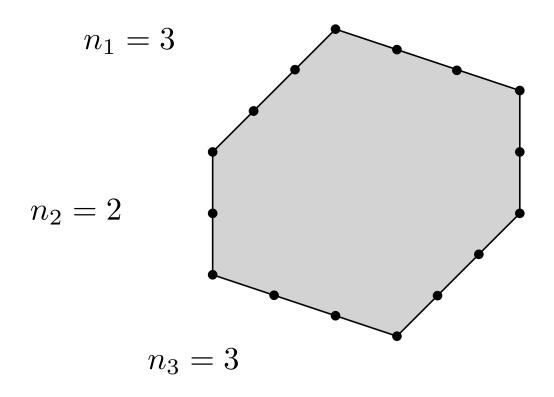


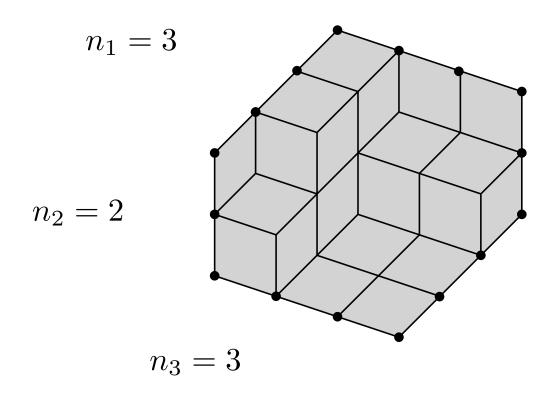
Sortiernetze kodieren minimale Sortiernetze kodieren kodieren

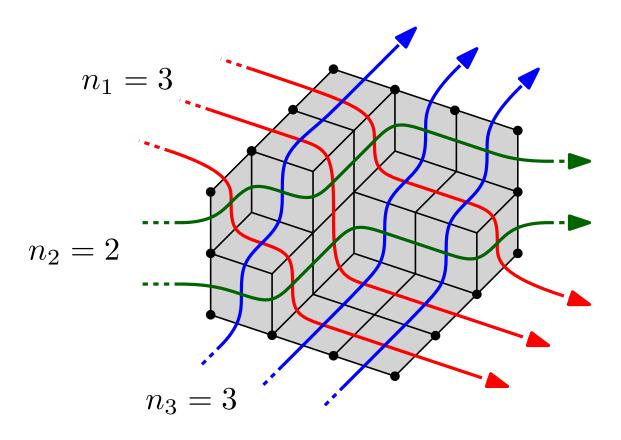
die au

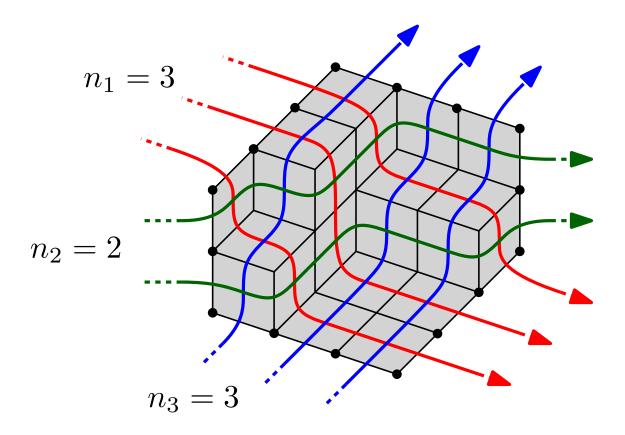
n.











Liefert Verallgemeinertes Pseudogeradenarrangement:

- Parallelklassen von $n_1, ..., n_r$ Pseudogeraden.
- (Nur) Pseudogeraden verschiedener Parallelklassen kreuzen sich.

Topkapı-Palast, Instanbul, Türkei

Pseudogeradenarrangements

Drahtdiagramme

Signotope

plane partitions

Permutationen

Rhombenpflasterungen

Sortiernetze

Höhere Bruhat-Ordnung

Standard-Young-Tableaus

Systeme monotoner, sich nicht schneidender Pfade

Orientierte Matroide von Rang 3

Pseudogeradenarrangements

Drahtdiagramme

Signotope

plane partitions

Rhombenpflasterungen

Höhere Bruhat-Ordnung **Problem:**

Wie erzeugt man zufällige Pseudogeradenarrangements mit uniformer Verteilung effizient? Permutationen

Sortiernetze

Standard-Young-Tableaus

Systeme monotoner, sich nicht schneidender Pfade

Orientierte Matroide von Rang 3

Idee:

Zufällige lokale Veränderungen in Arrangement

Idee:

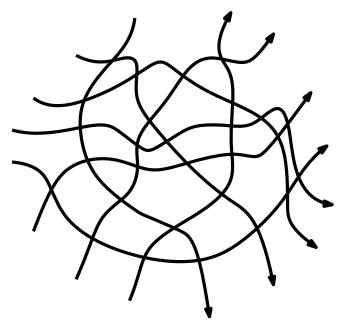
- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung

Idee:

- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell

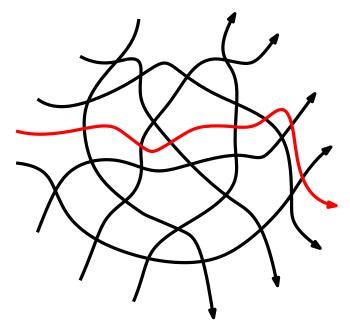
Idee:

- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell



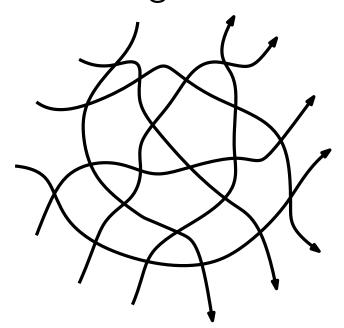
Idee:

- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell



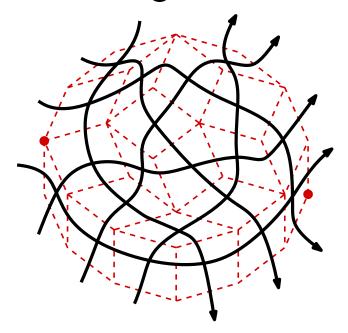
Idee:

- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell



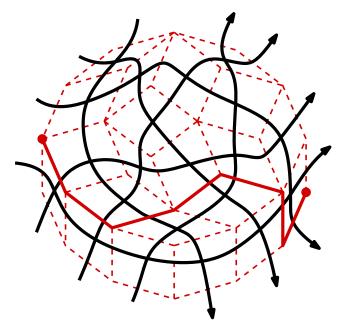
Idee:

- Zufällige lokale Veränderungen in Arrangement
- Übergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell



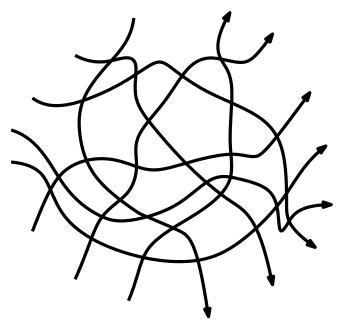
Idee:

- Zufällige lokale Veränderungen in Arrangement
- Übergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell



Idee:

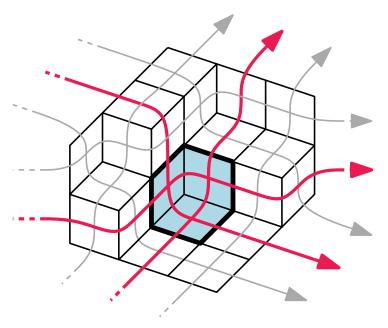
- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell



Idee:

- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell

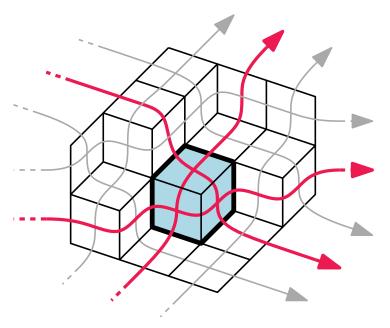
Markov-Kette II: Flip zufälliger Dreiecke:



Idee:

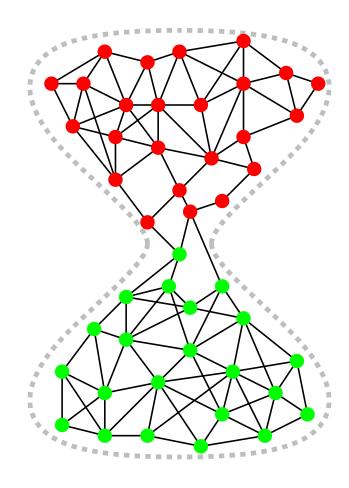
- Zufällige lokale Veränderungen in Arrangement
- Ubergangswahrscheinlichkeiten symmetrisch
 - ⇒ Markov-Kette nähert sich der uniformen Verteilung
- Schnell-mischend, falls Konvergenz polynomiell schnell

Markov-Kette II: Flip zufälliger Dreiecke:

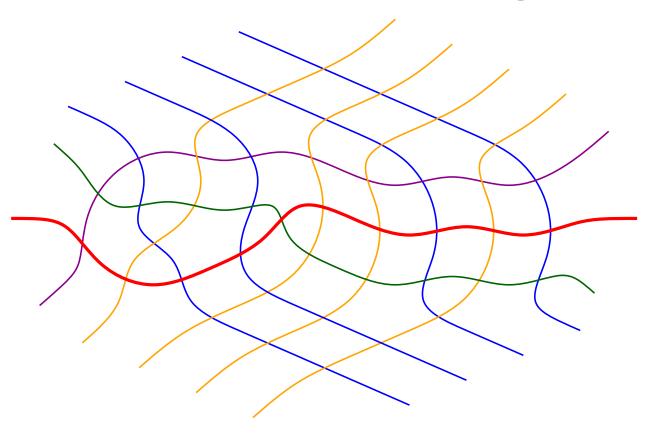


Flaschenhals

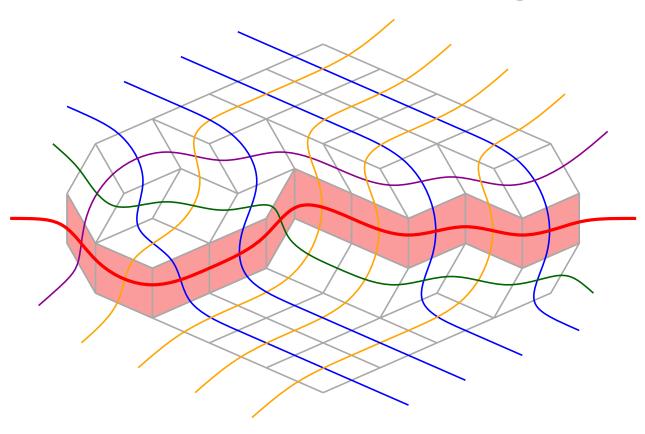
Markov-Kette mit "Flaschenhals":

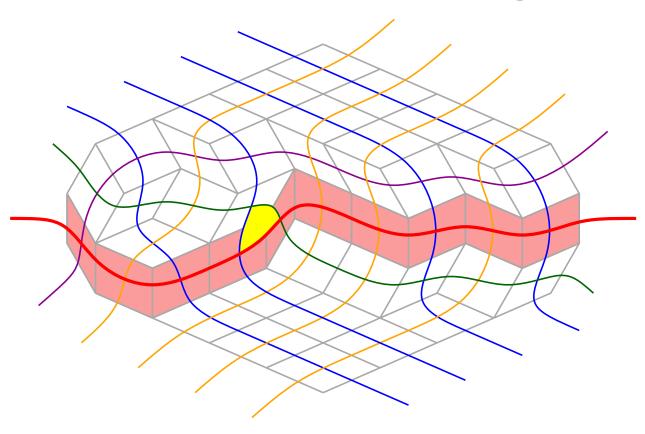


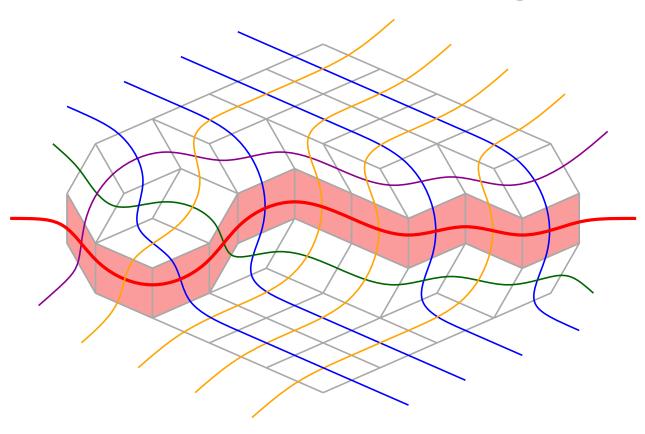
Flip an einzelner Pseudogerade

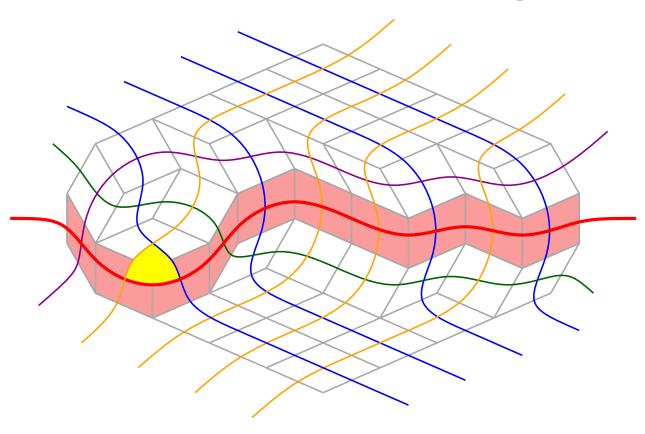


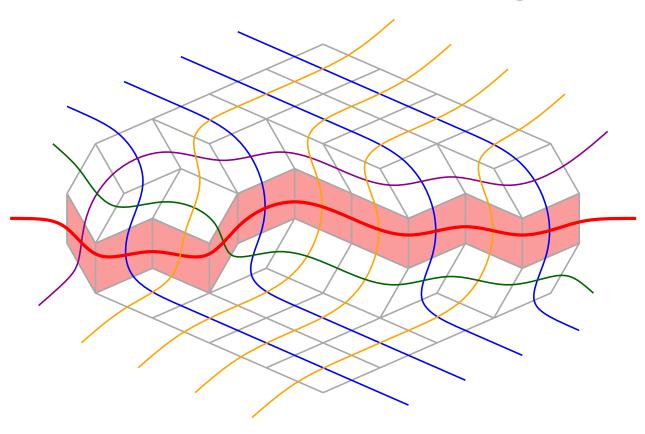
Flip an einzelner Pseudogerade

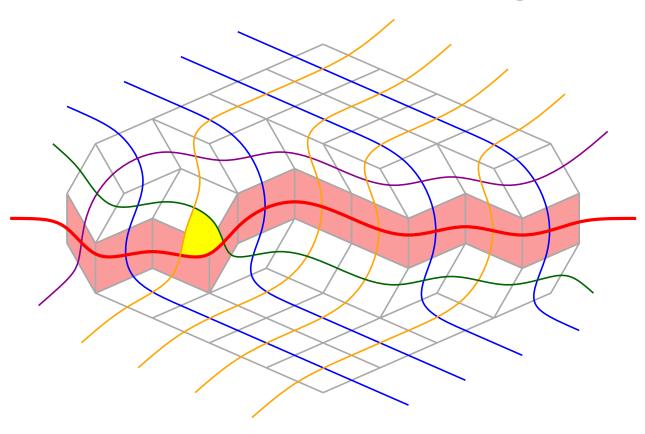


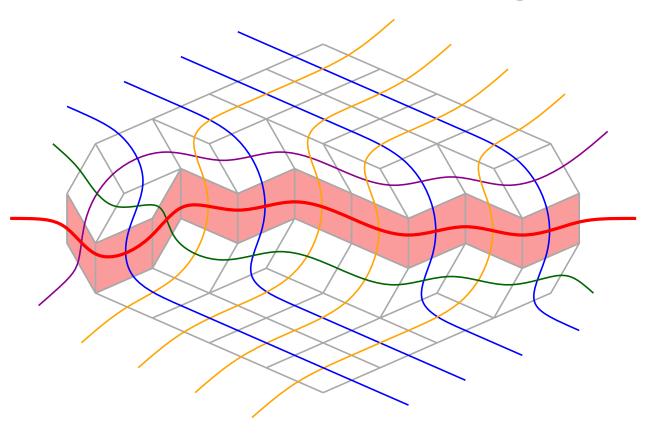


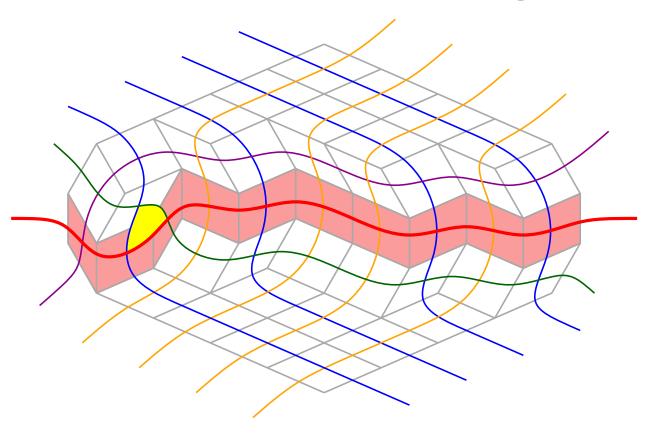


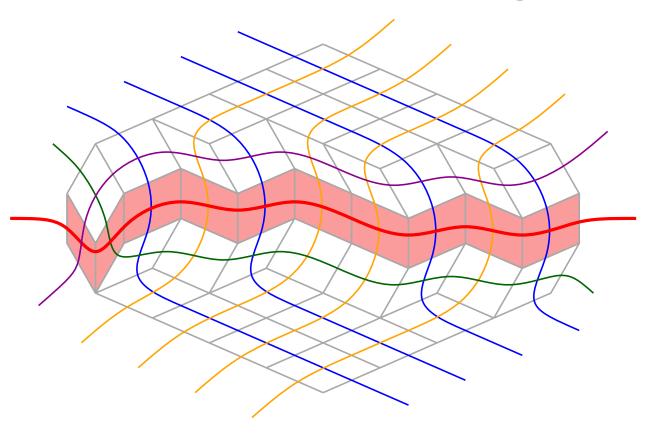


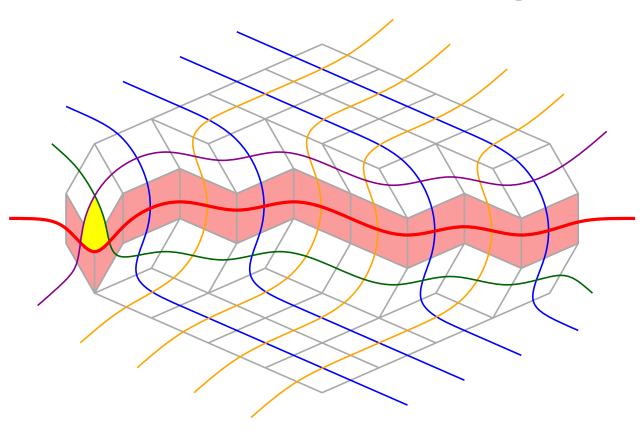


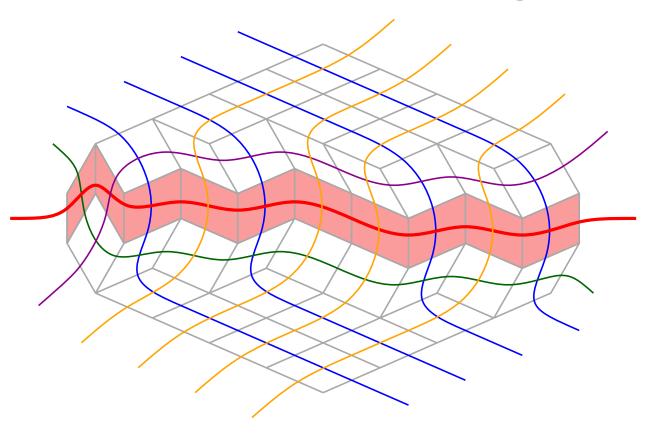


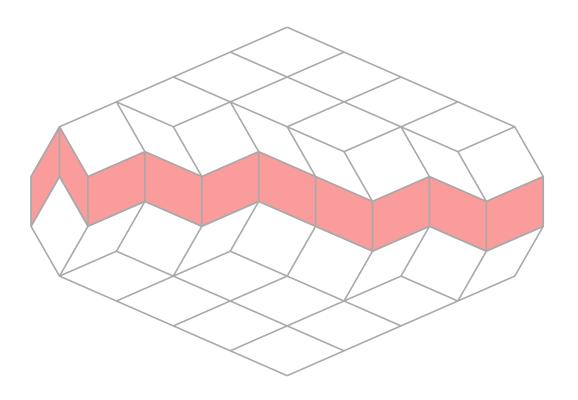


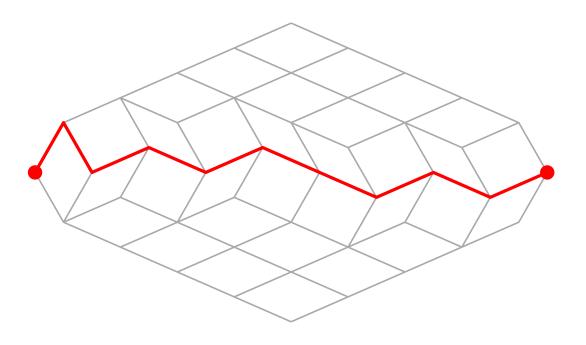


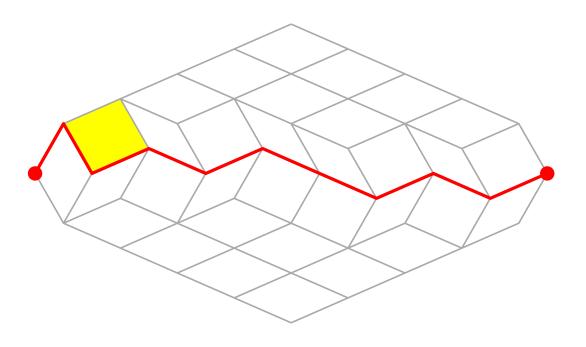


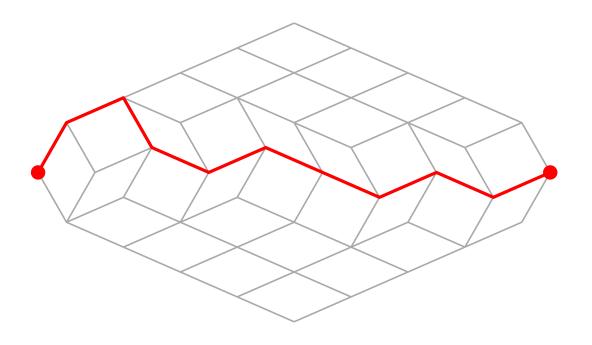


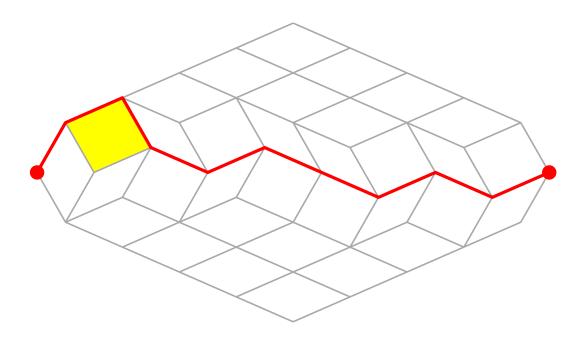


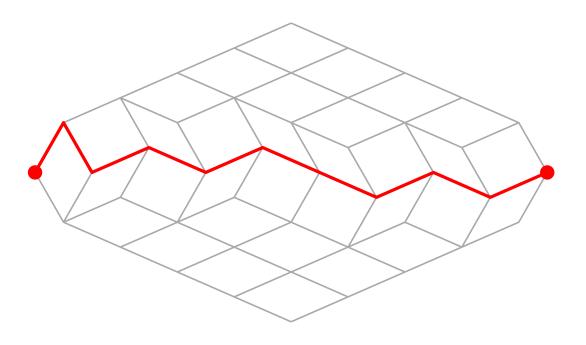


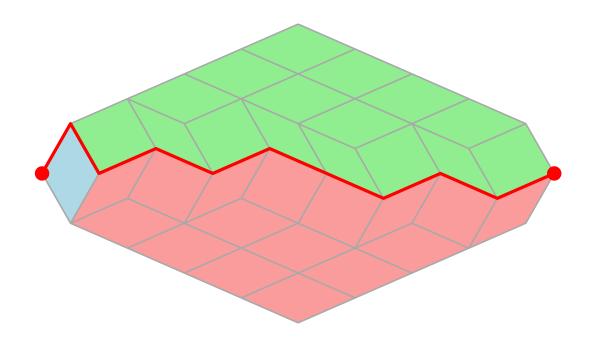




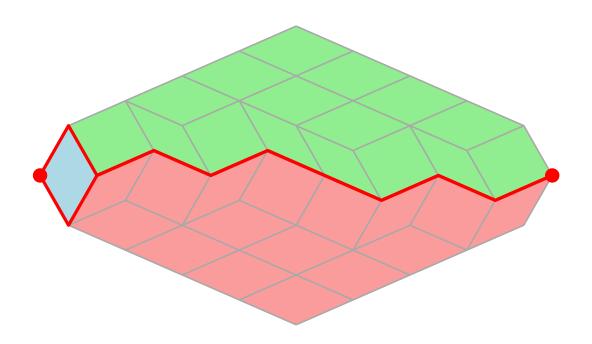






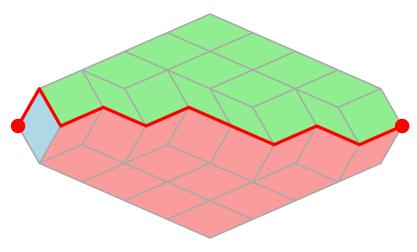


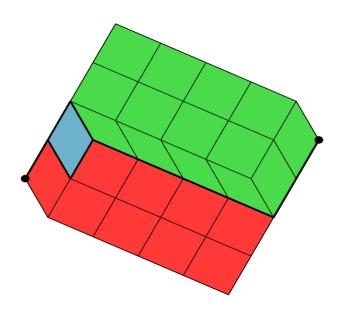
- Partition der Zustände in zwei Klassen:
 - Pfade über blauem Rhombus
 - Pfade unter blauem Rhombus



- Partition der Zustände in zwei Klassen:
 - Pfade über blauem Rhombus
 - Pfade unter blauem Rhombus
- Nur Flip an blauem Rhombus verbindet Klassen!

r = 5 Parallelklassen: (verallgemeinerbar)





- Partition der Zustände in zwei Klassen:
 - Pfade über blauem Rhombus
 - Pfade unter blauem Rhombus
- Nur Flip an blauem Rhombus verbindet Klassen!

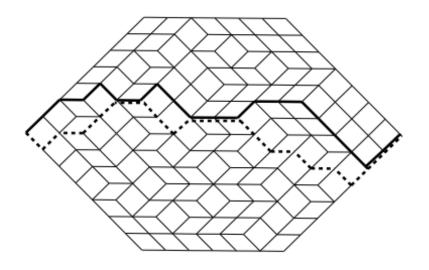
Theorem (R., 2021):

Die Markov-Kette, die in einem Verallgemeinerten Pseudogeradenarrangement zufällig Dreiecke mit Beteiligung einer ausgezeichneten Parallelklasse flipt, ist

- ... schnell mischend bei 3 Parallelklassen, und...
- ...i.A. nicht schnell mischend bei 4 oder mehr Parallelklassen.

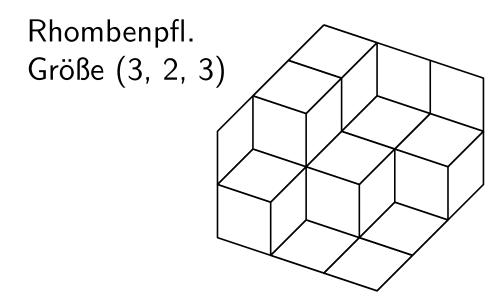
Aussage für 3 Klassen folgt aus (Luby, Randall & Sinclair, 1995)

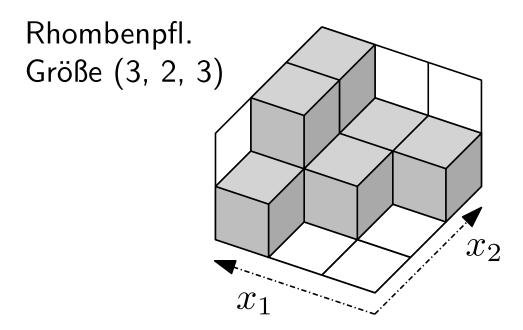
Destainville, 2001: Mixing times of plane rhombus tilings

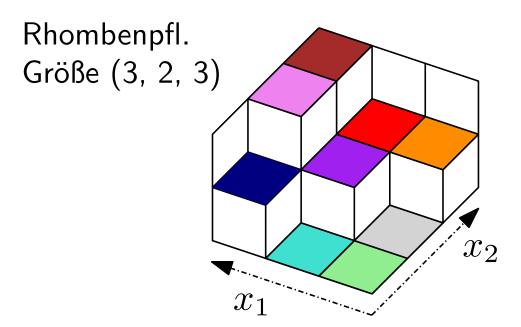


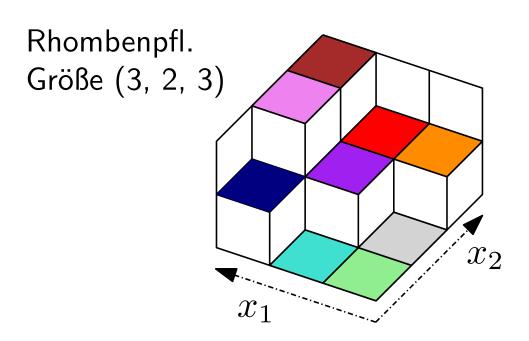
"Nevertheless, the above arguments do not exclude definitively the existence of rare slow fibers, […]"

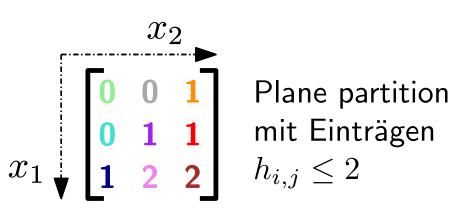
Wissen jetzt: "slow fibers" existieren tatsächlich!

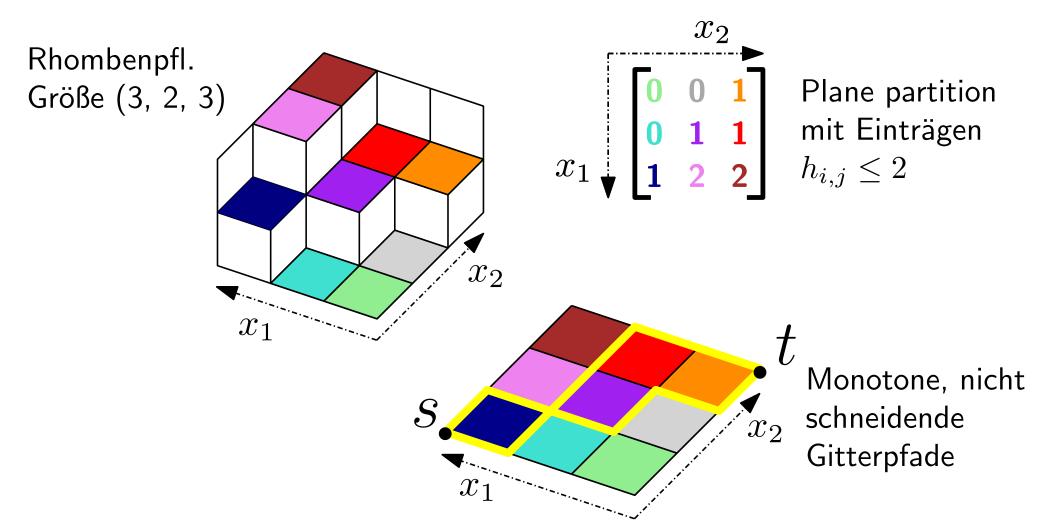




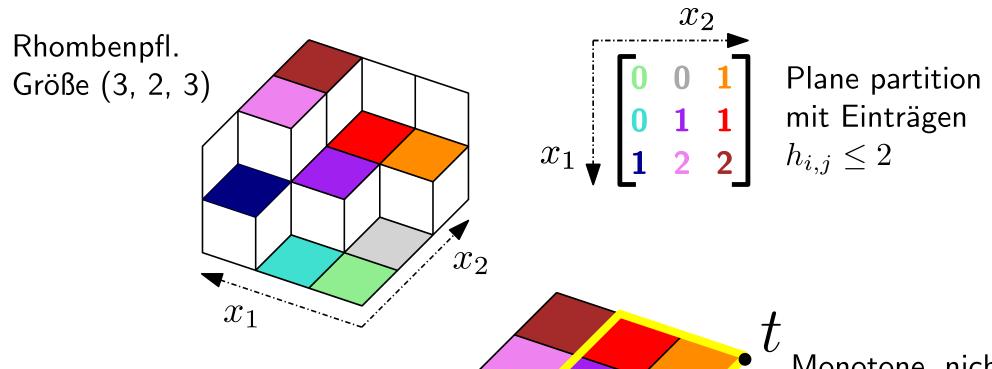








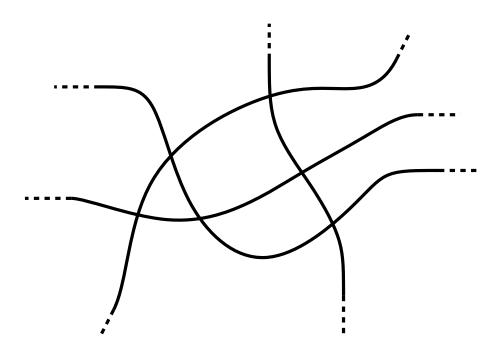
Def: Matrix $[h_{i,j}] \in \mathbb{N}_0^{r \times s}$ heißt *plane partition*, falls Zeilen und Spalten monoton wachsend.

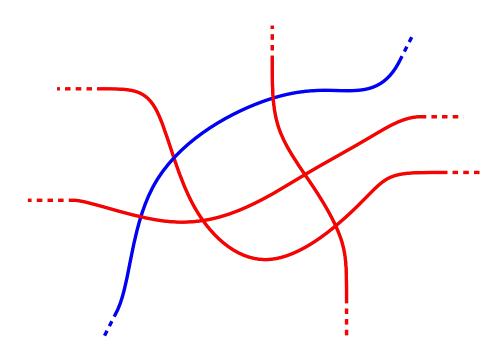


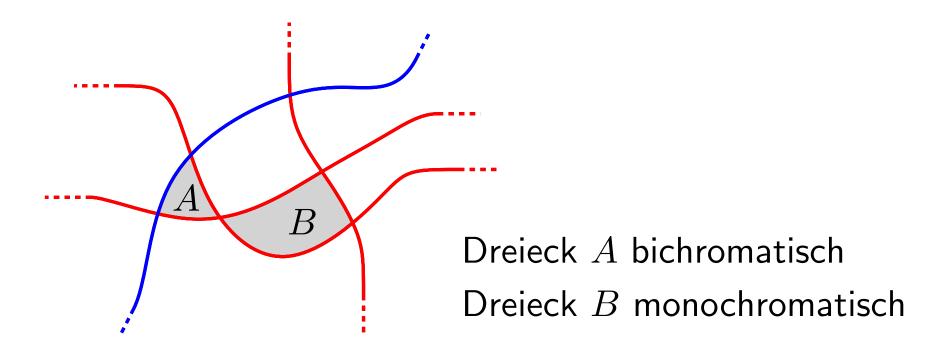
min $\sum f_{i,j}(A_{i,j})$

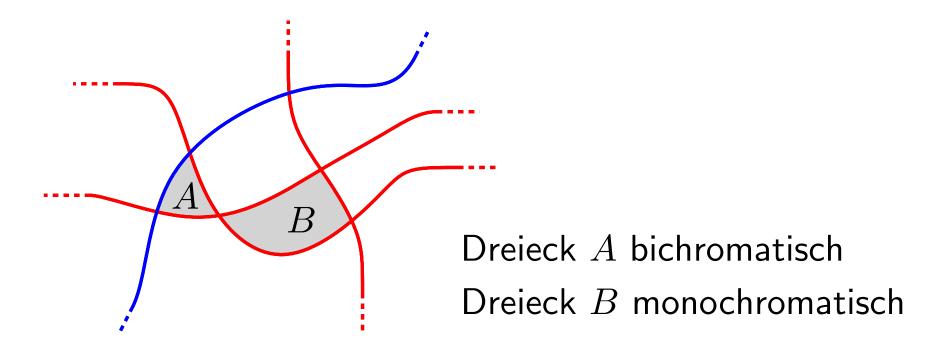
s.t. A p.p., $A_{i,j} \leq h$

Monotone, nicht schneidende Gitterpfade









Vermutung:

(Björner, Las Vergnas, Sturmfels, White, Ziegler, 1999)

Jedes echt zweigefärbte Arrangement von mindestens drei Pseudogeraden enthält ein bichromatisches Dreieck.

Pseudogeradenarrangements

Friedrich Wilhelm Levi

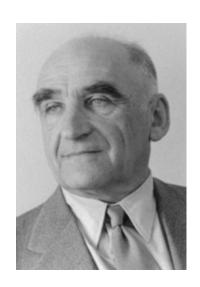
SITZUNG VOM 19. JULI 1926.

Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.

Von Friedrich Levi.

Vorgelegt von Herrn O. Hölder.

Mit 2 Figuren im Text.



Pseudogeradenarrangements

Friedrich Wilhelm Levi

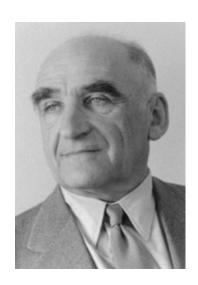
SITZUNG VOM 19. JULI 1926.

Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.

Von Friedrich Levi.

Vorgelegt von Herrn O. Hölder.

Mit 2 Figuren im Text.



1919. Levi, F., Prof. a. d. U. Leipzig, Oetzsch bei Leipzig, Waldstr. 7.

Friedrich L., geb. 6.2. 1888 Mühlhausen i. E., 30.10. 1911 prom. Straßburg, März 1919
hab. Leipzig, seit 1. 11. 1923 nicht planmäßiger a.o. Prof. Leipzig.

Pseudogeradenarrangements

Friedrich Wilhelm Levi

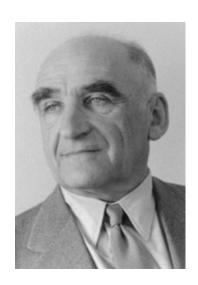
SITZUNG VOM 19. JULI 1926.

Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.

Von Friedrich Levi.

Vorgelegt von Herrn O. Hölder.

Mit 2 Figuren im Text.



1919. Levi, F., Prof. a. d. U. Leipzig, Oetzsch bei Leipzig, Waldstr. 7.

Friedrich L., geb. 6.2. 1888 Mühlhausen i. E., 30.10. 1911 prom. Straßburg, März 1919 hab. Leipzig, seit 1. 11. 1923 nicht planmäßiger a.o. Prof. Leipzig.

- Bis 1935 Prof. an Uni. Leipzig
- Flucht vor Nazis, ab 1936 Prof. an Uni. Kalkutta
- 1950 Rückkehr, ab 1952 Prof. FU Berlin

Fragen?

